Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Biopolymers ; 115(4): e23578, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38577865

RESUMEN

Ocular drug delivery is constrained by anatomical and physiological barriers, necessitating innovative solutions for effective therapy. Natural polymers like hyaluronic acid, chitosan, and gelatin, alongside synthetic counterparts such as PLGA and PEG, have gained prominence for their biocompatibility and controlled release profiles. Recent strides in polymer conjugation strategies have enabled targeted delivery through ligand integration, facilitating tissue specificity and cellular uptake. This versatility accommodates combined drug delivery, addressing diverse anterior (e.g., glaucoma, dry eye) and posterior segment (e.g., macular degeneration, diabetic retinopathy) afflictions. The review encompasses an in-depth exploration of each natural and synthetic polymer, detailing their individual advantages and disadvantages for ocular drug delivery. By transcending ocular barriers and refining therapeutic precision, these innovations promise to reshape the management of anterior and posterior segment eye diseases.


Asunto(s)
Sistemas de Liberación de Medicamentos , Oftalmopatías , Polímeros , Humanos , Sistemas de Liberación de Medicamentos/métodos , Oftalmopatías/tratamiento farmacológico , Polímeros/química , Ácido Hialurónico/química , Animales , Administración Oftálmica , Ojo/metabolismo , Ojo/efectos de los fármacos , Portadores de Fármacos/química
2.
Chem Biodivers ; 21(3): e202301389, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38299764

RESUMEN

Pirfenidone, initially indicated for lung fibrosis, has gone beyond its original purpose, and shown promise in eye care. This detailed review tracks its evolution from lung treatment to aiding eye healing as evidenced by published literature. Pirfenidone's multifaceted attributes extend to mitigating corneal fibrosis, inflammation, and trauma. Through rigorous investigations, its efficacy emerges in diabetic retinopathy, macular degeneration, and postoperative glaucoma interventions. As an unheralded protagonist, pirfenidone reshapes ocular care paradigms, inviting renewed research opportunities.


Asunto(s)
Piridonas , Cicatrización de Heridas , Piridonas/farmacología , Piridonas/uso terapéutico
3.
Rapid Commun Mass Spectrom ; 37(20): e9615, 2023 Oct 30.
Artículo en Inglés | MEDLINE | ID: mdl-37706431

RESUMEN

RATIONALE: Hesperidin (HES) is a well-known citrus bioflavonoid phyto-nutraceutical agent with polypharmacological properties. After 2019, HES was widely used for prophylaxis and COVID-19 treatment. Moreover, it is commonly prescribed for treating varicose veins and other diseases in routine clinical practice. Pharmaceutical impurities and degradation products (DP) impact the drug's quality and safety and thus its effectiveness. Therefore, forced degradation studies help study drug stability, degradation mechanisms, and their DPs. This study was performed because stress stability studies using detailed structural characterization of hesperidin are currently unavailable in the literature. METHODS: In the HES enrichment method crude HES was converted to its pure form (98% purity) using column chromatography and then subjected to forced degradation under acid, base, and neutral hydrolyses followed by oxidative, reductive, photolytic, and thermal stress testing (International Conference on Harmonization guidelines). The stability-indicating analytical method (SIAM) was developed to determine DPs using reversed-phase high-performance liquid chromatography (C18 column with methanol and 0.1% v/v acetic acid in deionized water [70:30, v/v] at 284 nm). Further, structural characterization of DPs was performed using liquid chromatography-electrospray ionization-tandem mass spectrometry (LC-ESI-MS/MS) and nuclear magnetic resonance (NMR) spectroscopy. In addition, in silico toxicity predictions were performed using pKCSM and DataWarior freeware. RESULTS: HES was found to be susceptible to acidic and basic hydrolytic conditions and yielded three DPs in each, which were detected using designed SIAM. Of six DPs, three were pseudo-DPs (short lived), and the remaining were characterized using LC-MS/MS and NMR spectroscopy. The tentative mechanism of the formation of proposed DPs was explained. The proposed DPs were found inactive from in silico toxicity predictions. CONCLUSIONS: Hesperidin was labile under acidic and basic stress conditions. The potential DPs were characterized using LC-ESI-MS/MS and NMR spectral techniques. The proposed mechanism of formation was hypothesized. In addition, to identify and characterize the DPs, a SIAM, which has broad biomedical applications, was successfully developed.


Asunto(s)
COVID-19 , Hesperidina , Humanos , Cromatografía Liquida , Tratamiento Farmacológico de COVID-19 , Espectrometría de Masas en Tándem
4.
Xenobiotica ; 53(6-7): 484-497, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37787761

RESUMEN

1. The current investigation was to develop and validate the LC-MS/MS method in order to analyse the various pharmacokinetic parameters of S019-0385. A sensitive, selective, and robust LC-MS/MS approach was established and validated for measuring S019-0385 in female mice plasma and tissue, using optimal multiple reaction monitoring (MRM) transition m/z 488.25/329.12 on positive mode. On a Waters Symmetry Shield C18 column, the analyte was separated using acetonitrile and deionised water with formic acid within 6 min at 0.7 mL/min. Linearity (R2 ≥ 0.99) was observed across 0.195-100 ng/mL concentration range using linear least-squares regression.2. Blood-to-plasma ratio and plasma protein drug binding (%) in mice and human was assessed and found to be less than 1 and >83%, respectively. Absolute bioavailability (%F) of S019-0385 in female Swiss mice was exhibited to be 6.90%. Percent dose excreted S019-0385 in unchanged form through urine and faecal was found to be less than 2% and 0.5%, respectively.3. Following oral administration at 5 mg/kg, the concentration of S019-0385 in tissue distribution was found to be in the order of C small intestine > C bone > C lung > C spleen > C kidney > C liver > C heart > C brain.


Asunto(s)
Espectrometría de Masas en Tándem , Humanos , Ratones , Femenino , Animales , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Distribución Tisular , Disponibilidad Biológica , Heces , Reproducibilidad de los Resultados
5.
Biomed Chromatogr ; 37(5): e5600, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36760100

RESUMEN

Fenugreek seeds are used in numerous marketed herbal formulations with therapeutic benefits. Some of its bioactive components such as 4-hydroxyisoleucine, trigonelline, raffinose, and pinitol are reported to possess potential therapeutic activities, such as antibacterial, antidiabetic, stomach stimulant, and anti-invasive, against hyperandrogenism and other allied diseases, including polycystic ovary syndrome. A fully validated, selective, and sensitive bioanalytical method for the simultaneous rapid quantification of the aforementioned bioactive components has been developed using hyphenated liquid chromatography electrospray tandem mass spectrometry. The analytes were separated within 5 min using gradient elution in a C18 column at a flow rate of 0.5 ml/min. Plasma protein precipitation technique was employed to isolate the analytes from the samples. Oral pharmacokinetic profile of the four bioactive components in Sprague-Dawley rats was further evaluated using noncompartmental analysis using Phoenix WinNonlin software.


Asunto(s)
Medicamentos Herbarios Chinos , Espectrometría de Masas en Tándem , Ratas , Animales , Femenino , Ratas Sprague-Dawley , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Extractos Vegetales/farmacocinética , Medicamentos Herbarios Chinos/farmacocinética , Reproducibilidad de los Resultados , Cromatografía Líquida de Alta Presión/métodos
6.
Biomed Chromatogr ; 37(9): e5681, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37153940

RESUMEN

A novel, quick and precise RP-UHPLC analytical method for the simultaneous determination of moxifloxacin (MFX), voriconazole (VCZ) and pirfenidone (PIR) was developed and validated according to the International Conference on Harmonization guidelines using a QbD-driven response surface Box-Behnken design. The developed method was validated considering the selectivity, sensitivity, linearity, accuracy-precision, robustness, stability, limit of detection and limit of quantification, respectively. Resolution between MFX, VCZ and PIR was achieved using a gradient elution protocol against a Waters Symmetry Shield C18 column (150 × 4.6 mm2 , 5 µm) using an Agilent 1290, Infinity II series LC system. The method was applied to quantitatively estimate proprietary and in-house prepared pharmaceutical topical ophthalmic formulations containing MFX, VCZ and PIR at wavelength (λmax ) of 296, 260 and 316 nm. The method is sensitive enough to detect up to 0.1 ppm of analytes in the formulation. The method was further exploited to study and identify the possible degradation products of the analytes. The proposed chromatographic method is simple, economical, reliable and reproducible. In conclusion, the developed method could be applicable for routine quality control analysis of single or combined MFX, VCZ and PIR-containing units or bulk dosage forms in pharmaceutical industries and research organizations working on drug discovery and development.


Asunto(s)
Voriconazol , Moxifloxacino , Cromatografía Líquida de Alta Presión/métodos , Preparaciones Farmacéuticas
7.
AAPS PharmSciTech ; 24(8): 217, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37891392

RESUMEN

The eye, an intricate organ comprising physical and physiological barriers, poses a significant challenge for ophthalmic physicians seeking to treat serious ocular diseases affecting the posterior segment, such as age-related macular degeneration (AMD) and diabetic retinopathy (DR). Despite extensive efforts, the delivery of therapeutic drugs to the rear part of the eye remains an unresolved issue. This comprehensive review delves into conventional and innovative formulation strategies for drug delivery to the posterior segment of the eye. By utilizing alternative nanoformulation approaches such as liposomes, nanoparticles, and microneedle patches, researchers and clinicians can overcome the limitations of conventional eye drops and achieve more effective drug delivery to the posterior segment of the eye. These innovative strategies offer improved drug penetration, prolonged residence time, and controlled release, enhancing therapeutic outcomes for ocular diseases. Moreover, this article explores recently approved delivery systems that leverage diverse polymer technologies, such as chitosan and hyaluronic acid, to regulate drug-controlled release over an extended period. By offering a comprehensive understanding of the available formulation strategies, this review aims to empower researchers and clinicians in their pursuit of developing highly effective treatments for posterior-segment ocular diseases.


Asunto(s)
Oftalmopatías , Degeneración Macular , Humanos , Preparaciones de Acción Retardada/uso terapéutico , Ojo , Sistemas de Liberación de Medicamentos , Liposomas/uso terapéutico , Degeneración Macular/tratamiento farmacológico , Oftalmopatías/tratamiento farmacológico
8.
Anal Biochem ; 659: 114907, 2022 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-36209897

RESUMEN

Quantitative determination of biomarkers homocysteine (Hcy) and methylmalonic acid (MMA), the regulators of cobalamin (Cbl) and folate levels, together used as a biomarkers to diagnose chemical insufficiency/deficiency of Cbl and folate. We report simultaneous clinical estimation of total Hcy and MMA with efficient clean-up, sensitive and selective LC-MS/MS method. Efficient sample clean-up was achieved by a two-step extraction protocol with 100 µL serum. The validated method was applied to 893 clinical samples from 2 cohorts including pediatrics and mothers, respectively, for identifying their Cbl and folate status. The method shows excellent order of linearity for Hcy (22.2nM-3.7 µM) and MMA (42.34 nM - 5.92 µM), respectively. Complete method validation was performed where intraday-interday accuracy-precision and mean stability recovery data were found within ±15%. The validated method was extended for the quantification of serum total Hcy-MMA levels in clinical samples. The efficient extraction with negligible matrix-effect (ME) has reduced LC-MS/MS chocking and clean-up downtime. The rapid, sensitive and robust LC-MS/MS method has been successfully validated for simultaneous estimation of total Hcy and MMA using only 100 µL serum. The method was applicable to large number of clinical samples and was found to be good throughput with low contamination of mass detector, high sensitivity and selectivity.


Asunto(s)
Ácido Metilmalónico , Pediatría , Adulto , Humanos , Niño , Cromatografía Liquida , Homocisteína , Espectrometría de Masas en Tándem , Vitamina B 12 , Ácido Fólico , Biomarcadores
9.
Xenobiotica ; 52(5): 476-487, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35819259

RESUMEN

S-011-1559 is a tyrosine-derived novel benzoxazine CDRI molecule targeted to the oestrogen-related receptor (ER-α/ß) modulator in breast cancer. To explore the pharmacokinetics of S-011-1559, a selective and sensitive bioanalytical method using LC-MS/MS was established and validated in different biological matrices of female rats.Blood-to-plasma ratio and plasma protein binding (PPB) of S-011-1559 were found to be <1 and >97% in both rats and humans, respectively. The human serum albumin (HSA) and alpha-1-acid glycoprotein (AAG) binding was found in the range of > 68 to 45% and >14% respectively. Half-life and intrinsic clearance by microsomal stability study were found to be 28.83 min and 0.05 mL/min/mg in rats, 78.35 min and 0.036 mL/min/mg in humans, respectively. The IC50 value of S-011-1559 against CYP isoforms was revealed to moderately inhibit CYP2D6 by a reversible non-competitive mechanism.Tissue distribution of S-011-1559 on single intravenous injection at 2 mg/kg was found in the order of C lungs > C mammary gland > C spleen > C heart > C kidney > C liver > C brain.The data from the present study provides crucial information about S-011-1559 for further development as a novel potential drug candidate in modulating ER-α/ß receptors of lung and breast neoplasia.


Asunto(s)
Neoplasias de la Mama , Espectrometría de Masas en Tándem , Animales , Cromatografía Liquida , Femenino , Humanos , Microsomas Hepáticos , Ratas , Distribución Tisular
10.
Bioanalysis ; 16(4): 219-232, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38197429

RESUMEN

Aim: The fixed-dose combination of moxifloxacin (MOXI) and ketorolac tromethamine (KTR) is widely used for the treatment of bacterial keratitis. Thus, a new LC-MS/MS method was developed to determine MOXI and KTR in lacrimal fluid. Methods: Bioanalysis was performed using a Shimadzu 8050 LC-MS/MS in electrospray ionization-positive mode and the method was validated per US FDA guidelines. Isocratic separation was performed with a Waters Symmetry C18 column using methanol and 0.1% formic acid containing deionized water (85:15, v/v). Results & conclusion: An easy, quick and selective method was established and applied to assess the ocular pharmacokinetic profile of a commercially available formulation containing MOXI and KTR. Based on the pharmacokinetic data, this work describes pharmacokinetics-based dosage regimen calculations and their clinical significance.


Asunto(s)
Ketorolaco Trometamina , Espectrometría de Masas en Tándem , Animales , Conejos , Moxifloxacino , Cromatografía Liquida/métodos , Ketorolaco Trometamina/química , Espectrometría de Masas en Tándem/métodos , Ojo , Reproducibilidad de los Resultados , Cromatografía Líquida de Alta Presión/métodos
11.
Ther Deliv ; : 1-8, 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38888757

RESUMEN

Ophthalmic diseases can result in permanent vision loss and blindness. Convenient topical and systemic treatments are preferred to address these sight-threatening conditions. However, the unique anatomy of the eye presents challenges for drug delivery. Various ophthalmic ointment formulations have been developed to enhance bioavailability in the eye to prolong residence time and improve corneal permeability. This article explores a wide range of ocular diseases affecting individuals globally and how ointments are used to manage them. From eye to ocular barriers, this review focuses on published scientific research and formulation strategies for severe ocular complications using conventional topical ointments. Additionally, it delves through patented technologies and marketed formulations supporting the use of ointments in ocular drug delivery.


Eye illnesses can cause blindness. The treatment is tricky due to eye's complex makeup. This paper talks about eye ointments also known as 'creams' or 'pomades' used to deliver medicine to the eye. These creams make the medicine work better by staying in the eye longer and absorbing faster. The present work looks at different eye problems and talks about ointments used to treat both internal and external eye diseases. It also explains how the eye is built and why it is hard for medicine to get in. There is also an information about ointments that have been discovered with some new ideas and those available in the market to cure eye problems.

12.
ACS Infect Dis ; 10(7): 2356-2380, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38847789

RESUMEN

Fungal keratitis (FK) is a severe ocular condition resulting from corneal infection that is prevalent in tropical countries, particularly in developing regions of Asia and Africa. Factors like corneal lens misuse, inappropriate steroid use, and diagnostic challenges have provoked the epidemic. FK causes significant vision impairment, scarring, and ocular deformities. Accurate pathological diagnosis is crucial for effective therapeutic intervention. Topical antifungal therapy with surface healing medications proves effective in preventing fungal-borne ulcers. Managing FK requires a comprehensive understanding of fungal pathogenesis, guiding formulation strategies and preventive measures to curb global ocular blindness. This review provides in-depth insights into FK, covering etiology, epidemiology, pathogenesis, therapeutic interventions, antifungal resistance, limitations, prevention, and future perspectives on ocular surface disease management.


Asunto(s)
Antifúngicos , Infecciones Fúngicas del Ojo , Queratitis , Humanos , Queratitis/diagnóstico , Queratitis/epidemiología , Queratitis/microbiología , Infecciones Fúngicas del Ojo/diagnóstico , Infecciones Fúngicas del Ojo/epidemiología , Infecciones Fúngicas del Ojo/microbiología , Infecciones Fúngicas del Ojo/tratamiento farmacológico , Antifúngicos/uso terapéutico , Farmacorresistencia Fúngica
13.
J Med Chem ; 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-39013034

RESUMEN

In the quest for the discovery of antidiabetic compounds, a series of 27 1,4-dihydropyridine-indole derivatives were synthesized using a diversity approach. These compounds were systematically evaluated for their antidiabetic activity, starting with an in vitro assessment for GLUT4 translocation stimulation in L6-GLUT4myc myotubes, followed by in vivo antihyperglycemic activity evaluation in a streptozotocin (STZ)-induced diabetic rat model. Among the synthesized compounds, 12, 14, 15, 16, 19, 27, and 35 demonstrated significant potential to stimulate GLUT4 translocation in skeletal muscle cells. Compound 19 exhibited the highest potency and was selected for in vivo evaluation. A notable reduction of 21.6% (p < 0.01) in blood glucose levels was observed after 5 h of treatment with compound 19 in STZ-induced diabetic rats. Furthermore, pharmacokinetic studies affirmed that compound 19 was favorable to oral exposure with suitable pharmacological parameters. Overall, compound 19 emerged as a promising lead compound for further structural modification and optimization.

14.
J Pharm Biomed Anal ; 239: 115920, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38113826

RESUMEN

Unforeseen surfacing of microbial keratitis (MKT) over the years has led to a requisite for promising treatment strategy involving combination of antifungal and antibacterial agents. Subsequently, symptoms associated with MKT including inflammation and watery eyes require treatment with anti-inflammatory agents. Thus, a requirement of functional clinical treatment strategy involving combination of anti-inflammatory corticosteroids (Betamethasone) with antifungal polyene (Amphotericin B, AmB) and antibacterials macrolide (Azithromycin, AZT) and aminoglycoside (Neomycin, NEO). In the ensuing pursuit, a sensitive and fast simultaneous LC-MS/MS method of four drastically different analytes in rabbit tear fluid and cornea was developed and validated as per US-FDA guidelines. The gradient LC set-up was used with C18 column and flow rate of 0.55 mL/min along with short run time of 7 min. The calibration curves showed good linearity over the concentration range of 0.07-300 ng/mL, 1.00-400 ng/mL, 3.00-600 ng/mL and 8.00-900 ng/mL for AZT, AmB, NEO and BEM respectively. The bioanalytical method requires only 10 µL of ocular sample and analytes were extracted with fast protein precipitation with acidic methanol. Finally, the developed method was validated for selectivity, linearity (r2 > 0.99), precision, accuracy, matrix effects, and stability. PK-PD indices and dosing frequency was predicted using Phoenix WinNonlin Software, based on single dose ocular pharmacokinetics and MIC values of AmB, AZT and NEO. According to the PK-PD simulation, S. aureus and E. coli required 6 and 12 instillations of AZT per 24 h, respectively whereas 12 instillation of NEO requires per 24 h for S. aureus. The result suggests that to minimize antimicrobial resistance; drug, dose and dosing schedule depend upon the pathogen as well as the strain.


Asunto(s)
Antifúngicos , Queratitis , Animales , Conejos , Antifúngicos/farmacocinética , Cromatografía Liquida/métodos , Cromatografía Líquida con Espectrometría de Masas , Espectrometría de Masas en Tándem/métodos , Staphylococcus aureus , Escherichia coli , Antibacterianos/farmacología , Córnea , Antiinflamatorios , Queratitis/tratamiento farmacológico , Reproducibilidad de los Resultados
15.
J Mass Spectrom ; 59(6): e5031, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38726684

RESUMEN

Managing ocular microbial infections typically requires pharmacotherapy using antibiotic eye drops, such as moxifloxacin hydrochloride (MFX), combined with an antifungal agent like amphotericin B (AB). We carried out and validated an LC-MS/MS assay to quantify these compounds in rabbit tear fluid in order to look into the pharmacokinetics of these two drugs. We employed a protein precipitation technique for the extraction of drugs under examination. A Waters Symmetry C18 column was used to separate the analytes and internal standard. The composition of the mobile phase was like (A) 0.1% v/v formic acid in water and (B) methanol. The detection of MFX and AB was accomplished through the utilization of positive ion electrospray ionization under multiple reaction monitoring mode. The linearity curves for both analytes exhibited an acceptable trendline across a concentration range of 2.34-300 ng/mL for MFX and 7.81-1000 ng/mL for AB in surrogate rabbit tear fluid. The lower limit of quantitation for MFX was 2.34 ng/mL, while for AB, it was 7.81 ng/mL. The approach was strictly validated, encompassing tests of selectivity, linearity (with r2 > 0.99), precision, accuracy, matrix effects, and stability. Consequently, we employed this method to evaluate the pharmacokinetics profiles of MFX and AB in rabbit tear fluid following single topical doses.


Asunto(s)
Moxifloxacino , Espectrometría de Masas en Tándem , Lágrimas , Conejos , Animales , Espectrometría de Masas en Tándem/métodos , Lágrimas/química , Moxifloxacino/farmacocinética , Moxifloxacino/análisis , Reproducibilidad de los Resultados , Anfotericina B/farmacocinética , Anfotericina B/análisis , Límite de Detección , Antiinfecciosos/farmacocinética , Antiinfecciosos/análisis , Cromatografía Liquida/métodos , Soluciones Oftálmicas/farmacocinética , Modelos Lineales , Cromatografía Líquida con Espectrometría de Masas
16.
J Ocul Pharmacol Ther ; 40(1): 13-33, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-37733327

RESUMEN

Purpose: Diabetic retinopathy (DR) is a microvascular retinal disease associated with chronic diabetes mellitus, characterized by the damage of blood vessels in the eye. It is projected to become the leading cause of blindness, given the increasing burden of the diabetic population worldwide. The diagnosis and management of DR pose significant challenges for physicians because of the involvement of multiple biochemical pathways and the complexity of ocular tissues. This review aims to provide a comprehensive understanding of the molecular pathways implicated in the pathogenesis of DR, including the polyo pathway, hexosamine pathway, protein kinase C (PKC), JAK/STAT signaling pathways, and the renin-angiotensin system (RAS). Methods: Academic databases such as PubMed, Scopus, Google Scholar and Web of Science was systematically searched using a carefully constructed search strategy incorporating keywords like "Diabetic Retinopathy," "Molecular Pathways," "Pharmacological Treatments," and "Clinical Trials" to identify relevant literature for the comprehensive review. Results: In addition to activating other inflammatory cascades, these pathways contribute to the generation of oxidative stress within the retina. Furthermore, it aims to explore the existing pharmacotherapy options available for the treatment of DR. In addition to conventional pharmacological therapies such as corticosteroids, antivascular endothelial growth factors, and nonsteroidal anti-inflammatory drugs (NSAIDs), this review highlights the potential of repurposed drugs, phyto-pharmaceuticals, and novel pipeline drugs currently undergoing various stages of clinical trials. Conclusion: Overall, this review serves as a technical exploration of the complex nature of DR, highlighting both established and emerging molecular pathways implicated in its pathogenesis. Furthermore, it delves into the available pharmacological treatments, as well as the promising repurposed drugs, phyto-pharmaceuticals, and novel drugs currently being evaluated in clinical trials, with a focus on their specific mechanisms of action.


Asunto(s)
Diabetes Mellitus , Retinopatía Diabética , Humanos , Retinopatía Diabética/tratamiento farmacológico , Retinopatía Diabética/etiología , Retinopatía Diabética/patología , Retina/patología , Corticoesteroides/uso terapéutico , Estrés Oxidativo , Preparaciones Farmacéuticas , Diabetes Mellitus/tratamiento farmacológico
17.
J Ocul Pharmacol Ther ; 40(5): 309-324, 2024 06.
Artículo en Inglés | MEDLINE | ID: mdl-38603587

RESUMEN

Purpose: Glaucoma is a complex degenerative optic neuropathy characterized by loss of retinal ganglion cells (RGCs) leading to irreversible vision loss and blindness. Solanum nigrum has been used for decades in traditional medicine system. However, no extensive studies were reported on its antiglaucoma properties. Therefore, this study was designed to investigate the neuroprotective effects of S. nigrum extract on RGC against glaucoma rat model. Methods: High performance liquid chromatography and liquid chromatography tandem mass spectrometry was used to analyze the phytochemical profile of aqueous extract of S. nigrum (AESN). In vitro, {3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide} (MTT) and H2DCFDA assays were used to determine cell viability and reactive oxygen species (ROS) production in Statens Seruminstitut Rabbit Cornea cells. In vivo, AESN was orally administered to carbomer-induced rats for 4 weeks. Intraocular pressure, antioxidant levels, and electrolytes were determined. Histopathological and immunohistochemical analysis was carried out to evaluate the neurodegeneration of RGC. Results: MTT assay showed AESN exhibited greater cell viability and minimal ROS production at 10 µg/mL. Slit lamp and funduscopy confirmed glaucomatous changes in carbomer-induced rats. Administration of AESN showed minimal peripheral corneal vascularization and restored histopathological alterations such as minimal loss of corneal epithelium and moderate narrowing of the iridocorneal angle. Immunohistochemistry analysis showed increased expression of positive BRN3A cells and decreased matrix metalloproteinase (MMP)-9 activation in retina and cornea, whereas western blot analysis revealed downregulation of extracellular matrix proteins (COL-1 and MMP-9) in AESN-treated rats compared with the diseased group rats. Conclusions: AESN protects RGC loss through remodeling of MMPs and, therefore, can be used for the development of novel neurotherapeutics for the treatment of glaucoma.


Asunto(s)
Supervivencia Celular , Modelos Animales de Enfermedad , Matriz Extracelular , Glaucoma , Fármacos Neuroprotectores , Extractos Vegetales , Especies Reactivas de Oxígeno , Células Ganglionares de la Retina , Solanum nigrum , Animales , Células Ganglionares de la Retina/efectos de los fármacos , Células Ganglionares de la Retina/metabolismo , Células Ganglionares de la Retina/patología , Glaucoma/tratamiento farmacológico , Glaucoma/patología , Glaucoma/metabolismo , Ratas , Solanum nigrum/química , Fármacos Neuroprotectores/farmacología , Extractos Vegetales/farmacología , Especies Reactivas de Oxígeno/metabolismo , Matriz Extracelular/efectos de los fármacos , Matriz Extracelular/metabolismo , Supervivencia Celular/efectos de los fármacos , Masculino , Conejos , Presión Intraocular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Ratas Sprague-Dawley
18.
RSC Med Chem ; 15(2): 677-694, 2024 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-38389884

RESUMEN

Anti-resorptive inhibitors such as bisphosphonates are widely used but they have limited efficacy and serious side effects. Though subcutaneous injection of teriparatide [PTH (1-34)] is an effective anabolic therapy, long-term repeated subcutaneous administration is not recommended. Henceforth, orally bio-available small-molecule-based novel therapeutics are unmet medical needs to improve the treatment. In this study, we designed, synthesized, and carried out a biological evaluation of 31 pyrimidine derivatives as potent bone anabolic agents. A series of in vitro experiments confirmed N-(5-bromo-4-(4-bromophenyl)-6-(2,4,5-trimethoxyphenyl)pyrimidin-2-yl)hexanamide (18a) as the most efficacious anabolic agent at 1 pM. It promoted osteogenesis by upregulating the expression of osteogenic genes (RUNX2 and type 1 col) via activation of the BMP2/SMAD1 signaling pathway. In vitro osteogenic potential was further validated using an in vivo fracture defect model where compound 18a promoted the bone formation rate at 5 mg kg-1. We also established the structure-activity relationship and pharmacokinetic studies of 18a.

19.
Curr Pharm Des ; 29(20): 1602-1616, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37424342

RESUMEN

Despite significant advancements in CNS research, CNS illnesses are the most important and serious cause of mental disability worldwide. These facts show a tremendous unmet demand for effective CNS medications and pharmacotherapy since it accounts for more hospitalizations and extended care than practically all other disorders combined. The site-targeted kinetics of the brain and, pharmacodynamics of CNS effects are determined/regulated by various mechanisms after the dose, including blood-brain barrier (BBB) transport and many other processes. These processes are condition-dependent in terms of their rate and extent because they are dynamically controlled. For effective therapy, drugs should access the CNS "at the right place, time, and concentration". Details on inter-species and inter-condition variances are required to translate target site pharmacokinetics and associated CNS effects between species and illness states, improving CNS therapeutics and drug development. The present review encircles a short discussion about the barriers that affect effective CNS treatment and precisely focuses on the pharmacokinetics aspects of efficient CNS therapeutics.


Asunto(s)
Barrera Hematoencefálica , Encéfalo , Humanos , Barrera Hematoencefálica/metabolismo , Descubrimiento de Drogas , Fármacos del Sistema Nervioso Central/farmacología , Transporte Biológico , Sistemas de Liberación de Medicamentos
20.
Ther Deliv ; 14(7): 419-441, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37535389

RESUMEN

Ophthalmic disease can cause permanent loss of vision and blindness. Easy-to-administer topical and systemic treatments are preferred for treating sight-threatening disorders. Typical ocular anatomy makes topical and systemic ophthalmic drug delivery challenging. Various novel nano-drug delivery approaches are developed to attain the desired bioavailability in the eye by increasing residence time and improved permeability across the cornea. The review focuses on novel methods that are biocompatible, safe and highly therapeutic. Novelty in nanocarrier design and modification can overcome their drawbacks and make them potential drug carriers for eye disorders in both the anterior and posterior eye segments. This review briefly discussed technologies, patented developments, and clinical trial data to support nanocarriers' use in ocular drug delivery.


Asunto(s)
Oftalmopatías , Nanopartículas , Humanos , Ojo , Sistemas de Liberación de Medicamentos , Portadores de Fármacos , Oftalmopatías/tratamiento farmacológico , Administración Oftálmica , Soluciones Oftálmicas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA