Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Development ; 143(20): 3774-3784, 2016 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-27578794

RESUMEN

Neural progenitors typically divide asymmetrically to renew themselves, while producing daughters with more limited potential. In the Drosophila embryonic ventral nerve cord, neuroblasts initially produce daughters that divide once to generate two neurons/glia (type I proliferation mode). Subsequently, many neuroblasts switch to generating daughters that differentiate directly (type 0). This programmed type I>0 switch is controlled by Notch signaling, triggered at a distinct point of lineage progression in each neuroblast. However, how Notch signaling onset is gated was unclear. We recently identified Sequoia (Seq), a C2H2 zinc-finger transcription factor with homology to Drosophila Tramtrack (Ttk) and the positive regulatory domain (PRDM) family, as important for lineage progression. Here, we find that seq mutants fail to execute the type I>0 daughter proliferation switch and also display increased neuroblast proliferation. Genetic interaction studies reveal that seq interacts with the Notch pathway, and seq furthermore affects expression of a Notch pathway reporter. These findings suggest that seq may act as a context-dependent regulator of Notch signaling, and underscore the growing connection between Seq, Ttk, the PRDM family and Notch signaling.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Proteínas Represoras/metabolismo , Factores de Transcripción/metabolismo , Animales , Proliferación Celular/genética , Proliferación Celular/fisiología , Proteínas de Unión al ADN/genética , Drosophila , Proteínas de Drosophila/genética , Mutación/genética , Proteínas del Tejido Nervioso/genética , Sistema Nervioso/citología , Sistema Nervioso/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Proteínas Represoras/genética , Factores de Transcripción/genética
2.
PLoS Genet ; 12(4): e1005984, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-27070787

RESUMEN

The Notch pathway controls proliferation during development and in adulthood, and is frequently affected in many disorders. However, the genetic sensitivity and multi-layered transcriptional properties of the Notch pathway has made its molecular decoding challenging. Here, we address the complexity of Notch signaling with respect to proliferation, using the developing Drosophila CNS as model. We find that a Notch/Su(H)/E(spl)-HLH cascade specifically controls daughter, but not progenitor proliferation. Additionally, we find that different E(spl)-HLH genes are required in different neuroblast lineages. The Notch/Su(H)/E(spl)-HLH cascade alters daughter proliferation by regulating four key cell cycle factors: Cyclin E, String/Cdc25, E2f and Dacapo (mammalian p21CIP1/p27KIP1/p57Kip2). ChIP and DamID analysis of Su(H) and E(spl)-HLH indicates direct transcriptional regulation of the cell cycle genes, and of the Notch pathway itself. These results point to a multi-level signaling model and may help shed light on the dichotomous proliferative role of Notch signaling in many other systems.


Asunto(s)
Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Sistema Nervioso Central/embriología , Proteínas de Drosophila/metabolismo , Drosophila/embriología , Receptores Notch/metabolismo , Proteínas Represoras/metabolismo , Animales , Sitios de Unión/genética , Comunicación Celular/genética , Proteínas de Ciclo Celular/metabolismo , Linaje de la Célula , Proliferación Celular/genética , Ciclina E/metabolismo , Drosophila/genética , Drosophila/metabolismo , Factores de Transcripción E2F/metabolismo , Embrión no Mamífero/metabolismo , Regulación del Desarrollo de la Expresión Génica , Proteínas Nucleares/metabolismo , Proteínas Tirosina Fosfatasas/metabolismo , Transducción de Señal , Factores de Transcripción , Transcripción Genética/genética , Activación Transcripcional/genética
3.
Development ; 139(4): 678-89, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22241838

RESUMEN

During neural lineage progression, differences in daughter cell proliferation can generate different lineage topologies. This is apparent in the Drosophila neuroblast 5-6 lineage (NB5-6T), which undergoes a daughter cell proliferation switch from generating daughter cells that divide once to generating neurons directly. Simultaneously, neural lineages, e.g. NB5-6T, undergo temporal changes in competence, as evidenced by the generation of different neural subtypes at distinct time points. When daughter proliferation is altered against a backdrop of temporal competence changes, it may create an integrative mechanism for simultaneously controlling cell fate and number. Here, we identify two independent pathways, Prospero and Notch, which act in concert to control the different daughter cell proliferation modes in NB5-6T. Altering daughter cell proliferation and temporal progression, individually and simultaneously, results in predictable changes in cell fate and number. This demonstrates that different daughter cell proliferation modes can be integrated with temporal competence changes, and suggests a novel mechanism for coordinately controlling neuronal subtype numbers.


Asunto(s)
Diferenciación Celular/fisiología , Linaje de la Célula/fisiología , Proliferación Celular , Drosophila melanogaster/citología , Drosophila melanogaster/fisiología , Neuronas/citología , Neuronas/fisiología , Animales , Animales Modificados Genéticamente , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , FMRFamida/metabolismo , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Receptores Notch/genética , Receptores Notch/metabolismo , Transducción de Señal/fisiología , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
4.
Genetics ; 200(4): 1229-44, 2015 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-26092715

RESUMEN

The expression of neuropeptides is often extremely restricted in the nervous system, making them powerful markers for addressing cell specification . In the developing Drosophila ventral nerve cord, only six cells, the Ap4 neurons, of some 10,000 neurons, express the neuropeptide FMRFamide (FMRFa). Each Ap4/FMRFa neuron is the last-born cell generated by an identifiable and well-studied progenitor cell, neuroblast 5-6 (NB5-6T). The restricted expression of FMRFa and the wealth of information regarding its gene regulation and Ap4 neuron specification makes FMRFa a valuable readout for addressing many aspects of neural development, i.e., spatial and temporal patterning cues, cell cycle control, cell specification, axon transport, and retrograde signaling. To this end, we have conducted a forward genetic screen utilizing an Ap4-specific FMRFa-eGFP transgenic reporter as our readout. A total of 9781 EMS-mutated chromosomes were screened for perturbations in FMRFa-eGFP expression, and 611 mutants were identified. Seventy-nine of the strongest mutants were mapped down to the affected gene by deficiency mapping or whole-genome sequencing. We isolated novel alleles for previously known FMRFa regulators, confirming the validity of the screen. In addition, we identified novel essential genes, including several with previously undefined functions in neural development. Our identification of genes affecting most major steps required for successful terminal differentiation of Ap4 neurons provides a comprehensive view of the genetic flow controlling the generation of highly unique neuronal cell types in the developing nervous system.


Asunto(s)
Drosophila melanogaster/citología , Drosophila melanogaster/genética , FMRFamida/metabolismo , Genes de Insecto/genética , Neuronas/citología , Neuronas/metabolismo , Animales , Mapeo Cromosómico , Femenino , Masculino , Mutagénesis , Mutación , Fenotipo
5.
Dev Cell ; 30(2): 192-208, 2014 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-25073156

RESUMEN

During central nervous system (CNS) development, progenitors typically divide asymmetrically, renewing themselves while budding off daughter cells with more limited proliferative potential. Variation in daughter cell proliferation has a profound impact on CNS development and evolution, but the underlying mechanisms remain poorly understood. We find that Drosophila embryonic neural progenitors (neuroblasts) undergo a programmed daughter proliferation mode switch, from generating daughters that divide once (type I) to generating neurons directly (type 0). This typeI>0 switch is triggered by activation of Dacapo (mammalian p21(CIP1)/p27(KIP1)/p57(Kip2)) expression in neuroblasts. In the thoracic region, Dacapo expression is activated by the temporal cascade (castor) and the Hox gene Antennapedia. In addition, castor, Antennapedia, and the late temporal gene grainyhead act combinatorially to control the precise timing of neuroblast cell-cycle exit by repressing Cyclin E and E2f. This reveals a logical principle underlying progenitor and daughter cell proliferation control in the Drosophila CNS.


Asunto(s)
Linaje de la Célula , Proliferación Celular , Drosophila/metabolismo , Regulación del Desarrollo de la Expresión Génica , Células-Madre Neurales/citología , Animales , Proteína con Homeodominio Antennapedia/genética , Proteína con Homeodominio Antennapedia/metabolismo , Ciclina E/genética , Ciclina E/metabolismo , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Drosophila/embriología , Drosophila/genética , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Factores de Transcripción E2F/genética , Factores de Transcripción E2F/metabolismo , Genes de Cambio , Células-Madre Neurales/metabolismo , Células-Madre Neurales/fisiología , Neurogénesis , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Transcripción Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA