Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Cell Microbiol ; 15(3): 353-367, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23083060

RESUMEN

The intracellular pathogen Shigella flexneri forms membrane protrusions to spread from cell to cell. As protrusions form, myosin-X (Myo10) localizes to Shigella. Electron micrographs of immunogold-labelled Shigella-infected HeLa cells reveal that Myo10 concentrates at the bases and along the sides of bacteria within membrane protrusions. Time-lapse video microscopy shows that a full-length Myo10 GFP-construct cycles along the sides of Shigella within the membrane protrusions as these structures progressively lengthen. RNAi knock-down of Myo10 is associated with shorter protrusions with thicker stalks, and causes a >80% decrease in confluent cell plaque formation. Myo10 also concentrates in membrane protrusions formed by another intracellular bacteria, Listeria, and knock-down of Myo10 also impairs Listeria plaque formation. In Cos7 cells (contain low concentrations of Myo10), the expression of full-length Myo10 nearly doubles Shigella-induced protrusion length, and lengthening requires the head domain, as well as the tail-PH domain, but not the FERM domain. The GFP-Myo10-HMM domain localizes to the sides of Shigella within membrane protrusions and the GFP-Myo10-PH domain localizes to host cell membranes. We conclude thatMyo10 generates the force to enhance bacterial-induced protrusions by binding its head region to actin filaments and its PH tail domain to the peripheral membrane.


Asunto(s)
Interacciones Huésped-Patógeno , Miosinas/metabolismo , Shigella flexneri/fisiología , Animales , Células COS , Membrana Celular/metabolismo , Membrana Celular/microbiología , Chlorocebus aethiops , Células HeLa , Humanos , Listeria/patogenicidad , Microscopía Inmunoelectrónica , Microscopía por Video
2.
EMBO J ; 26(9): 2240-50, 2007 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-17446863

RESUMEN

Inhalation of anthrax causes fatal bacteremia, indicating a meager host immune response. We previously showed that anthrax lethal toxin (LT) paralyzes neutrophils, a major component of innate immunity. Here, we have found that LT also inhibits actin-based motility of the intracellular pathogen Listeria monocytogenes. LT inhibition of actin assembly is mediated by blockade of Hsp27 phosphorylation, and can be reproduced by treating cells with the p38 mitogen-activated protein (MAP) kinase inhibitor SB203580. Nonphosphorylated Hsp27 inhibits Listeria actin-based motility in cell extracts, and binds to and sequesters purified actin monomers. Phosphorylation of Hsp27 reverses these effects. RNA interference knockdown of Hsp27 blocks LT inhibition of Listeria actin-based motility. Rescue with wild-type Hsp27 accelerates Listeria speed in knockdown cells, whereas introduction of Hsp27 mutants incapable of phosphorylation or dephosphorylation causes slowing down. We propose that Hsp27 facilitates actin-based motility through a phosphorylation cycle that shuttles actin monomers to regions of new actin filament assembly. Our findings provide a previously unappreciated mechanism for LT virulence, and emphasize a central role for p38 MAP kinase-mediated phosphorylation of Hsp27 in actin-based motility and innate immunity.


Asunto(s)
Actinas/metabolismo , Antígenos Bacterianos/fisiología , Proteínas de Choque Térmico/metabolismo , Listeria monocytogenes/fisiología , Proteínas de Neoplasias/metabolismo , Neutrófilos/fisiología , Citoesqueleto de Actina/fisiología , Animales , Antígenos Bacterianos/toxicidad , Toxinas Bacterianas/toxicidad , Transporte Biológico Activo , Encéfalo/microbiología , Polaridad Celular , Proteínas de Choque Térmico HSP27 , Células HeLa , Proteínas de Choque Térmico/genética , Humanos , Imidazoles/farmacología , Inmunidad Innata , Técnicas In Vitro , Listeria monocytogenes/efectos de los fármacos , Chaperonas Moleculares , Mutación , Proteínas de Neoplasias/genética , Neutrófilos/efectos de los fármacos , Neutrófilos/microbiología , Fosforilación , Piridinas/farmacología , Ratas , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA