Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Ecol Evol ; 14(5): e11354, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38711486

RESUMEN

Ponds are common freshwater habitats in the European landscape that substantially contribute to local and regional biodiversity. Chironomids often dominate invertebrate communities in ponds but are usually disregarded in ecological studies due to relatively complicated taxonomy and identification issues. We present a comprehensive overview of the chironomid diversity in 246 ponds spanning a wide range of conditions extending from the Pannonian Plain to the Carpathians. Altogether, we recorded 225 taxa including 192 species from six subfamilies (Podonominae, Tanypodinae, Diamesinae, Prodiamesinae, Orthocladiinae and Chironominae). However, the chironomid taxa inventory is far from complete and about 16% of the total diversity of pond-dwelling chironomids remains undetected. Chironomid alpha diversity showed a significant unimodal pattern along the elevation gradient with the highest number of taxa per pond expected around 790 m a.s.l. Gamma diversity also peaked in mid-elevations (600-800 m), and the common chironomid taxa partitioned the 2100-m long altitudinal gradient relatively evenly. The heterogeneity of chironomid communities among ponds measured as beta diversity was significantly higher in elevations below 800 m. Temperature and the proportion of surrounding forests significantly influenced alpha diversity of chironomid communities, while urban land cover and pond size had no significant effect. Ponds with a mean annual air temperature of approximately 4.8°C and a low proportion of surrounding forests are expected to harbour the most diverse chironomid communities. Our study showed that chironomids represent a very diverse and often exceptionally rich group of pond-dwelling macroinvertebrates. Given the high diversity and broad range of occupied niches, chironomids should not be overlooked in pond ecology studies. On the contrary, they should be considered a potential model group.

2.
PLoS One ; 19(2): e0298367, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38358970

RESUMEN

Diamesa species (Diptera, Chironomidae) are widely distributed in freshwater ecosystems, and their life cycles are closely linked to environmental variables such as temperature, water quality, and sediment composition. Their sensitivity to environmental changes, particularly in response to pollution and habitat alterations, makes them valuable indicators of ecosystem health. The challenges associated with the morphological identification of larvae invoke the use of DNA barcoding for species determination. The mitochondrial cytochrome oxidase subunit I (COI) gene is regularly used for species identification but faces limitations, such as similar sequences in closely related species. To overcome this, we explored the use of the internal transcribed spacers (ITS) region in addition to COI for Diamesa larvae identification. Therefore, this study employs a combination of molecular markers alongside traditional morphological identification to enhance species discrimination. In total, 129 specimens were analysed, of which 101 were sampled from a glacier-fed stream in Rotmoostal, and the remaining 28 from spring-fed streams in the neighbouring valleys of Königstal and Timmelstal. This study reveals the inadequacy of utilizing single COI or ITS genes for comprehensive species differentiation within the genus Diamesa. However, the combined application of COI and ITS markers significantly enhances species identification resolution, surpassing the limitations faced by traditional taxonomists. Notably, this is evident in cases involving morphologically indistinguishable species, such as Diamesa latitarsis and Diamesa modesta. It highlights the potential of employing a multi-marker approach for more accurate and reliable Diamesa species identification. This method can be a powerful tool for identifying Diamesa species, shedding light on their remarkable adaptations to extreme environments and the impacts of environmental changes on their populations.


Asunto(s)
Chironomidae , Dípteros , Animales , Chironomidae/genética , Dípteros/genética , Ecosistema , Larva/anatomía & histología , Ríos , Austria , Código de Barras del ADN Taxonómico
3.
Environ Entomol ; 53(4): 604-618, 2024 Aug 17.
Artículo en Inglés | MEDLINE | ID: mdl-38869370

RESUMEN

Chironomids of the genus Diamesa (Meigen, 1835, Diptera: Chironomidae) inhabit cold, oxygen-rich running waters. We have investigated the presence of Diamesa and other freshwater macroinvertebrates at 22 stream sampling sites in 3 European high mountain regions (the Central Pyrenees, the Ötztal Alps, and the Tatra Mountains) to establish suitable temperature conditions for Diamesa dominance. It has been generally accepted that their high abundance was linked to the presence of glaciers; however, we have shown that in the Tatra Mountains, where there are no glaciers, the conditions for the dominance of Diamesa species are created due to permanent snowfields, the geographical orientation of the valley and shading by the surrounding high peaks. The historical connection of Diamesa to glaciers was investigated from the paleolimnological records of subfossil chironomid assemblages from the Bohemian Forest, where glaciers disappeared before or during the Late Glacial period. As expected, water temperature seems to be the main driver of Diamesa distribution, and we determined that the relative abundance of Diamesa species was significantly higher at the sites with a mean July water temperature below 6.5 °C. The Diamesa-dominated stream communities seems to be endangered due to ongoing climate warming and this assumption is supported by our paleolimnological results from the Bohemian Forest lakes, where Diamesa has disappeared due to warming of lake inflows at the beginning of the Holocene. These findings strengthen the former suggestions that some Diamesa species could be used as an indicator for tracking recent environmental changes in vulnerable ecosystems of cold mountain streams.


Asunto(s)
Chironomidae , Cambio Climático , Ríos , Animales , Chironomidae/fisiología , Frío , Distribución Animal
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA