Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
J Biol Chem ; 299(4): 103017, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36791912

RESUMEN

Tight coordination of growth regulatory signaling is required for intestinal epithelial homeostasis. Protein kinase C α (PKCα) and transforming growth factor ß (TGFß) are negative regulators of proliferation with tumor suppressor properties in the intestine. Here, we identify novel crosstalk between PKCα and TGFß signaling. RNA-Seq analysis of nontransformed intestinal crypt-like cells and colorectal cancer cells identified TGFß receptor 1 (TGFßR1) as a target of PKCα signaling. RT-PCR and immunoblot analysis confirmed that PKCα positively regulates TGFßR1 mRNA and protein expression in these cells. Effects on TGFßR1 were dependent on Ras-extracellular signal-regulated kinase 1/2 (ERK) signaling. Nascent RNA and promoter-reporter analysis indicated that PKCα induces TGFßR1 transcription, and Runx2 was identified as an essential mediator of the effect. PKCα promoted ERK-mediated activating phosphorylation of Runx2, which preceded transcriptional activation of the TGFßR1 gene and induction of Runx2 expression. Thus, we have identified a novel PKCα→ERK→Runx2→TGFßR1 signaling axis. In further support of a link between PKCα and TGFß signaling, PKCα knockdown reduced the ability of TGFß to induce SMAD2 phosphorylation and cell cycle arrest, and inhibition of TGFßR1 decreased PKCα-induced upregulation of p21Cip1 and p27Kip1 in intestinal cells. The physiological relevance of these findings is also supported by The Cancer Genome Atlas data showing correlation between PKCα, Runx2, and TGFßR1 mRNA expression in human colorectal cancer. PKCα also regulated TGFßR1 in endometrial cancer cells, and PKCα, Runx2, and TGFßR1 expression correlates in uterine tumors, indicating that crosstalk between PKCα and TGFß signaling may be a common mechanism in diverse epithelial tissues.


Asunto(s)
Neoplasias Colorrectales , Subunidad alfa 1 del Factor de Unión al Sitio Principal , Proteína Quinasa C-alfa , Receptor Tipo I de Factor de Crecimiento Transformador beta , Humanos , Neoplasias Colorrectales/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Células Epiteliales/metabolismo , Intestinos , Proteína Quinasa C-alfa/genética , Proteína Quinasa C-alfa/metabolismo , ARN Mensajero/genética , Factor de Crecimiento Transformador beta/metabolismo , Receptor Tipo I de Factor de Crecimiento Transformador beta/genética , Receptor Tipo I de Factor de Crecimiento Transformador beta/metabolismo
2.
J Biol Chem ; 299(2): 102875, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36621626

RESUMEN

Aurora kinases (AURKs) are mitotic kinases important for regulating cell cycle progression. Small-molecule inhibitors of AURK have shown promising antitumor effects in multiple cancers; however, the utility of these inhibitors as inducers of cancer cell death has thus far been limited. Here, we examined the role of the Bcl-2 family proteins in AURK inhibition-induced apoptosis in colon cancer cells. We found that alisertib and danusertib, two small-molecule inhibitors of AURK, are inefficient inducers of apoptosis in HCT116 and DLD-1 colon cancer cells, the survival of which requires at least one of the two antiapoptotic Bcl-2 family proteins, Bcl-xL and Mcl-1. We further identified Bcl-xL as a major suppressor of alisertib- or danusertib-induced apoptosis in HCT116 cells. We demonstrate that combination of a Bcl-2 homology (BH)3-mimetic inhibitor (ABT-737), a selective inhibitor of Bcl-xL, Bcl-2, and Bcl-w, with alisertib or danusertib potently induces apoptosis through the Bcl-2 family effector protein Bax. In addition, we identified Bid, Puma, and Noxa, three BH3-only proteins of the Bcl-2 family, as mediators of alisertib-ABT-737-induced apoptosis. We show while Noxa promotes apoptosis by constitutively sequestering Mcl-1, Puma becomes associated with Mcl-1 upon alisertib treatment. On the other hand, we found that alisertib treatment causes activation of caspase-2, which promotes apoptosis by cleaving Bid into truncated Bid, a suppressor of both Bcl-xL and Mcl-1. Together, these results define the Bcl-2 protein network critically involved in AURK inhibitor-induced apoptosis and suggest that BH3-mimetics targeting Bcl-xL may help overcome resistance to AURK inhibitors in cancer cells.


Asunto(s)
Antineoplásicos , Apoptosis , Aurora Quinasas , Proteína bcl-X , Humanos , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/antagonistas & inhibidores , Proteínas Reguladoras de la Apoptosis/metabolismo , Aurora Quinasas/antagonistas & inhibidores , Proteína X Asociada a bcl-2/metabolismo , Proteína bcl-X/antagonistas & inhibidores , Proteína bcl-X/metabolismo , Línea Celular Tumoral , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/fisiopatología , Activación Enzimática/efectos de los fármacos , Células HCT116 , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/antagonistas & inhibidores , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogénicas c-bcl-2/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo
3.
J Biol Chem ; 298(7): 102121, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35697074

RESUMEN

We have previously shown that the serine/threonine kinase PKCα triggers MAPK/ERK kinase (MEK)-dependent G1→S cell cycle arrest in intestinal epithelial cells, characterized by downregulation of cyclin D1 and inhibitor of DNA-binding protein 1 (Id1) and upregulation of the cyclin-dependent kinase inhibitor p21Cip1. Here, we use pharmacological inhibitors, genetic approaches, siRNA-mediated knockdown, and immunoprecipitation to further characterize antiproliferative ERK signaling in intestinal cells. We show that PKCα signaling intersects the Ras-Raf-MEK-ERK kinase cascade at the level of Ras small GTPases and that antiproliferative effects of PKCα require active Ras, Raf, MEK, and ERK, core ERK pathway components that are also essential for pro-proliferative ERK signaling induced by epidermal growth factor (EGF). However, PKCα-induced antiproliferative signaling differs from EGF signaling in that it is independent of the Ras guanine nucleotide exchange factors (Ras-GEFs), SOS1/2, and involves prolonged rather than transient ERK activation. PKCα forms complexes with A-Raf, B-Raf, and C-Raf that dissociate upon pathway activation, and all three Raf isoforms can mediate PKCα-induced antiproliferative effects. At least two PKCα-ERK pathways that collaborate to promote growth arrest were identified: one pathway requiring the Ras-GEF, RasGRP3, and H-Ras, leads to p21Cip1 upregulation, while additional pathway(s) mediate PKCα-induced cyclin D1 and Id1 downregulation. PKCα also induces ERK-dependent SOS1 phosphorylation, indicating possible negative crosstalk between antiproliferative and growth-promoting ERK signaling. Importantly, the spatiotemporal activation of PKCα and ERK in the intestinal epithelium in vivo supports the physiological relevance of these pathways and highlights the importance of antiproliferative ERK signaling to tissue homeostasis in the intestine.


Asunto(s)
Ciclina D1 , Proteína Quinasa C-alfa , Ciclina D1/genética , Ciclina D1/metabolismo , Factor de Crecimiento Epidérmico/metabolismo , Factor de Crecimiento Epidérmico/farmacología , Células Epiteliales/metabolismo , Mucosa Intestinal/metabolismo , Sistema de Señalización de MAP Quinasas/fisiología , Proteína Quinasa C-alfa/genética , Proteína Quinasa C-alfa/metabolismo , Proteínas Serina-Treonina Quinasas , Proteínas Proto-Oncogénicas c-raf/genética , Proteínas Proto-Oncogénicas c-raf/metabolismo , Proteínas ras/genética , Proteínas ras/metabolismo
4.
J Biol Chem ; 298(8): 102194, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35760100

RESUMEN

PKC comprises a large family of serine/threonine kinases that share a requirement for allosteric activation by lipids. While PKC isoforms have significant homology, functional divergence is evident among subfamilies and between individual PKC isoforms within a subfamily. Here, we highlight these differences by comparing the regulation and function of representative PKC isoforms from the conventional (PKCα) and novel (PKCδ) subfamilies. We discuss how unique structural features of PKCα and PKCδ underlie differences in activation and highlight the similar, divergent, and even opposing biological functions of these kinases. We also consider how PKCα and PKCδ can contribute to pathophysiological conditions and discuss challenges to targeting these kinases therapeutically.


Asunto(s)
Proteína Quinasa C-alfa , Proteína Quinasa C , Amigos , Humanos , Isoformas de Proteínas , Proteína Quinasa C/química , Proteína Quinasa C-delta
5.
J Surg Oncol ; 123(1): 42-51, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33179291

RESUMEN

OBJECTIVES: To evaluate the relationship between phosphatase of regenerating liver 3 (PRL3) expression and clinical outcome in colorectal cancer (CRC). BACKGROUND: PRL3, a protein tyrosine phosphatase functions as one of the key regulatory enzymes of various signal transduction pathways. PRL3 is highly expressed in a majority of cancers and is a novel potential therapeutic target. METHODS: PRL3 expression was evaluated by immunohistochemistry in 167 patients with CRC, 37 patients with no disease, and 26 patients with metastatic CRC (mCRC). Phosphorylated Akt at serine 473 (p-Akt S473) expression was also evaluated by immunohistochemistry in mCRC patients. RESULTS: High expression of PRL3 was correlated with CRC progression, and every one unit increase in PRL3 level contributed to an increase in the rate of death by 1%-1.7%. PRL3 expression was significantly higher in liver metastases compared with primary tumors and showed a significant positive correlation with the expression level of p-Akt S473. CONCLUSION: PRL3 expression levels associated with CRC progression and metastasis, and positively correlated with activated Akt level in mCRC. Together, these findings indicated that PRL3 might be a potential marker for increased risk of CRC-specific tumor burden and identify PRL3 as an attractive therapeutic target for mCRC treatment.


Asunto(s)
Adenocarcinoma/patología , Biomarcadores de Tumor/metabolismo , Carcinoma de Células en Anillo de Sello/patología , Neoplasias Colorrectales/patología , Proteínas de Neoplasias/metabolismo , Recurrencia Local de Neoplasia/patología , Proteínas Tirosina Fosfatasas/metabolismo , Adenocarcinoma/metabolismo , Adenocarcinoma/terapia , Anciano , Carcinoma de Células en Anillo de Sello/metabolismo , Carcinoma de Células en Anillo de Sello/terapia , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/terapia , Terapia Combinada , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Masculino , Recurrencia Local de Neoplasia/metabolismo , Recurrencia Local de Neoplasia/terapia , Pronóstico , Estudios Retrospectivos , Tasa de Supervivencia
6.
J Surg Oncol ; 121(3): 547-560, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31867736

RESUMEN

BACKGROUND: Na+ /H+ exchanger regulatory factor 1 (NHERF1) has been implicated in the tumorigenesis of several cancer types and is a potential therapeutic target. The current study evaluated the relationship between NHERF1 expression and clinical outcome in colorectal cancer (CRC). METHODS: NHERF1 expression was evaluated by immunohistochemistry in 167 patients with CRC primary tumors, 37 patients with no disease, and 27 patients with metastatic CRC (mCRC); and in the orthotopically implanted tumors in mice. NHERF1 expression was manipulated in CRC cells using inducible short hairpin RNAs to determine its biological functions. RESULTS: High expression of NHERF1 correlated with CRC progression and metastasis, as well as significantly worse overall survival, recurrence-free survival, and disease-specific survival. Orthotopic implantation studies demonstrated increased NHERF1 expression in liver metastases. Treatment of CRC xenografts with insulin-like growth factor 1 receptor (IGF1R) inhibitors downregulated NHERF1 expression, indicating NHERF1 is downstream of IGF1R signaling. Knockdown of NHERF1 increased apoptosis and reduced X-linked inhibitor of apoptosis protein (XIAP) and survivin expression, indicating NHERF1 is critical for CRC cell survival. CONCLUSION: NHERF1 expression levels correlated with worse prognosis in patients with CRC and plays a critical role in CRC cell survival. Together, our findings establish NHERF1 as a novel potential marker for increased risk of CRC-specific mortality and identify NHERF1 as an attractive therapeutic target for mCRC treatment.


Asunto(s)
Neoplasias Colorrectales/metabolismo , Fosfoproteínas/biosíntesis , Intercambiadores de Sodio-Hidrógeno/biosíntesis , Anciano , Animales , Biomarcadores de Tumor/biosíntesis , Línea Celular Tumoral , Neoplasias Colorrectales/patología , Células HCT116 , Xenoinjertos , Humanos , Masculino , Ratones , Ratones Desnudos , Persona de Mediana Edad , Tasa de Supervivencia
7.
J Biol Chem ; 293(21): 8242-8254, 2018 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-29599290

RESUMEN

Aberrant cell survival plays a critical role in cancer progression and metastasis. We have previously shown that ezrin, a cAMP-dependent protein kinase A-anchoring protein (AKAP), is up-regulated in colorectal cancer (CRC) liver metastasis. Phosphorylation of ezrin at Thr-567 activates ezrin and plays an important role in CRC cell survival associated with XIAP and survivin up-regulation. In this study, we demonstrate that in FET and GEO colon cancer cells, knockdown of ezrin expression or inhibition of ezrin phosphorylation at Thr-567 increases apoptosis through protein kinase A (PKA) activation in a cAMP-independent manner. Transforming growth factor (TGF) ß signaling inhibits ezrin phosphorylation in a Smad3-dependent and Smad2-independent manner and regulates pro-apoptotic function through ezrin-mediated PKA activation. On the other hand, ezrin phosphorylation at Thr-567 by insulin-like growth factor 1 receptor (IGF1R) signaling leads to cAMP-dependent PKA activation and enhances cell survival. Further studies indicate that phosphorylated ezrin forms a complex with PKA RII, and dephosphorylated ezrin dissociates from the complex and facilitates the association of PKA RII with AKAP149, both of which activate PKA yet lead to either cell survival or apoptosis. Thus, our studies reveal a novel mechanism of differential PKA activation mediated by TGFß and IGF1R signaling through regulation of ezrin phosphorylation in CRC, resulting in different cell fates. This is of significance because TGFß and IGF1R signaling pathways are well-characterized tumor suppressor and oncogenic pathways, respectively, with important roles in CRC tumorigenesis and metastasis. Our studies indicate that they cross-talk and antagonize each other's function through regulation of ezrin activation. Therefore, ezrin may be a potential therapeutic target in CRC.


Asunto(s)
Apoptosis , Neoplasias del Colon/patología , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Proteínas del Citoesqueleto/metabolismo , Regulación Neoplásica de la Expresión Génica , Receptores de Somatomedina/metabolismo , Factor de Crecimiento Transformador beta/farmacología , Proliferación Celular , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/genética , Proteínas del Citoesqueleto/genética , Humanos , Fosforilación , Receptor IGF Tipo 1 , Receptores de Somatomedina/genética , Transducción de Señal , Células Tumorales Cultivadas
8.
J Biol Chem ; 291(12): 6331-46, 2016 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-26769967

RESUMEN

Sustained activation of PKCα is required for long term physiological responses, such as growth arrest and differentiation. However, studies with pharmacological agonists (e.g. phorbol 12-myristate 13-acetate (PMA)) indicate that prolonged stimulation leads to PKCα desensitization via dephosphorylation and/or degradation. The current study analyzed effects of chronic stimulation with the physiological agonist diacylglycerol. Repeated addition of 1,2-dioctanoyl-sn-glycerol (DiC8) resulted in sustained plasma membrane association of PKCα in a pattern comparable with that induced by PMA. However, although PMA potently down-regulated PKCα, prolonged activation by DiC8 failed to engage known desensitization mechanisms, with the enzyme remaining membrane-associated and able to support sustained downstream signaling. DiC8-activated PKCα did not undergo dephosphorylation, ubiquitination, or internalization, early events in PKCα desensitization. Although DiC8 efficiently down-regulated novel PKCs PKCδ and PKCϵ, differences in Ca(2+) sensitivity and diacylglycerol affinity were excluded as mediators of the selective resistance of PKCα. Roles for Hsp/Hsc70 and Hsp90 were also excluded. PMA, but not DiC8, targeted PKCα to detergent-resistant membranes, and disruption of these domains with cholesterol-binding agents demonstrated a role for differential membrane compartmentalization in selective agonist-induced degradation. Chronic DiC8 treatment failed to desensitize PKCα in several cell types and did not affect PKCßI; thus, conventional PKCs appear generally insensitive to desensitization by sustained diacylglycerol stimulation. Consistent with this conclusion, prolonged (several-day) membrane association/activation of PKCα is seen in self-renewing epithelium of the intestine, cervix, and skin. PKCα deficiency affects gene expression, differentiation, and tumorigenesis in these tissues, highlighting the importance of mechanisms that protect PKCα from desensitization in vivo.


Asunto(s)
Diglicéridos/farmacología , Proteína Quinasa C-alfa/metabolismo , Animales , Línea Celular Tumoral , Regulación hacia Abajo , Activación Enzimática , Humanos , Mucosa Intestinal/enzimología , Microdominios de Membrana/enzimología , Transporte de Proteínas , Proteolisis , Ratas , Transducción de Señal , Acetato de Tetradecanoilforbol/farmacología
11.
J Biol Chem ; 289(32): 22268-83, 2014 Aug 08.
Artículo en Inglés | MEDLINE | ID: mdl-24914206

RESUMEN

Cellular accumulation of cyclin D1, a key regulator of cell proliferation and tumorigenesis, is subject to tight control. Our previous studies have identified PKCα as a negative regulator of cyclin D1 in the intestinal epithelium. However, treatment of non-transformed IEC-18 ileal crypt cells with PKC agonists has a biphasic effect on cyclin D1 expression. Initial PKCα-mediated down-regulation is followed by recovery and subsequent accumulation of the cyclin to levels markedly higher than those seen in untreated cells. Using protein overexpression strategies, siRNA, and pharmacological inhibitors, we now demonstrate that the recovery and hyperinduction of cyclin D1 reflect the combined effects of (a) loss of negative signals from PKCα due to agonist-induced PKCα down-regulation and (b) positive effects of PKCϵ. PKCϵ-mediated up-regulation of cyclin D1 requires sustained ERK stimulation and transcriptional activation of the proximal cyclin D1 (CCDN1) promoter, without apparent involvement of changes in protein stability or translation. PKCϵ also up-regulates cyclin D1 expression in colon cancer cells, through mechanisms that parallel those in IEC-18 cells. Although induction of cyclin D1 by PKCϵ is dependent on non-canonical NF-κB activation, the NF-κB site in the proximal promoter is not required. Instead, cyclin D1 promoter activity is regulated by a novel interaction between NF-κB and factors that associate with the cyclic AMP-response element adjacent to the NF-κB site. The differential effects of PKCα and PKCϵ on cyclin D1 accumulation are likely to contribute to the opposing tumor-suppressive and tumor-promoting activities of these PKC family members in the intestinal epithelium.


Asunto(s)
Ciclina D1/genética , Ciclina D1/metabolismo , Mucosa Intestinal/metabolismo , Proteína Quinasa C-alfa/metabolismo , Proteína Quinasa C-epsilon/metabolismo , Animales , Línea Celular , Línea Celular Tumoral , Neoplasias del Colon/genética , Neoplasias del Colon/metabolismo , Regulación de la Expresión Génica , Genes bcl-1 , Humanos , Mucosa Intestinal/citología , Sistema de Señalización de MAP Quinasas , Modelos Biológicos , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Regiones Promotoras Genéticas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Transducción de Señal
12.
J Biol Chem ; 288(3): 1674-84, 2013 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-23195959

RESUMEN

AKT is a critical effector kinase downstream of the PI3K pathway that regulates a plethora of cellular processes including cell growth, death, differentiation, and migration. Mechanisms underlying activated phospho-AKT (pAKT) translocation to its action sites remain unclear. Here we show that NEDD4-1 is a novel E3 ligase that specifically regulates ubiquitin-dependent trafficking of pAKT in insulin-like growth factor (IGF)-1 signaling. NEDD4-1 physically interacts with AKT and promotes HECT domain-dependent ubiquitination of exogenous and endogenous AKT. NEDD4-1 catalyzes K63-type polyubiquitin chain formation on AKT in vitro. Plasma membrane binding is the key step for AKT ubiquitination by NEDD4-1 in vivo. Ubiquitinated pAKT translocates to perinuclear regions, where it is released into the cytoplasm, imported into the nucleus, or coupled with proteasomal degradation. IGF-1 signaling specifically stimulates NEDD4-1-mediated ubiquitination of pAKT, without altering total AKT ubiquitination. A cancer-derived plasma membrane-philic mutant AKT(E17K) is more effectively ubiquitinated by NEDD4-1 and more efficiently trafficked into the nucleus compared with wild type AKT. This study reveals a novel mechanism by which a specific E3 ligase is required for ubiquitin-dependent control of pAKT dynamics in a ligand-specific manner.


Asunto(s)
Membrana Celular/metabolismo , Núcleo Celular/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/genética , Factor I del Crecimiento Similar a la Insulina/metabolismo , Proteínas Proto-Oncogénicas c-akt/genética , Ubiquitina-Proteína Ligasas/genética , Ubiquitina/genética , Animales , Línea Celular Tumoral , Citoplasma/metabolismo , Complejos de Clasificación Endosomal Requeridos para el Transporte/deficiencia , Fibroblastos/citología , Fibroblastos/metabolismo , Regulación de la Expresión Génica , Humanos , Factor I del Crecimiento Similar a la Insulina/genética , Ratones , Ubiquitina-Proteína Ligasas Nedd4 , Fosforilación , Complejo de la Endopetidasa Proteasomal/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Transporte de Proteínas , Proteínas Proto-Oncogénicas c-akt/metabolismo , Transducción de Señal , Transfección , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligasas/deficiencia , Ubiquitinación
13.
J Biol Chem ; 288(18): 13093-109, 2013 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-23508961

RESUMEN

Protein kinase C (PKC) isozymes undergo down-regulation upon sustained stimulation. Previous studies have pointed to the existence of both proteasome-dependent and -independent pathways of PKCα processing. Here we demonstrate that these down-regulation pathways are engaged in different subcellular compartments; proteasomal degradation occurs mainly at the plasma membrane, whereas non-proteasomal processing occurs in the perinuclear region. Using cholesterol depletion, pharmacological inhibitors, RNA interference, and dominant-negative mutants, we define the mechanisms involved in perinuclear accumulation of PKCα and identify the non-proteasomal mechanism mediating its degradation. We show that intracellular accumulation of PKCα involves at least two clathrin-independent, cholesterol/lipid raft-mediated pathways that do not require ubiquitination of the protein; one is dynamin-dependent and likely involves caveolae, whereas the other is dynamin- and small GTPase-independent. Internalized PKCα traffics through endosomes and is delivered to the lysosome for degradation. Supportive evidence includes (a) detection of the enzyme in EEA1-positive early endosomes, Rab7-positive late endosomes/multivesicular bodies, and LAMP1-positive lysosomes and (b) inhibition of its down-regulation by lysosome-disrupting agents and leupeptin. Only limited dephosphorylation of PKCα occurs during trafficking, with fully mature enzyme being the main target for lysosomal degradation. These studies define a novel and widespread mechanism of desensitization of PKCα signaling that involves endocytic trafficking and lysosome-mediated degradation of the mature, fully phosphorylated protein.


Asunto(s)
Regulación hacia Abajo , Endosomas/enzimología , Regulación Enzimológica de la Expresión Génica , Lisosomas/enzimología , Proteína Quinasa C-alfa/metabolismo , Proteolisis , Animales , Endosomas/genética , Células HeLa , Humanos , Lisosomas/genética , Microdominios de Membrana/enzimología , Microdominios de Membrana/genética , Fosforilación/genética , Proteína Quinasa C-alfa/genética , Transporte de Proteínas , Ratas , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo , Proteínas de Unión al GTP rab/genética , Proteínas de Unión al GTP rab/metabolismo , Proteínas de Unión a GTP rab7
14.
J Biol Chem ; 288(38): 27112-27127, 2013 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-23900841

RESUMEN

Although alterations in stimulus-induced degradation of PKC have been implicated in disease, mechanistic understanding of this process remains limited. Evidence supports the existence of both proteasomal and lysosomal mechanisms of PKC processing. An established pathway involves rate-limiting priming site dephosphorylation of the activated enzyme and proteasomal clearance of the dephosphorylated protein. However, here we show that agonists promote down-regulation of endogenous PKCα with minimal accumulation of a nonphosphorylated species in multiple cell types. Furthermore, proteasome and lysosome inhibitors predominantly protect fully phosphorylated PKCα, pointing to this form as a substrate for degradation. Failure to detect substantive dephosphorylation of activated PKCα was not due to rephosphorylation because inhibition of Hsp70/Hsc70, which is required for re-priming, had only a minor effect on agonist-induced accumulation of nonphosphorylated protein. Thus, PKC degradation can occur in the absence of dephosphorylation. Further analysis revealed novel functions for Hsp70/Hsc70 and Hsp90 in the control of agonist-induced PKCα processing. These chaperones help to maintain phosphorylation of activated PKCα but have opposing effects on degradation of the phosphorylated protein; Hsp90 is protective, whereas Hsp70/Hsc70 activity is required for proteasomal processing of this species. Notably, down-regulation of nonphosphorylated PKCα shows little Hsp70/Hsc70 dependence, arguing that phosphorylated and nonphosphorylated species are differentially targeted for proteasomal degradation. Finally, lysosomal processing of activated PKCα is not regulated by phosphorylation or Hsps. Collectively, these data demonstrate that phosphorylated PKCα is a direct target for agonist-induced proteasomal degradation via an Hsp-regulated mechanism, and highlight the existence of a novel pathway of PKC desensitization in cells.


Asunto(s)
Proteínas de Choque Térmico/metabolismo , Complejo de la Endopetidasa Proteasomal/metabolismo , Proteína Quinasa C-alfa/metabolismo , Proteolisis , Animales , Células HeLa , Proteínas de Choque Térmico/genética , Humanos , Lisosomas/genética , Lisosomas/metabolismo , Fosforilación/fisiología , Complejo de la Endopetidasa Proteasomal/genética , Proteína Quinasa C-alfa/genética , Ratas
15.
bioRxiv ; 2024 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-38168435

RESUMEN

The O-GlcNAc transferase (OGT) is an essential enzyme that mediates protein O-GlcNAcylation, a unique form of posttranslational modification of many nuclear and cytosolic proteins. Recent studies observed increased OGT and O-GlcNAcylation levels in a broad range of human cancer tissues compared to adjacent normal tissues, indicating a universal effect of OGT in promoting tumorigenesis. Here, we show that OGT is essential for tumor growth in immunocompetent hosts by repressing the cyclic GMP-AMP synthase (cGAS)-dependent DNA sensing pathway. We found that deletion of OGT (Ogt -/- ) caused a marked reduction in tumor growth in both syngeneic tumor models and a genetic colorectal cancer (CRC) model induced by mutation of the Apc gene (Apc min ). Pharmacological inhibition or genetic deletion of OGT induced a robust genomic instability (GIN), leading to cGAS-dependent production of the type I interferon (IFN-I) and IFN-stimulated genes (ISGs). As a result, deletion of Cgas or Sting from Ogt -/- cancer cells restored tumor growth, and this correlated with impaired CD8+ T cell-mediated antitumor immunity. Mechanistically, we found that OGT-dependent cleavage of host cell factor C1 (HCF-1) is required for the avoidance of GIN and IFN-I production in tumors. In summary, our results identify OGT-mediated genomic stability and activate cGAS-STING pathway as an important tumor cell-intrinsic mechanism to repress antitumor immunity.

16.
iScience ; 27(6): 109912, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38974465

RESUMEN

Receptor tyrosine kinases (RTKs) control stem cell maintenance vs. differentiation decisions. Casitas B-lineage lymphoma (CBL) family ubiquitin ligases are negative regulators of RTKs, but their stem cell regulatory roles remain unclear. Here, we show that Lgr5+ intestinal stem cell (ISC)-specific inducible Cbl-knockout (KO) on a Cblb null mouse background (iDKO) induced rapid loss of the Lgr5 Hi ISCs with transient expansion of the Lgr5 Lo transit-amplifying population. LacZ-based lineage tracing revealed increased ISC commitment toward enterocyte and goblet cell fate at the expense of Paneth cells. Functionally, Cbl/Cblb iDKO impaired the recovery from radiation-induced intestinal epithelial injury. In vitro, Cbl/Cblb iDKO led to inability to maintain intestinal organoids. Single-cell RNA sequencing in organoids identified Akt-mTOR (mammalian target of rapamycin) pathway hyperactivation upon iDKO, and pharmacological Akt-mTOR axis inhibition rescued the iDKO defects. Our results demonstrate a requirement for Cbl/Cblb in the maintenance of ISCs by fine-tuning the Akt-mTOR axis to balance stem cell maintenance vs. commitment to differentiation.

17.
bioRxiv ; 2023 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-37292716

RESUMEN

Among the signaling pathways that control the stem cell self-renewal and maintenance vs. acquisition of differentiated cell fates, those mediated by receptor tyrosine kinase (RTK) activation are well established as key players. CBL family ubiquitin ligases are negative regulators of RTKs but their physiological roles in regulating stem cell behaviors are unclear. While hematopoietic Cbl/Cblb knockout (KO) leads to a myeloproliferative disease due to expansion and reduced quiescence of hematopoietic stem cells, mammary epithelial KO led to stunted mammary gland development due to mammary stem cell depletion. Here, we examined the impact of inducible Cbl/Cblb double-KO (iDKO) selectively in the Lgr5-defined intestinal stem cell (ISC) compartment. Cbl/Cblb iDKO led to rapid loss of the Lgr5 Hi ISC pool with a concomitant transient expansion of the Lgr5 Lo transit amplifying population. LacZ reporter-based lineage tracing showed increased ISC commitment to differentiation, with propensity towards enterocyte and goblet cell fate at the expense of Paneth cells. Functionally, Cbl/Cblb iDKO impaired the recovery from radiation-induced intestinal epithelial injury. In vitro , Cbl/Cblb iDKO led to inability to maintain intestinal organoids. Single cell RNAseq analysis of organoids revealed Akt-mTOR pathway hyperactivation in iDKO ISCs and progeny cells, and pharmacological inhibition of the Akt-mTOR axis rescued the organoid maintenance and propagation defects. Our results demonstrate a requirement for Cbl/Cblb in the maintenance of ISCs by fine tuning the Akt-mTOR axis to balance stem cell maintenance vs. commitment to differentiation.

18.
J Biol Chem ; 286(20): 18104-17, 2011 May 20.
Artículo en Inglés | MEDLINE | ID: mdl-21454537

RESUMEN

Increasing evidence supports a role for PKCα in growth arrest and tumor suppression in the intestinal epithelium. In contrast, the Id1 transcriptional repressor has pro-proliferative and tumorigenic properties in this tissue. Here, we identify Id1 as a novel target of PKCα signaling. Using a highly specific antibody and a combined morphological/biochemical approach, we establish that Id1 is a nuclear protein restricted to proliferating intestinal crypt cells. A relationship between PKCα and Id1 was supported by the demonstration that (a) down-regulation of Id1 at the crypt/villus junction coincides with PKCα activation, and (b) loss of PKCα in intestinal tumors is associated with increased levels of nuclear Id1. Manipulation of PKCα activity in IEC-18 nontransformed intestinal crypt cells determined that PKCα suppresses Id1 mRNA and protein via an Erk-dependent mechanism. PKCα, but not PKCδ, also inhibited Id1 expression in colon cancer cells. Id1 was found to regulate cyclin D1 levels in IEC-18 and colon cancer cells, pointing to a role for Id1 suppression in the antiproliferative/tumor suppressive activities of PKCα. Notably, Id1 expression was elevated in the intestinal epithelium of PKCα-knock-out mice, confirming that PKCα regulates Id1 in vivo. A wider role for PKCα in control of inhibitor of DNA binding factors is supported by its ability to down-regulate Id2 and Id3 in IEC-18 cells, although their suppression is more modest than that of Id1. This study provides the first demonstrated link between a specific PKC isozyme and inhibitor of DNA binding factors, and it points to a role for a PKCα → Erk ⊣ Id1 → cyclin D1 signaling axis in the maintenance of intestinal homeostasis.


Asunto(s)
Neoplasias del Colon/metabolismo , Proteína 1 Inhibidora de la Diferenciación/metabolismo , Mucosa Intestinal/metabolismo , Proteínas de Neoplasias/metabolismo , Proteína Quinasa C-alfa/metabolismo , Transducción de Señal , Animales , Neoplasias del Colon/genética , Ciclina D1/genética , Ciclina D1/metabolismo , Regulación hacia Abajo/genética , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación Neoplásica de la Expresión Génica/genética , Homeostasis/genética , Proteína 1 Inhibidora de la Diferenciación/genética , Proteína 2 Inhibidora de la Diferenciación/genética , Proteína 2 Inhibidora de la Diferenciación/metabolismo , Proteínas Inhibidoras de la Diferenciación/genética , Proteínas Inhibidoras de la Diferenciación/metabolismo , Ratones , Ratones Noqueados , Proteínas de Neoplasias/genética , Proteína Quinasa C-alfa/genética , Proteína Quinasa C-delta/genética , Proteína Quinasa C-delta/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo
19.
PLoS One ; 17(9): e0273518, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36126055

RESUMEN

The histone deacetylase (HDAC) inhibitor vorinostat, used with gemcitabine and other therapies, has been effective in treatment of experimental models of pancreatic cancer. In this study, we demonstrated that M344, an HDAC inhibitor, is efficacious against pancreatic cancer in vitro and in vivo, alone or with gemcitabine. By 24 hours post-treatment, M344 augments the population of pancreatic cancer cells in G1, and at a later time point (48 hours) it increases apoptosis. M344 inhibits histone H3 deacetylation and slows pancreatic cancer cell proliferation better than vorinostat, and it does not decrease the viability of a non-malignant cell line more than vorinostat. M344 also elevates pancreatic cancer cell major histocompatibility complex (MHC) class I molecule expression, potentially increasing the susceptibility of pancreatic cancer cells to T cell lysis. Taken together, our findings support further investigation of M344 as a pancreatic cancer treatment.


Asunto(s)
Inhibidores de Histona Desacetilasas , Neoplasias Pancreáticas , Línea Celular Tumoral , Inhibidores de Histona Desacetilasas/farmacología , Inhibidores de Histona Desacetilasas/uso terapéutico , Histona Desacetilasas/metabolismo , Histonas/metabolismo , Humanos , Ácidos Hidroxámicos/farmacología , Ácidos Hidroxámicos/uso terapéutico , Neoplasias Pancreáticas/tratamiento farmacológico , Vorinostat/farmacología , Neoplasias Pancreáticas
20.
Adv Biol Regul ; 80: 100769, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33307285

RESUMEN

Protein kinase C α (PKCα) is a ubiquitously expressed member of the PKC family of serine/threonine kinases with diverse functions in normal and neoplastic cells. Early studies identified anti-proliferative and differentiation-inducing functions for PKCα in some normal tissues (e.g., regenerating epithelia) and pro-proliferative effects in others (e.g., cells of the hematopoietic system, smooth muscle cells). Additional well documented roles of PKCα signaling in normal cells include regulation of the cytoskeleton, cell adhesion, and cell migration, and PKCα can function as a survival factor in many contexts. While a majority of tumors lose expression of PKCα, others display aberrant overexpression of the enzyme. Cancer-related mutations in PKCα are uncommon, but rare examples of driver mutations have been detected in certain cancer types (e. g., choroid gliomas). Here we review the role of PKCα in various cancers, describe mechanisms by which PKCα affects cancer-related cell functions, and discuss how the diverse functions of PKCα contribute to tumor suppressive and tumor promoting activities of the enzyme. We end the discussion by addressing mutations and expression of PKCα in tumors and the clinical relevance of these findings.


Asunto(s)
Resistencia a Antineoplásicos/genética , Regulación Neoplásica de la Expresión Génica , Neoplasias/genética , Proteína Quinasa C-alfa/genética , Transducción de Señal/genética , Antineoplásicos/uso terapéutico , Biomarcadores de Tumor/genética , Biomarcadores de Tumor/metabolismo , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Supervivencia Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Transformación Celular Neoplásica/patología , Citoesqueleto/enzimología , Citoesqueleto/patología , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Mutación , Metástasis de la Neoplasia , Neoplasias/clasificación , Neoplasias/tratamiento farmacológico , Neoplasias/enzimología , Oligonucleótidos Fosforotioatos/uso terapéutico , Proteína Quinasa C-alfa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA