Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Nutr ; 151(4): 785-799, 2021 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-33512502

RESUMEN

BACKGROUND: Dietary sulfur amino acid restriction (SAAR) improves body composition and metabolic health across several model organisms in part through induction of the integrated stress response (ISR). OBJECTIVE: We investigate the hypothesis that activating transcription factor 4 (ATF4) acts as a converging point in the ISR during SAAR. METHODS: Using liver-specific or global gene ablation strategies, in both female and male mice, we address the role of ATF4 during dietary SAAR. RESULTS: We show that ATF4 is dispensable in the chronic induction of the hepatokine fibroblast growth factor 21 while being essential for the sustained production of endogenous hydrogen sulfide. We also affirm that biological sex, independent of ATF4 status, is a determinant of the response to dietary SAAR. CONCLUSIONS: Our results suggest that auxiliary components of the ISR, which are independent of ATF4, are critical for SAAR-mediated improvements in metabolic health in mice.


Asunto(s)
Factor de Transcripción Activador 4/metabolismo , Aminoácidos Sulfúricos/deficiencia , Factor de Transcripción Activador 4/deficiencia , Factor de Transcripción Activador 4/genética , Aminoácidos Sulfúricos/sangre , Aminoácidos Sulfúricos/metabolismo , Animales , Antioxidantes/metabolismo , Composición Corporal , ADN/biosíntesis , Dietoterapia , Femenino , Factores de Crecimiento de Fibroblastos/sangre , Factores de Crecimiento de Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Sulfuro de Hidrógeno/metabolismo , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Biosíntesis de Proteínas , Factores Sexuales , Estrés Fisiológico
2.
J Addict Med ; 17(3): e209-e210, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37267192

RESUMEN

OBJECTIVES: Labetalol, an α- and ß-adrenergic antagonist used to treat hypertension in pregnancy has been blamed for causing false-positive amphetamine and methamphetamine results. In this study, we tested 3 concentrations of labetalol prepared with 4 specimen types (urine, plasma, meconium, and umbilical cord tissue), for amphetamine, methamphetamine, and several other drugs with screen and confirmation tests. METHODS: Residual drug-free specimens were pooled. Labetalol hydrochloride dissolved in methanol was used to prepare spikes in triplicate per specimen type (2.7, 50, and 100 µM), which were tested with 41 previously validated drug tests performed by immunoassay or liquid chromatography tandem mass spectrometry (LC-MS/MS). RESULTS: Labetalol triggered false-positive amphetamine and methamphetamine results by immunoassay in meconium but did not trigger positive results for any of the targeted drugs or drug metabolites tested by LC-MS/MS. No positive results were generated by any immunoassay or LC-MS/MS test included in the study, when challenged with high concentrations of labetalol in urine, plasma, or umbilical cord tissue. CONCLUSIONS: In summary, false-positive results can be generated by labetalol when tested by immunoassay, but false-positive results are not expected when testing is performed by highly specific analytical approaches such as LC-MS/MS.


Asunto(s)
Labetalol , Metanfetamina , Embarazo , Femenino , Humanos , Labetalol/farmacología , Cromatografía Liquida/métodos , Espectrometría de Masas en Tándem/métodos , Detección de Abuso de Sustancias/métodos , Anfetamina/orina
3.
Geroscience ; 45(2): 1247-1262, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36287320

RESUMEN

The global obesity pandemic coupled with ever-growing life expectancies equates to hundreds of millions of individuals with potentially longer but not healthier lives. Aging is one of the risk factors for numerous maladies such as metabolic disorder and frailty, which are exacerbated under obesity. Thus, therapeutic approaches that address obesity to ultimately improve affected individuals' quality of life and extend their lifespan are needed. We previously reported that the every other day (EOD) fasting initiated late-life improved metabolic, musculoskeletal, and cognitive endpoints in standard rodent diet-fed mice. In the present study, using the same dietary intervention methodology, we tested if 2.5 months of EOD fasting could improve metabolic, physiological, and cognitive endpoints in mice after an 18 month obesogenic high-fat diet (HFD). The positive effects of EOD fasting were generally consistent across the endpoints; EOD fasting decreased total body mass, maintained more %lean mass, improved glucose tolerance and utilization, and improved neuromuscular function. In contrast to our previous study, grip strength, hippocampal-dependent memory, and renal hydrogen sulfide (H2S) production were not improved by the HFD EOD fasting. Thus, efficacy for late-life initiated intermittent fasting to improve specific frailty markers may be partially dependent on nutritional compositions of the diet.


Asunto(s)
Dieta Alta en Grasa , Ayuno Intermitente , Animales , Ratones , Dieta Alta en Grasa/efectos adversos , Calidad de Vida , Obesidad , Ayuno/metabolismo
4.
Artículo en Inglés | MEDLINE | ID: mdl-34314248

RESUMEN

Aims: Peripubertal endocrine disruption has immediate and lifelong consequences on health, cognition, and lifespan. Disruption comes from dietary, environmental, and pharmaceutical sources. The plasticizer Bisphenol A (BPA) is one such endocrine disrupting chemical. However, it is unclear whether peripubertal BPA exposure incites long-lasting physiological, neuro-cognitive, and/or longevity-related metabolic impairments. Catabolism of cysteine via transsulfuration enzymes produces hydrogen sulfide (H2S), a redox-modulating gasotransmitter causative to endocrine and metabolic homeostasis and improved cognitive function with age. As thyroid hormone (TH) regulates hepatic H2S production and BPA is a TH receptor antagonist, we hypothesized that BPA exposure during peripubertal development impairs metabolic and neuro-cognitive/behavioral endpoints in aged mice, in part, due to altered peripheral and/or localized H2S production and redox status. Results: To test this, male C57BL/6J mice at 5 weeks of age were orally exposed daily for 5 weeks to 250 µg BPA/kg, defined as low dose group (LD BPA), or 250 mg BPA/kg, defined as high dose group (HD BPA). Both LD and HD BPA exposure decreased lean mass and increased fat mass accompanied by decreased serum total TH at advanced ages. In addition, LD BPA had an anxiogenic effect whereas HD BPA caused cognitive deficits. Notably, HD BPA disrupted tissue-specific H2S production capacities and/or protein persulfidation, with the former negatively correlated with memory deficits and oxidative stress. Innovation and Conclusion: These findings provide a potential mechanism of action for acute and long-term health impacts of BPA-induced peripubertal endocrine disruption and bolster the need for improved monitoring and limitation of adolescent BPA exposure.

5.
Geroscience ; 43(4): 1527-1554, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-33675469

RESUMEN

Global average life expectancy continues to rise. As aging increases the likelihood of frailty, which encompasses metabolic, musculoskeletal, and cognitive deficits, there is a need for effective anti-aging treatments. It is well established in model organisms that dietary restriction (DR), such as caloric restriction or protein restriction, enhances health and lifespan. However, DR is not widely implemented in the clinic due to patient compliance and its lack of mechanistic underpinnings. Thus, the present study tested the effects of a somewhat more clinically applicable and adoptable DR regimen, every-other-day (EOD) intermittent fasting, on frailty in 20-month-old male and female C57BL/6 mice. Frailty was determined by a series of metabolic, musculoskeletal, and cognitive tasks performed prior to and toward the end of the 2.5-month dietary intervention. Late-life EOD fasting attenuated overall energy intake, hypothalamic inflammatory gene expression, and frailty in males. However, it failed to reduce overall caloric intake and had a little positive effect in females. Given that the selected benefits of DR are dependent on augmented production of the gasotransmitter hydrogen sulfide (H2S) and that renal H2S production declines with age, we tested the effects of EOD fasting on renal H2S production capacity and its connection to frailty in males. EOD fasting boosted renal H2S production, which positively correlated with improvements in multiple components of frailty tasks. Therefore, late-life initiated EOD fasting is sufficient to reduce aging-related frailty, at least in males, and suggests that renal H2S production capacity may modulate the effects of late-life EOD fasting on frailty.


Asunto(s)
Fragilidad , Sulfuro de Hidrógeno , Envejecimiento , Animales , Ayuno , Femenino , Hidrógeno , Masculino , Ratones , Ratones Endogámicos C57BL
6.
Nat Commun ; 12(1): 1745, 2021 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-33741971

RESUMEN

Hydrogen sulfide (H2S) is a cytoprotective redox-active metabolite that signals through protein persulfidation (R-SSnH). Despite the known importance of persulfidation, tissue-specific persulfidome profiles and their associated functions are not well characterized, specifically under conditions and interventions known to modulate H2S production. We hypothesize that dietary restriction (DR), which increases lifespan and can boost H2S production, expands tissue-specific persulfidomes. Here, we find protein persulfidation enriched in liver, kidney, muscle, and brain but decreased in heart of young and aged male mice under two forms of DR, with DR promoting persulfidation in numerous metabolic and aging-related pathways. Mice lacking cystathionine γ-lyase (CGL) have overall decreased tissue protein persulfidation numbers and fail to functionally augment persulfidomes in response to DR, predominantly in kidney, muscle, and brain. Here, we define tissue- and CGL-dependent persulfidomes and how diet transforms their makeup, underscoring the breadth for DR and H2S to impact biological processes and organismal health.


Asunto(s)
Cistationina gamma-Liasa/química , Cistationina gamma-Liasa/metabolismo , Dieta , Proteínas/química , Proteínas/metabolismo , Envejecimiento/metabolismo , Animales , Encéfalo/metabolismo , Cistationina gamma-Liasa/genética , Sulfuro de Hidrógeno/metabolismo , Riñón/metabolismo , Hígado/metabolismo , Longevidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Músculos/metabolismo , Proteínas/genética , Transcriptoma
7.
J Clin Invest ; 2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34255747

RESUMEN

Glioblastoma (GBM) remains among the deadliest of human malignancies, and the emergence of the cancer stem cell (CSC) phenotype represents a major challenge to durable treatment response. Because the environmental and lifestyle factors that impact CSC populations are not clear, we sought to understand the consequences of diet on CSC enrichment. We evaluated disease progression in mice fed an obesity-inducing high-fat diet (HFD) versus a low-fat, control diet. HFD resulted in hyper-aggressive disease accompanied by CSC enrichment and shortened survival. HFD drove intracerebral accumulation of saturated fats, which inhibited the production of the cysteine metabolite and gasotransmitter, hydrogen sulfide (H2S). H2S functions principally through protein S-sulfhydration and regulates multiple programs including bioenergetics and metabolism. Inhibition of H2S increased proliferation and chemotherapy resistance, whereas treatment with H2S donors led to death of cultured GBM cells and stasis of GBM tumors in vivo. Syngeneic GBM models and GBM patient specimens present an overall reduction in protein S-sulfhydration, primarily associated with proteins regulating cellular metabolism. These findings provide clear evidence that diet modifiable H2S signaling serves to suppress GBM by restricting metabolic fitness, while its loss triggers CSC enrichment and disease acceleration. Interventions augmenting H2S bioavailability concurrent with GBM standard of care may improve outcomes for GBM patients.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA