Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Appl Environ Microbiol ; 87(16): e0032921, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34313495

RESUMEN

Wood-decaying fungi tend to have characteristic substrate ranges that partly define their ecological niche. Fomitopsis pinicola is a brown rot species of Polyporales that is reported on 82 species of softwoods and 42 species of hardwoods. We analyzed gene expression levels of F. pinicola from submerged cultures with ground wood powder (sampled at 5 days) or solid wood wafers (sampled at 10 and 30 days), using aspen, pine, and spruce substrates (aspen was used only in submerged cultures). Fomitopsis pinicola expressed similar sets of wood-degrading enzymes typical of brown rot fungi across all culture conditions and time points. Nevertheless, differential gene expression was observed across all pairwise comparisons of substrates and time points. Genes exhibiting differential expression encode diverse enzymes with known or potential function in brown rot decay, including laccase, benzoquinone reductase, aryl alcohol oxidase, cytochrome P450s, and various glycoside hydrolases. Comparing transcriptomes from submerged cultures and wood wafers, we found that culture conditions had a greater impact on global expression profiles than substrate wood species. These findings highlight the need for standardization of culture conditions in studies of gene expression in wood-decaying fungi. IMPORTANCE All species of wood-decaying fungi occur on a characteristic range of substrates (host plants), which may be broad or narrow. Understanding the mechanisms that allow fungi to grow on particular substrates is important for both fungal ecology and applied uses of different feedstocks in industrial processes. We grew the wood-decaying polypore Fomitopsis pinicola on three different wood species­aspen, pine, and spruce­under various culture conditions. We found that F. pinicola is able to modify gene expression (transcription levels) across different substrate species and culture conditions. Many of the genes involved encode enzymes with known or predicted functions in wood decay. This study provides clues to how wood-decaying fungi may adjust their arsenal of decay enzymes to accommodate different host substrates.

2.
J Nat Prod ; 83(2): 344-353, 2020 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-31986046

RESUMEN

White-nose syndrome (WNS) is a devastating disease of hibernating bats caused by the fungus Pseudogymnoascus destructans. We obtained 383 fungal and bacterial isolates from the Soudan Iron Mine, an important bat hibernaculum in Minnesota, then screened this library for antifungal activity to develop biological control treatments for WNS. An extract from the fungus Oidiodendron truncatum was subjected to bioassay-guided fractionation, which led to the isolation of 14 norditerpene and three anthraquinone metabolites. Ten of these compounds were previously described in the literature, and here we present the structures of seven new norditerpene analogues. Additionally, this is the first report of 4-chlorophyscion from a natural source, previously identified as a semisynthetic product. The compounds PR 1388 and LL-Z1271α were the only inhibitors of P. destructans (MIC = 7.5 and 15 µg/mL, respectively). Compounds were tested for cytotoxicity against fibroblast cell cultures obtained from Myotis septentrionalis (northern long eared bat) and M. grisescens (gray bat) using a standard MTT viability assay. The most active antifungal compound, PR 1388, was nontoxic toward cells from both bat species (IC50 > 100 µM). We discuss the implications of these results in the context of the challenges and logistics of developing a substrate treatment or prophylactic for WNS.


Asunto(s)
Antifúngicos/química , Antifúngicos/farmacología , Ascomicetos/química , Diterpenos/química , Animales , Antifúngicos/aislamiento & purificación , Quirópteros/microbiología , Diterpenos/aislamiento & purificación , Hibernación , Minnesota
3.
Appl Environ Microbiol ; 84(16)2018 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-29884757

RESUMEN

Wood-decaying fungi tend to have characteristic substrate ranges that partly define their ecological niche. Fomitopsis pinicola is a brown rot species of Polyporales that is reported on 82 species of softwoods and 42 species of hardwoods. We analyzed the gene expression levels and RNA editing profiles of F. pinicola from submerged cultures with ground wood powder (sampled at 5 days) or solid wood wafers (sampled at 10 and 30 days), using aspen, pine, and spruce substrates (aspen was used only in submerged cultures). Fomitopsis pinicola expressed similar sets of wood-degrading enzymes typical of brown rot fungi across all culture conditions and time points. Nevertheless, differential gene expression and RNA editing were observed across all pairwise comparisons of substrates and time points. Genes exhibiting differential expression and RNA editing encode diverse enzymes with known or potential function in brown rot decay, including laccase, benzoquinone reductase, aryl alcohol oxidase, cytochrome P450s, and various glycoside hydrolases. There was no overlap between differentially expressed and differentially edited genes, suggesting that these may provide F. pinicola with independent mechanisms for responding to different conditions. Comparing transcriptomes from submerged cultures and wood wafers, we found that culture conditions had a greater impact on global expression profiles than substrate wood species. In contrast, the suites of genes subject to RNA editing were much less affected by culture conditions. These findings highlight the need for standardization of culture conditions in studies of gene expression in wood-decaying fungi.IMPORTANCE All species of wood-decaying fungi occur on a characteristic range of substrates (host plants), which may be broad or narrow. Understanding the mechanisms that enable fungi to grow on particular substrates is important for both fungal ecology and applied uses of different feedstocks in industrial processes. We grew the wood-decaying polypore Fomitopsis pinicola on three different wood species, aspen, pine, and spruce, under various culture conditions. We examined both gene expression (transcription levels) and RNA editing (posttranscriptional modification of RNA, which can potentially yield different proteins from the same gene). We found that F. pinicola is able to modify both gene expression and RNA editing profiles across different substrate species and culture conditions. Many of the genes involved encode enzymes with known or predicted functions in wood decay. This work provides clues to how wood-decaying fungi may adjust their arsenal of decay enzymes to accommodate different host substrates.


Asunto(s)
Coriolaceae/genética , Proteínas Fúngicas/genética , Edición de ARN , Madera/microbiología , Coriolaceae/enzimología , Sistema Enzimático del Citocromo P-450/genética , Regulación Fúngica de la Expresión Génica , Glicósido Hidrolasas , Lacasa/genética , Lignina/metabolismo , Pinus/microbiología , Transcriptoma , Madera/metabolismo
5.
Proc Natl Acad Sci U S A ; 111(27): 9923-8, 2014 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-24958869

RESUMEN

Basidiomycota (basidiomycetes) make up 32% of the described fungi and include most wood-decaying species, as well as pathogens and mutualistic symbionts. Wood-decaying basidiomycetes have typically been classified as either white rot or brown rot, based on the ability (in white rot only) to degrade lignin along with cellulose and hemicellulose. Prior genomic comparisons suggested that the two decay modes can be distinguished based on the presence or absence of ligninolytic class II peroxidases (PODs), as well as the abundance of enzymes acting directly on crystalline cellulose (reduced in brown rot). To assess the generality of the white-rot/brown-rot classification paradigm, we compared the genomes of 33 basidiomycetes, including four newly sequenced wood decayers, and performed phylogenetically informed principal-components analysis (PCA) of a broad range of gene families encoding plant biomass-degrading enzymes. The newly sequenced Botryobasidium botryosum and Jaapia argillacea genomes lack PODs but possess diverse enzymes acting on crystalline cellulose, and they group close to the model white-rot species Phanerochaete chrysosporium in the PCA. Furthermore, laboratory assays showed that both B. botryosum and J. argillacea can degrade all polymeric components of woody plant cell walls, a characteristic of white rot. We also found expansions in reducing polyketide synthase genes specific to the brown-rot fungi. Our results suggest a continuum rather than a dichotomy between the white-rot and brown-rot modes of wood decay. A more nuanced categorization of rot types is needed, based on an improved understanding of the genomics and biochemistry of wood decay.


Asunto(s)
Basidiomycota/genética , Basidiomycota/metabolismo , Genoma Fúngico , Madera , Basidiomycota/clasificación , Lignina/metabolismo , Datos de Secuencia Molecular , Filogenia
6.
PLoS Genet ; 10(12): e1004759, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25474575

RESUMEN

Collectively classified as white-rot fungi, certain basidiomycetes efficiently degrade the major structural polymers of wood cell walls. A small subset of these Agaricomycetes, exemplified by Phlebiopsis gigantea, is capable of colonizing freshly exposed conifer sapwood despite its high content of extractives, which retards the establishment of other fungal species. The mechanism(s) by which P. gigantea tolerates and metabolizes resinous compounds have not been explored. Here, we report the annotated P. gigantea genome and compare profiles of its transcriptome and secretome when cultured on fresh-cut versus solvent-extracted loblolly pine wood. The P. gigantea genome contains a conventional repertoire of hydrolase genes involved in cellulose/hemicellulose degradation, whose patterns of expression were relatively unperturbed by the absence of extractives. The expression of genes typically ascribed to lignin degradation was also largely unaffected. In contrast, genes likely involved in the transformation and detoxification of wood extractives were highly induced in its presence. Their products included an ABC transporter, lipases, cytochrome P450s, glutathione S-transferase and aldehyde dehydrogenase. Other regulated genes of unknown function and several constitutively expressed genes are also likely involved in P. gigantea's extractives metabolism. These results contribute to our fundamental understanding of pioneer colonization of conifer wood and provide insight into the diverse chemistries employed by fungi in carbon cycling processes.


Asunto(s)
Basidiomycota/crecimiento & desarrollo , Basidiomycota/genética , Basidiomycota/metabolismo , Proteínas Fúngicas/metabolismo , Genoma Fúngico , Madera/microbiología , Pared Celular/genética , Pared Celular/metabolismo , Celulosa/metabolismo , Regulación Fúngica de la Expresión Génica , Lignina/metabolismo , Anotación de Secuencia Molecular , Transcriptoma , Madera/metabolismo
7.
Appl Environ Microbiol ; 82(13): 3979-3987, 2016 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-27107121

RESUMEN

UNLABELLED: Certain wood decay basidiomycetes, collectively referred to as brown rot fungi, rapidly depolymerize cellulose while leaving behind the bulk of cell wall lignin as a modified residue. The mechanism(s) employed is unclear, but considerable evidence implicates the involvement of diffusible oxidants generated via Fenton-like chemistry. Toward a better understanding of this process, we have examined the transcriptome and secretome of Wolfiporia cocos when cultivated on media containing glucose, purified crystalline cellulose, aspen (Populus grandidentata), or lodgepole pine (Pinus contorta) as the sole carbon source. Compared to the results obtained with glucose, 30, 183, and 207 genes exhibited 4-fold increases in transcript levels in cellulose, aspen, and lodgepole pine, respectively. Mass spectrometry identified peptides corresponding to 64 glycoside hydrolase (GH) proteins, and of these, 17 corresponded to transcripts upregulated on one or both woody substrates. Most of these genes were broadly categorized as hemicellulases or chitinases. Consistent with an important role for hydroxyl radical in cellulose depolymerization, high transcript levels and upregulation were observed for genes involved in iron homeostasis, iron reduction, and extracellular peroxide generation. These patterns of regulation differ markedly from those of the closely related brown rot fungus Postia placenta and expand the number of enzymes potentially involved in the oxidative depolymerization of cellulose. IMPORTANCE: The decomposition of wood is an essential component of nutrient cycling in forest ecosystems. Few microbes have the capacity to efficiently degrade woody substrates, and the mechanism(s) is poorly understood. Toward a better understanding of these processes, we show that when grown on wood as a sole carbon source the brown rot fungus W. cocos expresses a unique repertoire of genes involved in oxidative and hydrolytic conversions of cell walls.


Asunto(s)
Proteínas Fúngicas/metabolismo , Perfilación de la Expresión Génica , Lignina/metabolismo , Proteoma/análisis , Wolfiporia/química , Wolfiporia/genética , Carbono/metabolismo , Medios de Cultivo/química , Espectrometría de Masas , Wolfiporia/crecimiento & desarrollo , Wolfiporia/metabolismo
9.
J Nat Prod ; 79(5): 1407-14, 2016 05 27.
Artículo en Inglés | MEDLINE | ID: mdl-27104866

RESUMEN

The secondary metabolome of an undescribed stereaceous basidiomycete (BY1) was investigated for bioactive compounds. Along with a known fomannoxin derivative and two known vibralactones, we here describe three new compounds of these natural product families, whose structures were elucidated using 1D and 2D NMR spectroscopy and high-resolution mass spectrometry. The new compound vibralactone S (4) shows a 3,6-substituted oxepin-2(7H)-one ring system, which is unprecedented for the vibralactone/fomannoxin class of compounds. Stable isotope labeling established a biosynthetic route that is dissimilar to the two published cascades of oxepinone formation. Another new compound, the antifungal methyl seco-fomannoxinate (6), features a 2-methylprop-1-enyl ether moiety, which is only rarely observed with natural products. The structure of 6 was confirmed by total synthesis. (13)C-labeling experiments revealed that the unusual 2-methylprop-1-enyl ether residue derives from an isoprene unit. The diversity of BY1's combined fomannoxin/vibralactone metabolism is remarkable in that these compound families, although biosynthetically related, usually occur in different organisms.


Asunto(s)
Basidiomycota/química , Lactonas/farmacología , Antifúngicos/química , Antifúngicos/farmacología , Arthrodermataceae/efectos de los fármacos , Aspergillus fumigatus/efectos de los fármacos , Benzofuranos/síntesis química , Benzofuranos/química , Candida albicans/efectos de los fármacos , Lactonas/síntesis química , Lactonas/química , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Penicillium chrysogenum/efectos de los fármacos
10.
Fungal Genet Biol ; 76: 78-92, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25683379

RESUMEN

Wood decay mechanisms in Agaricomycotina have been traditionally separated in two categories termed white and brown rot. Recently the accuracy of such a dichotomy has been questioned. Here, we present the genome sequences of the white-rot fungus Cylindrobasidium torrendii and the brown-rot fungus Fistulina hepatica both members of Agaricales, combining comparative genomics and wood decay experiments. C. torrendii is closely related to the white-rot root pathogen Armillaria mellea, while F. hepatica is related to Schizophyllum commune, which has been reported to cause white rot. Our results suggest that C. torrendii and S. commune are intermediate between white-rot and brown-rot fungi, but at the same time they show characteristics of decay that resembles soft rot. Both species cause weak wood decay and degrade all wood components but leave the middle lamella intact. Their gene content related to lignin degradation is reduced, similar to brown-rot fungi, but both have maintained a rich array of genes related to carbohydrate degradation, similar to white-rot fungi. These characteristics appear to have evolved from white-rot ancestors with stronger ligninolytic ability. F. hepatica shows characteristics of brown rot both in terms of wood decay genes found in its genome and the decay that it causes. However, genes related to cellulose degradation are still present, which is a plesiomorphic characteristic shared with its white-rot ancestors. Four wood degradation-related genes, homologs of which are frequently lost in brown-rot fungi, show signs of pseudogenization in the genome of F. hepatica. These results suggest that transition toward a brown-rot lifestyle could be an ongoing process in F. hepatica. Our results reinforce the idea that wood decay mechanisms are more diverse than initially thought and that the dichotomous separation of wood decay mechanisms in Agaricomycotina into white rot and brown rot should be revisited.


Asunto(s)
Agaricales/genética , Evolución Molecular , Genoma Fúngico , Madera/microbiología , Agaricales/enzimología , Agaricales/patogenicidad , Lignina/metabolismo , Filogenia , Análisis de Secuencia de ADN
11.
Extremophiles ; 19(1): 149-59, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25239569

RESUMEN

Twenty yeast strains, representing a selection from a wider group of more than 60 isolates were isolated from cold environments worldwide (Antarctica, Iceland, Russia, USA, Italian and French Alps, Apennines). The strains were grouped based on their common morphological and physiological characteristics. A phylogeny based on D1/D2 ribosomal DNA sequences placed them in an intermediate position between Cryptococcus saitoi and Cryptococcus friedmannii; the ITS1 and ITS2 rDNA phylogeny demonstrated that these strains belong to two related but hitherto unknown species within the order Filobasidiales, albidus clade. These two novel species are described with the names Cryptococcus vaughanmartiniae (type strain DBVPG 4736(T)) and Cryptococcus onofrii (type strain DBVPG 5303(T)).


Asunto(s)
Cryptococcus/clasificación , Filogenia , Regiones Antárticas , Secuencia de Bases , Biodiversidad , Frío , Cryptococcus/genética , Cryptococcus/aislamiento & purificación , ADN de Hongos/genética , ADN Espaciador Ribosómico/genética , Francia , Geografía , Islandia , Italia , Datos de Secuencia Molecular , Familia de Multigenes , Federación de Rusia , Homología de Secuencia de Ácido Nucleico , Especificidad de la Especie , Temperatura , Estados Unidos
12.
J Nat Prod ; 78(6): 1456-60, 2015 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-26035018

RESUMEN

One new isochromane (pseudoanguillosporin C, 2), seven isochromanones (soudanones A-G, 3-9), and six known analogues including 10 and 11 were isolated from a culture of the fungus Cadophora sp. 10-5-2 M, collected from the subterranean 10th level of the Soudan Underground Iron Mine in Minnesota. All of the compounds were tested against a panel of microbial pathogens, and 2, 3, 10, and 11 were found to have activity against Cryptococcus neoformans (MIC = 35, 40, 20, and 30 µg/mL, respectively). Compound 11 was also active against Candida albicans, with an MIC of 40 µg/mL.


Asunto(s)
Antifúngicos/aislamiento & purificación , Antifúngicos/farmacología , Cromonas/aislamiento & purificación , Antifúngicos/química , Candida albicans/efectos de los fármacos , Cromanos , Cromonas/química , Cromonas/farmacología , Cryptococcus neoformans/efectos de los fármacos , Hierro , Pruebas de Sensibilidad Microbiana , Minería , Minnesota , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular
13.
Mycologia ; 107(1): 66-79, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-25344258

RESUMEN

Cryptodiaporthe corni is the causal agent of a destructive disease called golden canker, which affects Cornus alternifolia, known as the pagoda or alternate-leaved dogwood. Due to the association between Cr. corni and pagoda dogwood, we sought to determine whether this fungus was capable of living as an endophyte in pagoda dogwood and causing this disease. Forty asymptomatic stems of plants growing in nature were sampled from five sites across Minnesota. Cryptodiaporthe corni was present in more than half (62.5%) of the stems. Asymptomatic nursery material also was sampled, and the fungus was isolated from a small percentage (20%) of them. Inoculations carried out in the field and greenhouse suggested the endophytic isolates of Cr. corni were capable of causing disease. Asymptomatic stems of trees in the field inoculated with non-colonized (control) grain seed developed golden canker as frequently as those inoculated with grain seed colonized by Cr. corni, suggesting that the fungus was already present in these plants. In greenhouse pathogenicity trials an isolate of Cr. corni obtained from an asymptomatic stem was capable of causing golden canker disease, thus demonstrating causality, fulfilling Koch's postulates. The taxonomic placement of Cr. corni within Cryphonectriaceae was determined. Phylogenetic analysis of the ITS rDNA and ß-tubulin gene regions, along with morphological characteristics, suggested Cr. corni is distinct from other genera within this family. Therefore, we propose a new genus, Aurantioporthe, as well as the new combination, A. corni, to accommodate this species within Cryphonectriaceae.


Asunto(s)
Ascomicetos/aislamiento & purificación , Cornus/microbiología , Endófitos/aislamiento & purificación , Enfermedades de las Plantas/microbiología , Ascomicetos/clasificación , Ascomicetos/genética , Ascomicetos/crecimiento & desarrollo , Endófitos/clasificación , Endófitos/genética , Endófitos/crecimiento & desarrollo , Datos de Secuencia Molecular , Filogenia , Esporas Fúngicas/clasificación , Esporas Fúngicas/genética , Esporas Fúngicas/crecimiento & desarrollo , Esporas Fúngicas/aislamiento & purificación
14.
Appl Environ Microbiol ; 80(18): 5828-35, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25015893

RESUMEN

We examined gene expression patterns in the lignin-degrading fungus Phanerochaete chrysosporium when it colonizes hybrid poplar (Populus alba × tremula) and syringyl (S)-rich transgenic derivatives. A combination of microarrays and liquid chromatography-tandem mass spectrometry (LC-MS/MS) allowed detection of a total of 9,959 transcripts and 793 proteins. Comparisons of P. chrysosporium transcript abundance in medium containing poplar or glucose as a sole carbon source showed 113 regulated genes, 11 of which were significantly higher (>2-fold, P < 0.05) in transgenic line 64 relative to the parental line. Possibly related to the very large amounts of syringyl (S) units in this transgenic tree (94 mol% S), several oxidoreductases were among the upregulated genes. Peptides corresponding to a total of 18 oxidoreductases were identified in medium consisting of biomass from line 64 or 82 (85 mol% S) but not in the parental clone (65 mol% S). These results demonstrate that P. chrysosporium gene expression patterns are substantially influenced by lignin composition.


Asunto(s)
Regulación Fúngica de la Expresión Génica , Phanerochaete/crecimiento & desarrollo , Phanerochaete/metabolismo , Populus/genética , Madera/metabolismo , Madera/microbiología , Carbono/metabolismo , Cromatografía Liquida , Medios de Cultivo/química , Perfilación de la Expresión Génica , Genotipo , Lignina/metabolismo , Análisis por Micromatrices , Phanerochaete/genética , Espectrometría de Masas en Tándem
15.
Rapid Commun Mass Spectrom ; 28(3): 281-9, 2014 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-24375879

RESUMEN

RATIONALE: It is important for the enforcement of the CITES treaty to determine whether agarwood (a resinous wood produced in Aquilaria and Gyrinops species) seen in trade is from a plantation that was cultivated for sustainable production or was harvested from natural forests which is usually done illegally. METHODS: We analyzed wood directly using Direct Analysis in Real Time (DART™) ionization coupled with Time-of-Flight Mass Spectrometry (TOFMS). Agarwood was obtained from five countries, and the collection contained over 150 samples. The spectra contained ions from agarwood-specific 5,6,7,8-tetrahydro-2-(2-phenylethyl)chromones as well as many other ions. The data was analyzed using either kernel discriminant analysis or kernel principal component analysis. Probability estimates of origin (wild vs cultivated) were assigned to unknown agarwood samples. RESULTS: Analysis of the DART-TOFMS data shows that many of the chromones found in cultivated and wild agarwood samples are similar; however, there is a significant difference in particular chromones that can be used for differentiation. In certain instances, the analysis of these chromones also allows inferences to be made as to the country of origin. Mass Mountaineer™ software provides an estimate of the accuracy of the discriminate model, and an unknown sample can be classified as cultivated or wild. Eleven of the thirteen validation samples (85%) were correctly assigned to either cultivated or wild harvested for their respective geographic provenance. The accuracy of each classification can be estimated by probabilities based on Z scores. CONCLUSIONS: The direct analysis of wood for the diagnostic chromones using DART-TOFMS followed by discriminant analysis is sufficiently robust to differentiate wild from cultivated agarwood and provides strong inference for the origin of the agarwood.


Asunto(s)
Espectrometría de Masas/métodos , Thymelaeaceae/química , Thymelaeaceae/clasificación , Madera/química , Madera/clasificación , Cromonas/análisis , Cromonas/química , Análisis Discriminante , Análisis de Componente Principal , Programas Informáticos
16.
Microb Ecol ; 67(3): 568-75, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24407313

RESUMEN

The use of wood in construction has had a long history and Chile has a rich cultural heritage of using native woods for building churches and other important structures. In 2000, UNESCO designated a number of the historic churches of Chiloé, built entirely of native woods, as World Heritage Sites. These unique churches were built in the late 1700 s and throughout the 1800 s, and because of their age and exposure to the environment, they have been found to have serious deterioration problems. Efforts are underway to better understand these decay processes and to carryout conservation efforts for the long-term preservation of these important structures. This study characterized the types of degradation taking place and identified the wood decay fungi obtained from eight historic churches in Chiloé, seven of them designated as UNESCO World Heritage sites. Micromorphological observations identified white, brown and soft rot in the structural woods and isolations provided pure cultures of fungi that were identified by sequencing of the internal transcribed region of rDNA. Twenty-nine Basidiomycota and 18 Ascomycota were found. These diverse groups of fungi represent several genera and species not previously reported from Chile and demonstrates a varied microflora is causing decay in these historic buildings.


Asunto(s)
Ascomicetos/aislamiento & purificación , Ascomicetos/metabolismo , Basidiomycota/aislamiento & purificación , Basidiomycota/metabolismo , Madera/microbiología , Ascomicetos/clasificación , Ascomicetos/genética , Basidiomycota/clasificación , Basidiomycota/genética , Chile , Materiales de Construcción/microbiología , ADN de Hongos/genética , ADN de Hongos/metabolismo , ADN Espaciador Ribosómico/genética , Datos de Secuencia Molecular , Análisis de Secuencia de ADN
17.
J Nat Prod ; 77(12): 2658-63, 2014 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-25420175

RESUMEN

A stereaceous basidiomycete was investigated with regard to its capacity to produce yellow pigments after physical injury of the mycelium. Two pigments were isolated from mycelial extracts, and their structures were elucidated by ESIMS and one- and two-dimensional NMR methods. The structures were identified as the previously undescribed polyenes (3Z,5E,7E,9E,11E,13Z,15E,17E)-18-methyl-19-oxoicosa-3,5,7,9,11,13,15,17-octaenoic acid (1) and (3E,5Z,7E,9E,11E,13E,15Z,17E,19E)-20-methyl-21-oxodocosa-3,5,7,9,11,13,15,17,19-nonaenoic acid (2). Stable-isotope feeding with [1-(13)C]acetate and l-[methyl-(13)C]methionine demonstrated a polyketide backbone and that the introduction of the sole methyl branch is most likely S-adenosyl-l-methionine-dependent. Dose-dependent inhibition of Drosophila melanogaster larval development was observed with both polyenes in concentrations between 12.5 and 100 µM. GI50 values for 1 and 2 against HUVEC (K-562 cells) were 71.6 and 17.4 µM (15.4 and 1.1 µM), respectively, whereas CC50 values for HeLa cells were virtually identical (44.1 and 45.1 µM).


Asunto(s)
Basidiomycota/química , Polienos/metabolismo , Animales , Basidiomycota/patogenicidad , Relación Dosis-Respuesta a Droga , Drosophila melanogaster/efectos de los fármacos , Espectroscopía de Resonancia por Spin del Electrón , Humanos , Células K562 , Larva/efectos de los fármacos , Metionina/metabolismo , Estructura Molecular , Pigmentos Biológicos/biosíntesis , Pigmentos Biológicos/química , Polienos/química , S-Adenosilmetionina/farmacología , Estereoisomerismo
18.
Antonie Van Leeuwenhoek ; 104(6): 1193-203, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24068453

RESUMEN

Wood decomposition is an important component in forest ecosystems but information about the diversity of fungi causing decay is lacking. This is especially true for the temperate rain forests in Chile. These investigations show results of a biodiversity study of white-rot fungi in wood obtained from Chiloé National Park in Los Lagos region, Chile. Culturing from white-rotted wood followed by sequencing of the complete internal transcribed spacer region of the ribosomal DNA (rDNA) or partial large subunit region of the rDNA, identified 12 different species in the Basidiomycota. All of these fungi were characterized as white rot fungi and were identified with a BLAST match of 97 % or greater to sequences in the GenBank database. Fungi obtained were species of Phlebia, Mycoacia, Hyphodontia, Bjerkandera, Phanerochaete, Stereum, Trametes, and Ceriporiopsis. This report identifies for the first time in Chile the species Ceriporiopsis subvermispora, Hyphodontia radula, Phlebia radiata, Phanerochaete affinis, Peniophora cinerea, Stereum gausapatum, Phlebia setulosa and Phanerochaete sordida. Scanning electron microscopy was used to characterize the type of decay caused by the fungi that were isolated and a combination of selective lignin degraders and simultaneous white rot fungi were found. Fungi that cause a selective degradation of lignin are of interest for bioprocessing technologies that require modification or degradation of lignin without cellulose removal.


Asunto(s)
Basidiomycota/clasificación , Basidiomycota/aislamiento & purificación , Madera/microbiología , Chile , ADN de Hongos/química , ADN de Hongos/genética , ADN Ribosómico/química , ADN Ribosómico/genética , ADN Espaciador Ribosómico/química , ADN Espaciador Ribosómico/genética , Genes de ARNr , Microscopía Electrónica , Datos de Secuencia Molecular , ARN de Hongos/genética , ARN Ribosómico/genética , Análisis de Secuencia de ADN , Madera/ultraestructura
19.
J Fungi (Basel) ; 9(10)2023 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-37888285

RESUMEN

Brown-rot fungi lack many enzymes associated with complete wood degradation, such as lignin-attacking peroxidases, and have developed alternative mechanisms for rapid wood breakdown. To identify the effects of culture conditions and wood substrates on gene expression, we grew Fibroporia radiculosa in submerged cultures containing Wiley milled wood (5 days) and solid wood wafers (30 days), using aspen, pine, and spruce as a substrate. The comparative analysis revealed that wood species had a limited effect on the transcriptome: <3% of genes were differentially expressed between different wood species substrates. The comparison between gene expression during growth on milled wood and wood wafer conditions, however, indicated that the genes encoding plant cell wall-degrading enzymes, such as glycoside hydrolases and peptidases, were activated during growth on wood wafers, confirming previous reports. On the other hand, it was shown for the first time that the genes encoding Fenton chemistry enzymes, such as hydroquinone biosynthesis enzymes and oxidoreductases, were activated during submerged growth on ground wood. This illustrates the diversity of wood-decay reactions encoded in fungi and activated at different stages of this process.

20.
Bot Stud ; 64(1): 30, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37878199

RESUMEN

BACKGROUND: Xylaria is a diverse and ecologically important genus in the Ascomycota. This paper describes the xylariaceous fungi present in an Ecuadorian Amazon Rainforest and investigates the decay potential of selected Xylaria species. Fungi were collected at Yasuní National Park, Ecuador during two collection trips to a single hectare plot divided into a 10-m by 10-m grid, providing 121 collection points. All Xylaria fruiting bodies found within a 1.2-m radius of each grid point were collected. Dried fruiting bodies were used for culturing and the internal transcribed spacer region was sequenced to identify Xylaria samples to species level. Agar microcosms were used to assess the decay potential of three selected species, two unknown species referred to as Xylaria 1 and Xylaria 2 and Xylaria curta, on four different types of wood from trees growing in Ecuador including balsa (Ochroma pyramidale), melina (Gmelina arborea), saman (Samanea saman), and moral (Chlorophora tinctoria). ANOVA and post-hoc comparisons were used to test for differences in biomass lost between wood blocks inoculated with Xylaria and uninoculated control blocks. Scanning electron micrographs of transverse sections of each wood and assay fungus were used to assess the type of degradation present. RESULTS: 210 Xylaria collections were sequenced, with 106 collections belonging to 60 taxa that were unknown species, all with less than 97% match to NCBI reference sequences. Xylaria with sequence matches of 97% or greater included X. aff. comosa (28 isolates), X. cuneata (9 isolates) X. curta and X. oligotoma (7 isolates), and X. apiculta (6 isolates)., All Xylaria species tested were able to cause type 1 or type 2 soft rot degradation in the four wood types and significant biomass loss was observed compared to the uninoculated controls. Balsa and melina woods had the greatest amount of biomass loss, with as much as 60% and 25% lost, respectively, compared to the controls. CONCLUSIONS: Xylaria species were found in extraordinary abundance in the Ecuadorian rainforest studied. Our study demonstrated that the Xylaria species tested can cause a soft rot type of wood decay and with the significant amount of biomass loss that occurred within a short incubation time, it indicates these fungi likely play a significant role in nutrient cycling in the Amazonian rainforest.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA