RESUMEN
We investigated the influence of short- and long-interval cycling exercise with blood flow restriction (BFR) on neuromuscular fatigue, shear stress and muscle oxygenation, potent stimuli to BFR-training adaptations. During separate sessions, eight individuals performed short- (24 × 60 s/30 s; SI) or long-interval (12 × 120 s/60 s; LI) trials on a cycle ergometer, matched for total work. One leg exercised with (BFR-leg) and the other without (CTRL-leg) BFR. Quadriceps fatigue was quantified using pre- to post-interval changes in maximal voluntary contraction (MVC), potentiated twitch force (QT) and voluntary activation (VA). Shear rate was measured by Doppler ultrasound at cuff release post-intervals. Vastus lateralis tissue oxygenation was measured by near-infrared spectroscopy during exercise. Following the initial interval, significant (P < 0.05) declines in MVC and QT were found in both SI and LI, which were more pronounced in the BFR-leg, and accounted for approximately two-thirds of the total reduction at exercise termination. In the BFR-leg, reductions in MVC (-28 ± 15%), QT (-42 ± 17%), and VA (-15 ± 17%) were maximal at exercise termination and persisted up to 8 min post-exercise. Exercise-induced muscle deoxygenation was greater (P < 0.001) in the BFR-leg than CTRL-leg and perceived pain was more in LI than SI (P < 0.014). Cuff release triggered a significant (P < 0.001) shear rate increase which was consistent across trials. Exercise-induced neuromuscular fatigue in the BFR-leg exceeded that in the CTRL-leg and was predominantly of peripheral origin. BFR also resulted in diminished muscle oxygenation and elevated shear stress. Finally, short-interval trials resulted in comparable neuromuscular and haemodynamic responses with reduced perceived pain compared to long-intervals.
Asunto(s)
Ejercicio Físico , Contracción Muscular , Fatiga Muscular , Consumo de Oxígeno , Flujo Sanguíneo Regional , Humanos , Masculino , Fatiga Muscular/fisiología , Ejercicio Físico/fisiología , Adulto , Flujo Sanguíneo Regional/fisiología , Consumo de Oxígeno/fisiología , Contracción Muscular/fisiología , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Músculo Esquelético/irrigación sanguínea , Músculo Cuádriceps/metabolismo , Músculo Cuádriceps/irrigación sanguínea , Músculo Cuádriceps/fisiología , Adulto JovenRESUMEN
INTRODUCTION: We tested the hypothesis that breathing heliox, to attenuate the mechanical constraints accompanying the decline in pulmonary function with aging, improves exercise performance. METHODS: Fourteen endurance-trained older men (67.9 ± 5.9 year, [Formula: see text]O2max: 50.8 ± 5.8 ml/kg/min; 151% predicted) completed two cycling 5-km time trials while breathing room air (i.e., 21% O2-79% N2) or heliox (i.e., 21% O2-79% He). Maximal flow-volume curves (MFVC) were determined pre-exercise to characterize expiratory flow limitation (EFL, % tidal volume intersecting the MFVC). Respiratory muscle force development was indirectly determined as the product of the time integral of inspiratory and expiratory mouth pressure (∫Pmouth) and breathing frequency. Maximal inspiratory and expiratory pressure maneuvers were performed pre-exercise and post-exercise to estimate respiratory muscle fatigue. RESULTS: Exercise performance time improved (527.6 ± 38 vs. 531.3 ± 36.9 s; P = 0.017), and respiratory muscle force development decreased during inspiration (- 22.8 ± 11.6%, P < 0.001) and expiration (- 10.8 ± 11.4%, P = 0.003) with heliox compared with room air. EFL tended to be lower with heliox (22 ± 23 vs. 30 ± 23% tidal volume; P = 0.054). Minute ventilation normalized to CO2 production ([Formula: see text]E/[Formula: see text]CO2) increased with heliox (28.6 ± 2.7 vs. 25.1 ± 1.8; P < 0.001). A reduction in MIP and MEP was observed post-exercise vs. pre-exercise but was not different between conditions. CONCLUSIONS: Breathing heliox has a limited effect on performance during a 5-km time trial in master athletes despite a reduction in respiratory muscle force development.
Asunto(s)
Dióxido de Carbono , Respiración , Masculino , Humanos , Anciano , Helio , Oxígeno , Músculos Respiratorios , AtletasRESUMEN
PURPOSE: Our study aimed to compare the immediate and prolonged effects of submaximal eccentric (ECC) and concentric (CON) fatiguing protocols on the etiology of hamstrings' motor performance fatigue. METHODS: On separate days, 16 males performed sets of 5 unilateral ECC or CON hamstrings' contractions at 80% of their 1 Repetition Maximum (1 RM) until a 20% decrement in maximal voluntary isometric contraction (MVC) torque was reached. Electrical stimulations were delivered during and after MVCs at several time points: before, throughout, immediately after (POST) and 24 h (POST 24) after the exercise. Potentiated twitch torques (T100 and T10, respectively) were recorded in response to high and low frequency paired electrical stimulations, and hamstrings' voluntary activation (VA) level was determined using the interpolated twitch technique. For statistical analysis, all indices of hamstrings' motor performance fatigue were expressed as a percentage of their respective baseline value. RESULTS: At POST, T100 (ECC: -13.3%; CON: -9.7%; p < 0.001), T10 (ECC: -5.1%; CON: -11.8%; p < 0.05) and hamstrings' VA level (ECC: -3.0%; CON: -2.4%; p < 0.001) were significantly reduced from baseline, without statistical differences between fatigue conditions. At POST24, all indices of hamstrings' motor performance fatigue returned to their baseline values. CONCLUSION: These results suggest that the contribution of muscular and neural mechanisms in hamstrings' motor performance fatigue may not depend on contraction type. This may have implications for practitioners, as ECC and CON strengthening could be similarly effective to improve hamstrings' fatigue resistance.
Asunto(s)
Músculos Isquiosurales , Fatiga Muscular , Humanos , Masculino , Fatiga Muscular/fisiología , Músculos Isquiosurales/fisiología , Adulto , Contracción Isométrica/fisiología , Adulto Joven , Torque , Estimulación Eléctrica/métodos , Contracción Muscular/fisiologíaRESUMEN
Manipulating the amount of muscle mass engaged during exercise can noninvasively inform the contribution of central cardiovascular and peripheral vascular-oxidative functions to endurance performance. To better understand the factors contributing to exercise limitation in older and younger individuals, exercise performance was assessed during single-leg and double-leg cycling. 16 older (67 ± 5 years) and 14 younger (35 ± 5 years) individuals performed a maximal exercise using single-leg and double-leg cycling. The ratio of single-leg to double-leg cycling power (RatioPower SL/DL) was compared between age groups. The association between fitness (peak oxygen consumption, peak power output, and physical activity levels) and RatioPower SL/DL was explored. The RatioPower SL/DL was greater in older compared with younger individuals (1.14 ± 0.11 vs. 1.06 ± 0.08, p = .041). The RatioPower SL/DL was correlated with peak oxygen consumption (r = .886, p < .001), peak power output relative to body mass (r = .854, p < .001), and levels of physical activity (r = .728, p = .003) in the younger but not older subgroup. Reducing the amount of muscle mass engaged during exercise improved exercise capacity to a greater extent in older versus younger population and may reflect a greater reduction in central cardiovascular function compared with peripheral vascular-oxidative function with aging.
Asunto(s)
Músculo Esquelético , Consumo de Oxígeno , Humanos , Masculino , Adulto , Anciano , Consumo de Oxígeno/fisiología , Músculo Esquelético/fisiología , Femenino , Ejercicio Físico/fisiología , Persona de Mediana Edad , Factores de Edad , Tolerancia al Ejercicio/fisiología , Prueba de Esfuerzo , Ciclismo/fisiología , Pierna/fisiología , Envejecimiento/fisiologíaRESUMEN
This study investigated whether the improved performance observed with maximal self-paced single-leg (SL), compared with double-leg (DL) cycling, is associated with enhanced femoral blood flow and/or altered tissue oxygenation. The hyperaemic response to exercise was assessed in younger and older athletes. Power output was measured in 12 older (65 ± 4 y) and 12 younger (35 ± 5 y) endurance-trained individuals performing 2 x 3 min maximal self-paced exercise using SL and DL cycling. Blood flow (BF) in the femoral artery was assessed using Doppler ultrasound and muscle oxygenation was measured using near-infrared spectroscopy on the vastus lateralis. SL cycling elicited a greater power output (295 ± 83 vs 265 ± 70 W, P < 0.001) and peak femoral BF (1749.1 ± 533.3 vs 1329.7 ± 391.7 ml/min, P < 0.001) compared with DL cycling. Older individuals had a lower peak BF in response to exercise (1355.4 ± 385.8 vs 1765.2 ± 559.6 ml/min, P = 0.019) compared with younger individuals. Peak BF in response to exercise was correlated with power output during SL (r = 0.655, P = 0.002) and DL (r = 0.666, P = 0.001) cycling. The greater exercise performance during SL compared with DL cycling may be partly explained by a greater hyperaemic response when reducing active muscle mass. Despite regular endurance training, older athletes had a lower femoral BF in response to maximal self-paced exercise compared with younger athletes.
Asunto(s)
Entrenamiento Aeróbico , Humanos , Anciano , Resistencia Física/fisiología , Ejercicio Físico/fisiología , Músculo Cuádriceps/diagnóstico por imagen , AtletasRESUMEN
PURPOSE: This study examined eccentric-induced fatigue effects on knee flexor (KF) neuromuscular function and on knee position sense. This design was repeated across two experimental sessions performed 1 week apart to investigate potential repeated bout effects. METHODS: Sixteen participants performed two submaximal bouts of KF unilateral eccentric contractions until reaching a 20% decrease in maximal voluntary isometric contraction force. Knee position sense was evaluated with position-matching tasks in seated and prone positions at 40° and 70° of knee flexion so that KF were either antagonistic or agonistic during the positioning movement. The twitch interpolation technique was used to assess KF neuromuscular fatigue. Perceived muscle soreness was also assessed. Measurements were performed before, immediately (POST) and 24 h after (POST24) each eccentric bout. RESULTS: No repeated bout effect on neuromuscular function and proprioceptive parameters was observed. At POST, central and peripheral factors contributed to the force decrement as shown by significant decreases in voluntary activation level (- 3.8 ± 4.8%, p < 0.01) and potentiated doublet torque at 100 Hz (- 10 ± 15.8%, p < 0.01). At this time point, position-matching errors significantly increased by 1.7 ± 1.9° in seated position at 40° (p < 0.01). At POST24, in presence of muscle soreness (p < 0.05), although KF neuromuscular function had recovered, position-matching errors increased by 0.6 ± 2.6° in prone position at 40° (p < 0.01). CONCLUSION: These results provide evidence that eccentric-induced position sense alterations may arise from central and/or peripheral mechanisms depending on the testing position.
Asunto(s)
Músculo Esquelético , Mialgia , Humanos , Músculo Esquelético/fisiología , Articulación de la Rodilla/fisiología , Rodilla/fisiología , Contracción Isométrica/fisiología , Propiocepción , Contracción Muscular/fisiología , Fatiga Muscular , TorqueRESUMEN
NEW FINDINGS: What is the central question of this study? Does the work done above critical power (W') or muscle activation determine the degree of peripheral fatigue induced by cycling time trials performed in the severe-intensity domain? What is the main finding and its importance? Peripheral fatigue increased when power output and muscle activation increased, whereas W' did not change between the time trials. Therefore, no relationship was found between W' and exercise-induced peripheral fatigue such as previously postulated in the literature. In contrast, we found a significant association between EMG amplitude during exercise and exercise-induced reduction in the potentiated quadriceps twitch, suggesting that muscle activation plays a key role in determining peripheral fatigue during severe-intensity exercise. ABSTRACT: In order to determine the relationship between peripheral fatigue, muscle activation and the total work done above critical power (W'), 10 men and four women performed, on separated days, self-paced cycling time trials of 3, 6, 10 and 15 min. Exercise-induced quadriceps fatigue was quantified using pre- to postexercise (15 s to 15 min recovery) changes in maximal voluntary contraction (MVC) peak force, voluntary activation and potentiated twitch force (QT). Voluntary activation was measured using the interpolated twitch technique, and QT was evoked by electrical stimulations of the femoral nerve. Quadriceps muscle activation was determined using the root mean square of surface EMG of vastus lateralis (VLRMS ), vastus medialis (VMRMS ) and rectus femoris (RFRMS ). Critical power and W' were calculated from the power-duration relationship from the four time trials. Mean power output and mean VLRMS , VMRMS and RFRMS were greater during shorter compared with longer exercise periods (P < 0.05), whereas no significant between-trial change in W' was found. The magnitude of exercise-induced reductions in QT increased with the increase in power output (P < 0.001) and was associated with mean VLRMS, VMRMS and RFRMS (P < 0.001, r2 > 0.369) but not W' (P > 0.150, r2 < 0.044). Reduction in voluntary activation tended (P = 0.067) to be more pronounced with the lengthening in time trial duration, whereas no significant between-trial changes in MVC peak force were found. Our data suggest that peripheral fatigue is not related to the amount of work done above the critical power but rather to the level of muscle activation during exercise in the severe-intensity domain.
Asunto(s)
Ejercicio Físico , Fatiga Muscular , Electromiografía , Ejercicio Físico/fisiología , Tolerancia al Ejercicio/fisiología , Femenino , Humanos , Masculino , Contracción Muscular/fisiología , Fatiga Muscular/fisiología , Músculo Esquelético/fisiología , Músculo Cuádriceps/fisiologíaRESUMEN
Recently it was documented that fatiguing, high-intensity exercise resulted in a significant attenuation in maximal skeletal muscle mitochondrial respiratory capacity, potentially due to the intramuscular metabolic perturbation elicited by such intense exercise. With the utilization of intrathecal fentanyl to attenuate afferent feedback from group III/IV muscle afferents, permitting increased muscle activation and greater intramuscular metabolic disturbance, this study aimed to better elucidate the role of metabolic perturbation on mitochondrial respiratory function. Eight young, healthy males performed high-intensity cycle exercise in control (CTRL) and fentanyl-treated (FENT) conditions. Liquid chromatography-mass spectrometry and high-resolution respirometry were used to assess metabolites and mitochondrial respiratory function, respectively, pre- and postexercise in muscle biopsies from the vastus lateralis. Compared with CTRL, FENT yielded a significantly greater exercise-induced metabolic perturbation (PCr: -67% vs. -82%, Pi: 353% vs. 534%, pH: -0.22 vs. -0.31, lactate: 820% vs. 1,160%). Somewhat surprisingly, despite this greater metabolic perturbation in FENT compared with CTRL, with the only exception of respiratory control ratio (RCR) (-3% and -36%) for which the impact of FENT was significantly greater, the degree of attenuated mitochondrial respiratory capacity postexercise was not different between CTRL and FENT, respectively, as assessed by maximal respiratory flux through complex I (-15% and -33%), complex II (-36% and -23%), complex I + II (-31% and -20%), and state 3CI+CII control ratio (-24% and -39%). Although a basement effect cannot be ruled out, this failure of an augmented metabolic perturbation to extensively further attenuate mitochondrial function questions the direct role of high-intensity exercise-induced metabolite accumulation in this postexercise response.
Asunto(s)
Metabolismo Energético , Ejercicio Físico , Mitocondrias Musculares/metabolismo , Contracción Muscular , Músculo Cuádriceps/metabolismo , Adulto , Analgésicos Opioides/administración & dosificación , Ciclismo , Respiración de la Célula , Fentanilo/administración & dosificación , Voluntarios Sanos , Humanos , Inyecciones Espinales , Masculino , Neuronas Aferentes/efectos de los fármacos , Neuronas Aferentes/fisiología , Músculo Cuádriceps/inervación , Distribución Aleatoria , Adulto JovenRESUMEN
KEY POINTS: The purpose of this study was to determine the role of group III/IV muscle afferents in limiting the endurance exercise-induced metabolic perturbation assayed in muscle biopsy samples taken from locomotor muscle. Lumbar intrathecal fentanyl was used to attenuate the central projection of µ-opioid receptor-sensitive locomotor muscle afferents during a 5 km cycling time trial. The findings suggest that the central projection of group III/IV muscle afferent feedback constrains voluntary neural 'drive' to working locomotor muscle and limits the exercise-induced intramuscular metabolic perturbation. Therefore, the CNS might regulate the degree of metabolic perturbation within locomotor muscle and thereby limit peripheral fatigue. It appears that the group III/IV muscle afferents are an important neural link in this regulatory mechanism, which probably serves to protect locomotor muscle from the potentially severe functional impairment as a consequence of severe intramuscular metabolic disturbance. ABSTRACT: To investigate the role of metabo- and mechanosensitive group III/IV muscle afferents in limiting the intramuscular metabolic perturbation during whole body endurance exercise, eight subjects performed 5 km cycling time trials under control conditions (CTRL) and with lumbar intrathecal fentanyl impairing lower limb muscle afferent feedback (FENT). Vastus lateralis muscle biopsies were obtained before and immediately after exercise. Motoneuronal output was estimated through vastus lateralis surface electromyography (EMG). Exercise-induced changes in intramuscular metabolites were determined using liquid and gas chromatography-mass spectrometry. Quadriceps fatigue was quantified by pre- to post-exercise changes in potentiated quadriceps twitch torque (ΔQTsingle ) evoked by electrical femoral nerve stimulation. Although motoneuronal output was 21 ± 12% higher during FENT compared to CTRL (P < 0.05), time to complete the time trial was similar (â¼8.8 min). Compared to CTRL, power output during FENT was 10 ± 4% higher in the first half of the time trial, but 11 ± 5% lower in the second half (both P < 0.01). The exercise-induced increase in intramuscular inorganic phosphate, H(+) , adenosine diphosphate, lactate and phosphocreatine depletion was 55 ± 30, 62 ± 18, 129 ± 63, 47 ± 14 (P < 0.001) and 27 ± 14% (P < 0.01) greater in FENT than CTRL. ΔQTsingle was greater following FENT than CTRL (-52 ± 2 vs -31 ± 1%, P < 0.001) and this difference was positively correlated with the difference in inorganic phosphate (r(2) = 0.79; P < 0.01) and H(+) (r(2) = 0.92; P < 0.01). In conclusion, during whole body exercise, group III/IV muscle afferents provide feedback to the CNS which, in turn, constrains motoneuronal output to the active skeletal muscle. This regulatory mechanism limits the exercise-induced intramuscular metabolic perturbation, preventing an abnormal homeostatic challenge and excessive peripheral fatigue.
Asunto(s)
Ejercicio Físico/fisiología , Músculo Cuádriceps/fisiología , Adulto , Aminoácidos/sangre , Analgésicos Opioides/farmacología , Glucemia/análisis , Electromiografía , Fentanilo/farmacología , Humanos , Inyecciones Espinales , Masculino , Neuronas Motoras/efectos de los fármacos , Neuronas Motoras/fisiología , Consumo de Oxígeno , Ventilación Pulmonar , Músculo Cuádriceps/efectos de los fármacos , Músculo Cuádriceps/inervación , Triptófano/sangre , Adulto JovenRESUMEN
We asked if the type of carotid body (CB) chemoreceptor stimulus influenced the ventilatory gain of the central chemoreceptors to CO2 . The effect of CB normoxic hypocapnia, normocapnia and hypercapnia (carotid body PCO2 ≈ 22, 41 and 68 mmHg, respectively) on the ventilatory CO2 sensitivity of central chemoreceptors was studied in seven awake dogs with vascularly-isolated and extracorporeally-perfused CBs. Chemosensitivity with one CB was similar to that in intact dogs. In four CB-denervated dogs, absence of hyper-/hypoventilatory responses to CB perfusion with PCO2 of 19-75 mmHg confirmed separation of the perfused CB circulation from the brain. The group mean central CO2 response slopes were increased 303% for minute ventilation (VÌI)(P ≤ 0.01) and 251% for mean inspiratory flow rate (VT /TI ) (P ≤ 0.05) when the CB was hypercapnic vs. hypocapnic; central CO2 response slopes for tidal volume (VT ), breathing frequency (fb ) and rate of rise of the diaphragm EMG increased in 6 of 7 animals but the group mean changes did not reach statistical significance. Group mean central CO2 response slopes were also increased 237% for VÌI(P ≤ 0.01) and 249% for VT /TI (P ≤ 0.05) when the CB was normocapnic vs. hypocapnic, but no significant differences in any of the central ventilatory response indices were found between CB normocapnia and hypercapnia. These hyperadditive effects of CB hyper-/hypocapnia agree with previous findings using CB hyper-/hypoxia.We propose that hyperaddition is the dominant form of chemoreceptor interaction in quiet wakefulness when the chemosensory control system is intact, response gains physiological, and carotid body chemoreceptors are driven by a wide range of O2 and/or CO2 .
Asunto(s)
Dióxido de Carbono/metabolismo , Cuerpo Carotídeo/metabolismo , Cuerpo Carotídeo/fisiología , Células Quimiorreceptoras/metabolismo , Células Quimiorreceptoras/fisiología , Ventilación Pulmonar/fisiología , Animales , Encéfalo/metabolismo , Encéfalo/fisiología , Perros , Femenino , Hipercapnia/metabolismo , Hipercapnia/fisiopatología , Hipocapnia/metabolismo , Hipocapnia/fisiopatología , Hipoxia/metabolismo , Hipoxia/fisiopatología , Perfusión/métodos , Respiración , Volumen de Ventilación Pulmonar/fisiología , Vigilia/fisiologíaRESUMEN
When tested in isolation, stimuli associated with respiratory CO2 exchange, feedforward central command and type III-IV muscle afferent feedback have each been shown to be capable of eliciting exercise-like cardio-ventilatory responses, but their relative contributions in a setting of physiological exercise remains controversial. We reasoned that in order to determine whether any of these regulators are obligatory to the exercise hyperpnoea each needs to be removed or significantly diminished in a setting of physiological steady-state exercise, during which all recognized stimuli (and other potential modulators) are normally operative. In the past few years we and others have used intrathecal fentanyl, a µ-opiate receptor agonist, in humans to reduce the input from type III-IV opiate-sensitive muscle afferents. During various types of intensities and durations of exercise a sustained hypoventilation, as well as reduced systemic pressure and cardioacceleration, were consistently observed with this blockade. These data provide the basis for the hypothesis that type III-IV muscle afferents are obligatory to the hyperpnoea of mild to moderate intensity rhythmic, large muscle, steady-state exercise. We discuss the limitations of these studies, the reasons for their disagreement with previous negative findings, the nature of the muscle afferent feedback stimulus and the need for future investigations.
Asunto(s)
Ejercicio Físico/fisiología , Músculo Esquelético/inervación , Intercambio Gaseoso Pulmonar , Ventilación Pulmonar , Nervios Espinales/fisiología , Vías Aferentes/fisiología , Humanos , Músculo Esquelético/fisiologíaRESUMEN
We hypothesized that exercise performance is adjusted during repeated sprints in order not to surpass a critical threshold of peripheral fatigue. Twelve men randomly performed three experimental sessions on different days, i.e. one single 10 s all-out sprint and two trials of 10 × 10 s all-out sprints with 30 s of passive recovery in between. One trial was performed in the unfatigued state (CTRL) and one following electrically induced quadriceps muscle fatigue (FTNMES). Peripheral fatigue was quantified by comparing pre- with postexercise changes in potentiated quadriceps twitch force (ΔQtw-pot) evoked by supramaximal magnetic stimulation of the femoral nerve. Central fatigue was estimated by comparing pre- with postexercise voluntary activation of quadriceps motor units. The root mean square (RMS) of the vastus lateralis and vastus medialis EMG normalized to maximal M-wave amplitude (RMS.Mmax (-1)) was also calculated during sprints. Compared with CTRL condition, pre-existing quadriceps muscle fatigue in FTNMES (ΔQtw-pot = -29 ± 4%) resulted in a significant (P < 0.05) reduction in power output (-4.0 ± 0.9%) associated with a reduction in RMS.Mmax (-1). However, ΔQtw-pot postsprints decreased by 51% in both conditions, indicating that the level of peripheral fatigue was identical and independent of the degree of pre-existing fatigue. Our findings show that power output and cycling EMG are adjusted during exercise in order to limit the development of peripheral fatigue beyond a constant threshold. We hypothesize that the contribution of peripheral fatigue to exercise limitation involves a reduction in central motor drive in addition to the impairment in muscular function.
Asunto(s)
Ejercicio Físico/fisiología , Fatiga/fisiopatología , Fatiga Muscular/fisiología , Adulto , Estimulación Eléctrica , Electromiografía , Nervio Femoral/fisiología , Humanos , Masculino , Contracción Muscular , Músculo Cuádriceps/fisiologíaRESUMEN
BACKGROUND: The metabolic cost of locomotion is a key factor in walking and running performance. It has been studied by analysing the activation and co-activation of the muscles of the lower limbs. However, these measures do not comprehensively address muscle mechanics, in contrast to approaches using muscle moments and co-contraction. RESEARCH QUESTION: What is the effect of speed and type of locomotion on muscle moments and co-contraction, and their relationship with metabolic cost during walking and running? METHODS: Eleven recreational athletes (60.5 ± 7.1â¯kg; 169.0 ± 6.6â¯cm; 23.6 ± 3.3 years) walked and ran on a treadmill at different speeds, including a similar speed of 1.75â¯m.s-1. Metabolic cost was estimated from gas exchange measurements. Muscle moments and co-contraction of ankle and knee flexors and extensors during the stance and swing phases were estimated using an electromyographic-driven model. RESULTS: Both the slowest and fastest walking speeds had significantly higher metabolic costs than intermediate ones (p < 0.05). The metabolic cost of walking was correlated with plantarflexors moment during swing phase (r = 0.62 at 0.5â¯m.s-1, r = 0.67 at 1,25â¯m.s-1), dorsiflexors moment during stance phase (r = 0.65 at 1.25â¯m.s-1, r = 0.67 at 1.5 and 1.75â¯m.s-1), and ankle co-contraction during the stance phase (r = 0.63 at 1.25 and 1.75â¯m.s-1). The metabolic cost of running at 3.25â¯m.s-1 during the swing phase was correlated with the dorsiflexors moment (r = 0.63), plantarflexors moment (r = 0.61) and ankle co-contraction (r = 0.60). DISCUSSION AND CONCLUSION: Fluctuations in metabolic cost of walking and running could be explained, at least in part, by increased ankle antagonist moments and co-contraction.
Asunto(s)
Electromiografía , Metabolismo Energético , Contracción Muscular , Músculo Esquelético , Carrera , Caminata , Humanos , Carrera/fisiología , Caminata/fisiología , Músculo Esquelético/fisiología , Masculino , Metabolismo Energético/fisiología , Adulto Joven , Fenómenos Biomecánicos , Adulto , Contracción Muscular/fisiología , Femenino , Articulación del Tobillo/fisiologíaRESUMEN
This study assessed the immediate and prolonged effects of eccentric-induced fatigue on position sense, utilizing position-pointing tasks, which had not been previously implemented for this purpose. Fifteen healthy adults underwent a fatiguing eccentric protocol that entailed sets of unilateral submaximal contractions of knee flexor muscles until reaching a 20% decrease in maximal isometric torque production. Evaluations of knee flexor neuromuscular function as well as position-pointing tasks at 40° and 70° of knee flexion were conducted prior to the fatiguing eccentric protocol, immediately after (POST), and 24 h after (POST24) exercise termination. To assess neuromuscular fatigue etiology, electrical myostimulations were administered during and after maximal voluntary isometric contractions. At POST, the voluntary activation level and evoked potentiated doublet amplitude at 100 Hz were significantly reduced. In addition, position-pointing errors exhibited a significant increase at POST regardless of the tested angle, with participants positioning the pointer in a more extended position compared to their hidden exercised limb. At POST24, neuromuscular function and position sense parameters had reverted to their baseline levels. The findings of this experiment demonstrate that position-pointing accuracy was impaired immediately after the fatiguing eccentric protocol, manifesting in the presence of both central and peripheral fatigue. As position-pointing accuracy relies heavily on extrapersonal representation of the body at the brain level, acute changes in exercised limb's extrapersonal representation might have resulted from central fatigue-related mechanisms altering the cognitive processes responsible for converting kinesthetic signals into extrapersonal coordinates.
RESUMEN
This study was designed to test whether obese adults and adults with metabolic syndrome (MetSyn) exhibit altered hyperemic responses to hypoxia at rest and during forearm exercise when compared with lean controls. We hypothesized blood flow responses due to hypoxia would be lower in young obese subjects (n = 11, 24 ± 2 years, BMI 36 ± 2 kg m(-2)) and subjects with MetSyn (n = 8, 29 ± 3 years BMI 39 ± 2 kg m(-2)) when compared with lean adults (n = 13, 29 ± 2 years, BMI 24 ± 1 kg m(-2)). We measured forearm blood flow (FBF, Doppler Ultrasound) and arterial oxygen saturation (pulse oximetry) during rest and steady-state dynamic forearm exercise (20 contractions/min at 8 and 12 kg) under two conditions: normoxia (0.21 F(i)O(2), ~98% S(a)O(2)) and hypoxia (~0.10 F(i)O(2), 80% S(a)O(2)). Forearm vascular conductance (FVC) was calculated as FBF/mean arterial blood pressure. At rest, the percent change in FVC with hypoxia was greater in adults with MetSyn when compared with lean controls (p = 0.02); obese and lean adult responses were not statistically different. Exercise increased FVC from resting levels in all groups (p < 0.05). Hypoxia caused an additional increase in FVC (p < 0.05) that was not different between groups; responses to hypoxia were heterogeneous within and between groups. Reporting FVC responses as absolute or percent changes led to similar conclusions. These results suggest adults with MetSyn exhibit enhanced hypoxic vasodilation at rest. However, hypoxic responses during exercise in obese adults and adults with MetSyn were not statistically different when compared with lean adults. Individual hypoxic vasodilatory responses were variable, suggesting diversity in vascular control.
Asunto(s)
Arteria Braquial/fisiopatología , Hipoxia/fisiopatología , Síndrome Metabólico/fisiopatología , Obesidad/fisiopatología , Adolescente , Velocidad del Flujo Sanguíneo , Femenino , Humanos , Hipoxia/complicaciones , Masculino , Síndrome Metabólico/complicaciones , Obesidad/complicaciones , Vasodilatación , Adulto JovenRESUMEN
Unstable periodic breathing with intermittent ventilatory overshoots and undershoots commonly occurs in chronic heart failure, in hypoxia, with chronic opioid use and in certain types of obstructive sleep apnea. Sleep promotes breathing instability because it unmasks a highly sensitive dependence of the respiratory control system on chemoreceptor input, because transient cortical arousals promote ventilatory overshoots and also because upper airway dilator muscle tonicity is reduced and airway collapsibility enhanced. We will present data in support of the premise that carotid chemoreceptors are essential in the pathogenesis of apnea and periodicity; however it is the hyperadditive influence of peripheral chemoreceptor sensory input on central chemosensitivity that accounts for apnea and periodic breathing. This chemoreceptor interdependence also provides a significant portion of the normal drive to breathe in normoxia (i.e. eupnea) and in acute hypoxia. Finally, we discuss the effects of preventing transient hypocapnia (via selective increases in FICO(2)) on centrally mediated types of periodic breathing and even some varieties of cyclical obstructive sleep apnea.
Asunto(s)
Células Quimiorreceptoras/fisiología , Síndromes de la Apnea del Sueño/etiología , Cuerpo Carotídeo/fisiología , Humanos , Respiración , Sueño/fisiología , Síndromes de la Apnea del Sueño/fisiopatologíaRESUMEN
We investigated the influence of group III/IV muscle afferents on peripheral fatigue, central motor drive (CMD) and endurance capacity during high-intensity leg-cycling. In a double-blind, placebo-controlled design, seven males performed constant-load cycling exercise (318 ± 9 W; 80% of peak power output (W(peak))) to exhaustion under placebo conditions and with lumbar intrathecal fentanyl impairing spinal µ-opioid receptor-sensitive group III/IV muscle afferents. Peripheral fatigue was assessed via changes in pre- vs. post-exercise quadriceps force in response to supramaximal magnetic femoral nerve stimulation (ΔQ(tw,pot)). CMD was estimated via quadriceps electromyogram. To rule out a direct central effect of fentanyl, we documented unchanged resting cardioventilatory responses. Compared to placebo, significant hypoventilation during the fentanyl trial was indicated by the 9% lower V(E)/V(CO(2)), causing a 5 mmHg increase in end-tidal P(CO(2)) and a 3% lower haemoglobin saturation. Arterial pressure and heart rate averaged 8 and 10% lower, respectively, during the fentanyl trial and these differences progressively diminished towards end-exercise. Although initially similar, the percent change in CMD was 9 ± 3% higher at end-exercise with fentanyl vs. placebo (P < 0.05). Time to exhaustion was shorter (6.8 ± 0.3 min vs. 8.7 ± 0.3 min) and end-exercise ΔQ(tw,pot) was about one-third greater (-44 ± 2% vs. -34 ± 2%) following fentanyl vs. placebo. The rate of peripheral fatigue development was 67 ± 10% greater during the fentanyl trial (P < 0.01). Our findings suggest that feedback from group III/IV muscle afferents limits CMD but also minimizes locomotor muscle fatigue development by stimulating adequate ventilatory and circulatory responses to exercise. In the face of blocked group III/IV muscle afferents, CMD is less inhibited but O(2) transport compromised and locomotor muscle fatigability is exacerbated with a combined net effect of a reduced endurance performance.
Asunto(s)
Ejercicio Físico/fisiología , Fatiga Muscular/fisiología , Fibras Musculares Esqueléticas/fisiología , Músculo Cuádriceps/fisiología , Adulto , Analgésicos Opioides/farmacología , Electromiografía , Fentanilo/farmacología , Frecuencia Cardíaca/efectos de los fármacos , Humanos , Magnetoterapia , Masculino , Resistencia Física , Ventilación Pulmonar/efectos de los fármacos , Adulto JovenRESUMEN
INTRODUCTION: We determined the recovery from neuromuscular fatigue in six professional (PRO) and seven moderately trained (MOD) cyclists after repeated cycling time trials of various intensities/durations. METHOD: Participants performed two 1-min (1minTT) or two 10-min (10minTT) self-paced cycling time trials with 5 min of recovery in between. Central and peripheral fatigue were quantified via preexercise to postexercise (15-s through 15-min recovery) changes in voluntary activation (VA) and potentiated twitch force. VA was measured using the interpolated twitch technique, and potentiated twitch force was evoked by single (QTsingle) and paired (10-Hz (QT10) and 100-Hz (QT100)) electrical stimulations of the femoral nerve. RESULTS: Mean power output was 32%-72% higher during all the time trials and decreased less (-10% vs -13%) from the first to second time trial in PRO compared with MOD (P < 0.05). Conversely, exercise-induced reduction in QTsingle and QT10/QT100 was significantly lower in PRO after every time trial (P < 0.05). Recovery from fatigue from 15 s to 2 min for QTsingle and QT10/QT100 was slower in PRO after every time trial (P < 0.05). In both groups, the reduction in QTsingle was lower after the 10minTTs compared with 1minTTs (P < 0.05). Conversely, VA decreased more after the 10minTTs compared with 1minTTs (P < 0.05). CONCLUSION: Our findings showed that excitation-contraction coupling was preserved after exercise in PRO compared with MOD. This likely contributed to the improved performance during repeated cycling time trials of various intensity/duration in PRO, despite a slower rate of recovery in its early phase. Finally, the time course of recovery from neuromuscular fatigue in PRO was dependent on the effects of prolonged low-frequency force depression.