Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 118(8)2021 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-33608457

RESUMEN

Nontrivial topology in condensed-matter systems enriches quantum states of matter to go beyond either the classification into metals and insulators in terms of conventional band theory or that of symmetry-broken phases by Landau's order parameter framework. So far, focus has been on weakly interacting systems, and little is known about the limit of strong electron correlations. Heavy fermion systems are a highly versatile platform to explore this regime. Here we report the discovery of a giant spontaneous Hall effect in the Kondo semimetal [Formula: see text] that is noncentrosymmetric but preserves time-reversal symmetry. We attribute this finding to Weyl nodes-singularities of the Berry curvature-that emerge in the immediate vicinity of the Fermi level due to the Kondo interaction. We stress that this phenomenon is distinct from the previously detected anomalous Hall effect in materials with broken time-reversal symmetry; instead, it manifests an extreme topological response that requires a beyond-perturbation-theory description of the previously proposed nonlinear Hall effect. The large magnitude of the effect in even tiny electric and zero magnetic fields as well as its robust bulk nature may aid the exploitation in topological quantum devices.

2.
J Chem Phys ; 159(24)2023 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-38156634

RESUMEN

One of the well-known limitations of Kohn-Sham density functional theory is the tendency to strongly underestimate bandgaps. Meta-generalized gradient approximations (mGGAs), which include the kinetic energy density in the functional form, have been shown to significantly alleviate this deficiency. In this study, we explore the mechanisms responsible for this improvement from the angle of the underlying local densities. We find that the highest occupied and lowest unoccupied states are distinct in the space of the underlying descriptors. The gap opening is compared to a simple scaling of the local density approximation, and two mechanisms responsible for opening the mGGA gaps are identified. First of all, the relatively large negative derivative of the functional form with respect to reduced kinetic energy tends to elevate the lowest unoccupied state. Second, the curvature of functional, which ensures that it is bounded, tends to lower the highest occupied state. Remarkably, these two mechanisms are found to be transferable over a large and diverse database of compounds.

3.
J Chem Phys ; 157(9): 094110, 2022 Sep 07.
Artículo en Inglés | MEDLINE | ID: mdl-36075720

RESUMEN

The space of generalized gradient approximation (GGA) and meta-GGA (mGGA) exchange approximations is systematically explored by training 25 new functionals to produce accurate lattice parameter, cohesive energy, and bandgap predictions. The trained functionals are used to reproduce exact constraints in a data-driven way and to understand the accuracy trade-off between the mentioned properties. The functionals are compared to notable mGGA functionals to analyze how changes in the enhancement factor maps influence the accuracy of predictions. Some of the trained functionals are found to perform on par with specialized functionals for bandgaps, while outperforming them on the other two properties. The error surface of our trained functionals can serve as a soft-limit of what mGGA functionals can achieve.

4.
J Chem Phys ; 155(10): 104103, 2021 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-34525814

RESUMEN

The density-functional theory (DFT) approximations that are the most accurate for the calculation of bandgap of bulk materials are hybrid functionals, such as HSE06, the modified Becke-Johnson (MBJ) potential, and the GLLB-SC potential. More recently, generalized gradient approximations (GGAs), such as HLE16, or meta-GGAs, such as (m)TASK, have also proven to be quite accurate for the bandgap. Here, the focus is on two-dimensional (2D) materials and the goal is to provide a broad overview of the performance of DFT functionals by considering a large test set of 298 2D systems. The present work is an extension of our recent studies [T. Rauch, M. A. L. Marques, and S. Botti, Phys. Rev. B 101, 245163 (2020); Patra et al., J. Phys. Chem. C 125, 11206 (2021)]. Due to the lack of experimental results for the bandgap of 2D systems, G0W0 results were taken as reference. It is shown that the GLLB-SC potential and mTASK functional provide the bandgaps that are the closest to G0W0. Following closely, the local MBJ potential has a pretty good accuracy that is similar to the accuracy of the more expensive hybrid functional HSE06.

5.
J Chem Phys ; 152(7): 074101, 2020 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-32087668

RESUMEN

The WIEN2k program is based on the augmented plane wave plus local orbitals (APW+lo) method to solve the Kohn-Sham equations of density functional theory. The APW+lo method, which considers all electrons (core and valence) self-consistently in a full-potential treatment, is implemented very efficiently in WIEN2k, since various types of parallelization are available and many optimized numerical libraries can be used. Many properties can be calculated, ranging from the basic ones, such as the electronic band structure or the optimized atomic structure, to more specialized ones such as the nuclear magnetic resonance shielding tensor or the electric polarization. After a brief presentation of the APW+lo method, we review the usage, capabilities, and features of WIEN2k (version 19) in detail. The various options, properties, and available approximations for the exchange-correlation functional, as well as the external libraries or programs that can be used with WIEN2k, are mentioned. References to relevant applications and some examples are also given.

6.
J Chem Phys ; 150(16): 164119, 2019 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-31042906

RESUMEN

The SCAN meta-generalized gradient approximation (GGA) functional is known to describe multiple properties of various materials with different types of bonds with greater accuracy, compared to the widely used PBE GGA functional. Yet, for alkali metals, SCAN shows worse agreement with experimental results than PBE despite using more information about the system. In the current study, this behavior for alkali metals is explained by identifying an inner semicore region which, within SCAN, contributes to an underbinding. The inner semicore push toward larger lattice constants is a general feature but is particularly important for very soft materials, such as the alkali metals, while for harder materials the valence region dominates.

7.
J Chem Phys ; 151(16): 161102, 2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31675851

RESUMEN

During the last few years, it has become more and more clear that functionals of the meta generalized gradient approximation (MGGA) are more accurate than GGA functionals for the geometry and energetics of electronic systems. However, MGGA functionals are also potentially more interesting for the electronic structure, in particular, when the potential is nonmultiplicative (i.e., when MGGAs are implemented in the generalized Kohn-Sham framework), which may help to get more accurate bandgaps. Here, we show that the calculation of bandgap of solids with MGGA functionals can also be done very accurately in a non-self-consistent manner. This scheme uses only the total energy and can, therefore, be very useful when the self-consistent implementation of a particular MGGA functional is not available. Since self-consistent MGGA calculations may be difficult to converge, the non-self-consistent scheme may also help to speed up the calculations. Furthermore, it can be applied to any other types of functionals, for which the implementation of the corresponding potential is not trivial.

8.
Proc Natl Acad Sci U S A ; 113(32): 8921-6, 2016 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-27457953

RESUMEN

Interactions between catalytically active metal particles and reactant gases depend strongly on the particle size, particularly in the subnanometer regime where the addition of just one atom can induce substantial changes in stability, morphology, and reactivity. Here, time-lapse scanning tunneling microscopy (STM) and density functional theory (DFT)-based calculations are used to study how CO exposure affects the stability of Pt adatoms and subnano clusters at the Fe3O4(001) surface, a model CO oxidation catalyst. The results reveal that CO plays a dual role: first, it induces mobility among otherwise stable Pt adatoms through the formation of Pt carbonyls (Pt1-CO), leading to agglomeration into subnano clusters. Second, the presence of the CO stabilizes the smallest clusters against decay at room temperature, significantly modifying the growth kinetics. At elevated temperatures, CO desorption results in a partial redispersion and recovery of the Pt adatom phase.

9.
J Phys Chem A ; 122(12): 3287-3292, 2018 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-29513983

RESUMEN

Isocyanic acid, HNCO, the imide of carbon dioxide, was prepared by reaction of stearic acid and potassium cyanate (KOCN) at 60 °C in a sealed, thoroughly dried reactor. Interestingly, its crystal structure, solved by X-ray single crystal diffraction at 123(2) K, shows a group-subgroup relation for the NCO- anion to carbon dioxide: (for CO2, cP12, Pa3̅, a = 5.624(2) Å, 150 K, C-O 1.151(2) Å; for HNCO, oP16, Pca21, a = 5.6176(9), b = 5.6236(8), c = 5.6231(7) Å, 123(2) K). Precise positions of H, N, C, and O were determined by DFT calculations with WIEN2k leading to interatomic distances C-O 1.17, C-N 1.22, N-H 1.03, and -N-H···N 2.14 Å, and the interatomic angle N-C-O 171°.

10.
J Chem Phys ; 149(14): 144105, 2018 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-30316291

RESUMEN

A recent study of Mejia-Rodriguez and Trickey [Phys. Rev. A 96, 052512 (2017)] showed that the deorbitalization procedure (replacing the exact Kohn-Sham kinetic-energy density by an approximate orbital-free expression) applied to exchange-correlation functionals of the meta-generalized gradient approximation (MGGA) can lead to important changes in the results for molecular properties. For the present work, the deorbitalization of MGGA functionals is further investigated by considering various properties of solids. It is shown that depending on the MGGA, common orbital-free approximations to the kinetic-energy density can be sufficiently accurate for the lattice constant, bulk modulus, and cohesive energy. For the bandgap, calculated with the modified Becke-Johnson MGGA potential, the deorbitalization has a larger impact on the results.

11.
J Phys Chem A ; 121(17): 3318-3325, 2017 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-28402113

RESUMEN

Recently, exchange-correlation potentials in density functional theory were developed with the goal of providing improved band gaps in solids. Among them, the semilocal potentials are particularly interesting for large systems since they lead to calculations that are much faster than with hybrid functionals or methods like GW. We present an exhaustive comparison of semilocal exchange-correlation potentials for band gap calculations on a large test set of solids, and particular attention is paid to the potential HLE16 proposed by Verma and Truhlar. It is shown that the most accurate potential is the modified Becke-Johnson potential, which, most noticeably, is much more accurate than all other semilocal potentials for strongly correlated systems. This can be attributed to its additional dependence on the kinetic energy density. It is also shown that the modified Becke-Johnson potential is at least as accurate as the hybrid functionals and more reliable for solids with large band gaps.

12.
J Chem Phys ; 144(20): 204120, 2016 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-27250292

RESUMEN

A large panel of old and recently proposed exchange-correlation functionals belonging to rungs 1 to 4 of Jacob's ladder of density functional theory are tested (with and without a dispersion correction term) for the calculation of the lattice constant, bulk modulus, and cohesive energy of solids. Particular attention will be paid to the functionals MGGA_MS2 [J. Sun et al., J. Chem. Phys. 138, 044113 (2013)], mBEEF [J. Wellendorff et al., J. Chem. Phys. 140, 144107 (2014)], and SCAN [J. Sun et al., Phys. Rev. Lett. 115, 036402 (2015)] which are meta-generalized gradient approximations (meta-GGA) and are developed with the goal to be universally good. Another goal is also to determine for which semilocal functionals and groups of solids it is beneficial (or not necessary) to use the Hartree-Fock exchange or a dispersion correction term. It is concluded that for strongly bound solids, functionals of the GGA, i.e., rung 2 of Jacob's ladder, are as accurate as the more sophisticated functionals of the higher rungs, while it is necessary to use dispersion corrected functionals in order to expect at least meaningful results for weakly bound solids. If results for finite systems are also considered, then the meta-GGA functionals are overall clearly superior to the GGA functionals.

13.
J Chem Phys ; 144(9): 094704, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-26957173

RESUMEN

A novel approach to incorporate cobalt atoms into a magnetite single crystal is demonstrated by a combination of x-ray spectro-microscopy, low-energy electron diffraction, and density-functional theory calculations. Co is deposited at room temperature on the reconstructed magnetite (001) surface filling first the subsurface octahedral vacancies and then occupying adatom sites on the surface. Progressive annealing treatments at temperatures up to 733 K diffuse the Co atoms into deeper crystal positions, mainly into octahedral ones with a marked inversion level. The oxidation state, coordination, and magnetic moments of the cobalt atoms are followed from their adsorption to their final incorporation into the bulk, mostly as octahedral Co(2+). This precise control of the near-surface Co atoms location opens up the way to accurately tune the surface physical and magnetic properties of mixed spinel oxides.

14.
Nat Mater ; 12(8): 724-8, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23749267

RESUMEN

The coarsening of catalytically active metal clusters is often accelerated by the presence of gases, but the role played by gas molecules is difficult to ascertain and varies from system to system. We use scanning tunnelling microscopy to follow the CO-induced coalescence of Pd adatoms supported on the Fe3O4(001) surface at room temperature, and find Pd-carbonyl species to be responsible for mobility in this system. Once these reach a critical density, clusters nucleate; subsequent coarsening occurs through cluster diffusion and coalescence. Whereas CO induces the mobility in the Pd/Fe3O4 system, surface hydroxyls have the opposite effect. Pd atoms transported to surface OH groups are no longer susceptible to carbonyl formation and remain isolated. Following the evolution from well-dispersed metal adatoms into clusters, atom-by-atom, allows identification of the key processes that underlie gas-induced mass transport.

16.
Nat Commun ; 15(1): 1730, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409206

RESUMEN

Improving materials for energy conversion and storage devices is deeply connected with an optimization of their surfaces and surface modification is a promising strategy on the way to enhance modern energy technologies. This study shows that surface modification with ultra-thin oxide layers allows for a systematic tailoring of the surface dipole and the work function of mixed ionic and electronic conducting oxides, and it introduces the ionic potential of surface cations as a readily accessible descriptor for these effects. The combination of X-ray photoelectron spectroscopy (XPS) and density functional theory (DFT) illustrates that basic oxides with a lower ionic potential than the host material induce a positive surface charge and reduce the work function of the host material and vice versa. As a proof of concept that this strategy is widely applicable to tailor surface properties, we examined the effect of ultra-thin decoration layers on the oxygen exchange kinetics of pristine mixed conducting oxide thin films in very clean conditions by means of in-situ impedance spectroscopy during pulsed laser deposition (i-PLD). The study shows that basic decorations with a reduced surface work function lead to a substantial acceleration of the oxygen exchange on the surfaces of diverse materials.

17.
Sci Rep ; 14(1): 672, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182613

RESUMEN

Ferroelectricity in metals has advanced since the initial discovery of nonmagnetic ferroelectric-like metal LiOsO[Formula: see text], anchored in the Anderson and Blount prediction. However, evaluating the spontaneous electric polarization (SEP) of this metal has been hindered by experimental and theoretical obstacles. The experimental challenge arises from difficulties in switching polarization using an external electric field, while the theoretical limitation lies in existing methods applicable only to nonmetals. Zabalo and Stengel (Phys Rev Lett 126:127601, 2021, https://doi.org/10.1103/PhysRevLett.126.127601 ) addressed the experimental obstacle by proposing flexoelectricity as an alternative for practical polarization switching in LiOsO[Formula: see text], which requires a critical bending radius similar to BaTiO[Formula: see text]. In this study, we focus on resolving the theoretical obstacle by modifying the Berry phase and Wannier functions approaches within density functional theory plus modern theory of polarization. By employing these modifications, we calculate the SEP of LiOsO[Formula: see text], comparable to the polarization of BaTiO[Formula: see text]. We validate our predictions using various ways. This study confirms the coexistence of ferroelectricity and metallicity in this new class of ferroelectric-like metals. Moreover, by addressing the theoretical limitation and providing new insights into polarization properties, our study complements the experimental flexoelectricity proposal and opens avenues for further exploration and manipulation of polarization characteristics. The developed approaches, incorporating modified Berry phase and Wannier function techniques, offer promising opportunities for studying and designing novel materials, including bio- and nano-ferroelectric-like metals. This study contributes to the advancement of ferroelectricity in metals and provides a foundation for future research in this exciting field.

18.
Phys Rev Lett ; 110(7): 078701, 2013 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-25166418

RESUMEN

We propose an unexplored class of absorbing materials for high-efficiency solar cells: heterostructures of transition-metal oxides. In particular, LaVO(3) grown on SrTiO(3) has a direct band gap ∼1.1 eV in the optimal range as well as an internal potential gradient, which can greatly help to separate the photogenerated electron-hole pairs. Furthermore, oxide heterostructures afford the flexibility to combine LaVO(3) with other materials such as LaFeO(3) in order to achieve even higher efficiencies with band-gap graded solar cells. We use density-functional theory to demonstrate these features.

19.
Inorg Chem ; 52(15): 8941-9, 2013 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-23834244

RESUMEN

Single crystals of the previously unknown thallium silicate Tl4Si5O12 have been prepared from hydrothermal crystallization of a glassy starting material at 500 °C and 1 kbar. Structure analysis resulted in the following basic crystallographic data: monoclinic symmetry, space group C2/c, a = 9.2059(5) Å, b = 11.5796(6) Å, c = 13.0963(7) Å, ß = 94.534(5)°. From a structural point of view the compound can be classified as an interrupted framework silicate with Q(3)- and Q(4)-units in the ratio 2:1. Within the framework 4-, 6-, and 12-membered rings can be distinguished. The framework density of 14.4 T-atoms/1000 Å(3) is comparable with the values observed in zeolitic materials like Linde type A, for example. The thallium cations show a pronounced one-sided coordination each occupying the apex of a distorted trigonal TlO3 pyramid. Obviously, this reflects the presence of a stereochemically active 6s(2) lone pair electron. The porous structure contains channels running along [110] and [-1 1 0], respectively, where the Tl(+) cations are located for charge compensation. Structural investigations have been completed by Raman spectroscopy. The interpretation of the spectroscopic data and the allocation of the bands to certain vibrational species have been aided by DFT calculations, which were also employed to study the electronic structure of the compound.

20.
J Phys Chem C Nanomater Interfaces ; 127(36): 17994-18000, 2023 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-37736292

RESUMEN

Hubbard U-corrected density functional theory within the periodic boundary condition model in the WIEN2k code is used to simulate the actinide LIII and O K edge X-ray absorption near-edge structure (XANES) for UO2 and PuO2. Spin-orbit coupling effects are included, as are possible excitonic effects using supercells with a core hole on one of the atoms. Our calculations yield spectra in excellent agreement with previous experiments and superior to previous simulations. Density of states analysis reveals the mechanism behind the XANES peaks: the main contribution to the U/Pu LIII edges comes from the U/Pu d states hybridized with O p states, while as expected, the O p states primarily determine the O K edges of both UO2 and PuO2. The O K edges also feature O p hybridizing with U/Pu d and f states in the low-energy region and with U/Pu s and p states for the higher-energy peaks.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA