Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Immunol ; 25(1): 23, 2024 Apr 27.
Artículo en Inglés | MEDLINE | ID: mdl-38678193

RESUMEN

BACKGROUND: Flow cytometry-based basophil activation tests (BAT) have been performed with various modifications, differing in the use of distinct identification and activation markers. Established tests use liquid reagents while a new development involves the use of tubes with dried antibody reagents. The aim of this pilot study was to compare these two techniques in patients with insect venom allergy. METHODS: Seventeen patients with an insect venom allergy were included in the study. The established "BAT 1" utilizes conventional antibody solutions of anti-CCR3 for basophil identification and anti-CD63 to assess basophil activation, whereas "BAT 2" uses dried anti-CD45, anti-CD3, anti-CRTH2, anti-203c and anti-CD63 for identification and activation measurement of basophils. Negative and positive controls as well as incubations with honey bee venom and yellow jacket venom at three concentrations were performed. RESULTS: Seven patients had to be excluded due to low basophil counts, high values in negative controls or negative positive controls. For the remaining 10 patients the overall mean (± SD) difference in activated basophils between the two tests was 0.2 (± 12.2) %P. In a Bland-Altman plot, the limit of agreement (LoA) ranged from 24.0 to -23.7. In the qualitative evaluation (value below/above cut-off) Cohen's kappa was 0.77 indicating substantial agreement. BAT 2 took longer to perform than BAT 1 and was more expensive. CONCLUSION: The BAT 2 technique represents an interesting innovation, however, it was found to be less suitable compared to an established BAT for the routine diagnosis of insect venom allergies.


Asunto(s)
Basófilos , Citometría de Flujo , Humanos , Basófilos/inmunología , Femenino , Masculino , Adulto , Persona de Mediana Edad , Citometría de Flujo/métodos , Venenos de Artrópodos/inmunología , Proyectos Piloto , Animales , Hipersensibilidad/inmunología , Hipersensibilidad/diagnóstico , Mordeduras y Picaduras de Insectos/inmunología , Mordeduras y Picaduras de Insectos/diagnóstico , Venenos de Abeja/inmunología , Adulto Joven , Anciano , Anticuerpos/inmunología , Adolescente , Prueba de Desgranulación de los Basófilos/métodos , Hipersensibilidad al Veneno
2.
Pediatr Allergy Immunol ; 34 Suppl 28: e13854, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-37186333

RESUMEN

Since the discovery of immunoglobulin E (IgE) as a mediator of allergic diseases in 1967, our knowledge about the immunological mechanisms of IgE-mediated allergies has remarkably increased. In addition to understanding the immune response and clinical symptoms, allergy diagnosis and management depend strongly on the precise identification of the elicitors of the IgE-mediated allergic reaction. In the past four decades, innovations in bioscience and technology have facilitated the identification and production of well-defined, highly pure molecules for component-resolved diagnosis (CRD), allowing a personalized diagnosis and management of the allergic disease for individual patients. The first edition of the "EAACI Molecular Allergology User's Guide" (MAUG) in 2016 rapidly became a key reference for clinicians, scientists, and interested readers with a background in allergology, immunology, biology, and medicine. Nevertheless, the field of molecular allergology is moving fast, and after 6 years, a new EAACI Taskforce was established to provide an updated document. The Molecular Allergology User's Guide 2.0 summarizes state-of-the-art information on allergen molecules, their clinical relevance, and their application in diagnostic algorithms for clinical practice. It is designed for both, clinicians and scientists, guiding health care professionals through the overwhelming list of different allergen molecules available for testing. Further, it provides diagnostic algorithms on the clinical relevance of allergenic molecules and gives an overview of their biology, the basic mechanisms of test formats, and the application of tests to measure allergen exposure.


Asunto(s)
Hipersensibilidad , Humanos , Hipersensibilidad/diagnóstico , Hipersensibilidad/terapia , Alérgenos , Inmunoglobulina E
3.
J Allergy Clin Immunol ; 150(2): 396-405.e11, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35459547

RESUMEN

BACKGROUND: The α-Gal syndrome is associated with the presence of IgE directed to the carbohydrate galactose-α-1,3-galactose (α-Gal) and is characterized by a delayed allergic reaction occurring 2 to 6 hours after ingestion of mammalian meat. On the basis of their slow digestion and processing kinetics, α-Gal-carrying glycolipids have been proposed as the main trigger of the delayed reaction. OBJECTIVE: We analyzed and compared the in vitro allergenicity of α-Gal-carrying glycoproteins and glycolipids from natural food sources. METHODS: Proteins and lipids were extracted from pork kidney (PK), beef, and chicken. Glycolipids were purified from rabbit erythrocytes. The presence of α-Gal and IgE binding of α-Gal-allergic patient sera (n = 39) was assessed by thin-layer chromatography as well as by direct and inhibition enzyme-linked immunosorbent assay. The in vitro allergenicity of glycoproteins and glycolipids from different meat extracts was determined by basophil activation test. Glycoprotein stability was evaluated by simulated gastric and intestinal digestion assays. RESULTS: α-Gal was detected on glycolipids of PK and beef. Patient IgE antibodies recognized α-Gal bound to glycoproteins and glycolipids, although binding to glycoproteins was more potent. Rabbit glycolipids were able to strongly activate patient basophils, whereas lipid extracts from PK and beef were also found to trigger basophil activation, but at a lower capacity compared to the respective protein extracts. Simulated gastric digestion assays of PK showed a high stability of α-Gal-carrying proteins in PK. CONCLUSION: Both α-Gal-carrying glycoproteins and glycolipids are able to strongly activate patient basophils. In PK and beef, α-Gal epitopes seem to be less abundant on glycolipids than on glycoproteins, suggesting a major role of glycoproteins in delayed anaphylaxis upon consumption of these food sources.


Asunto(s)
Hipersensibilidad a los Alimentos , Galactosa , Alérgenos , Animales , Bovinos , Glucolípidos , Glicoproteínas , Inmunidad , Inmunoglobulina E , Mamíferos , Carne , Conejos
4.
Allergy ; 77(3): 907-919, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-34287971

RESUMEN

BACKGROUND: Native allergen extracts or chemically modified allergoids are routinely used to induce allergen tolerance in allergen-specific immunotherapy (AIT), although mechanistic side-by-side studies are rare. It is paramount to balance optimal dose and allergenicity to achieve efficacy warranting safety. AIT safety and efficacy could be addressed by allergen dose reduction and/or use of allergoids and immunostimulatory adjuvants, respectively. In this study, immunological effects of experimental house dust mite (HDM) AIT were investigated applying high-dose HDM extract and low-dose HDM allergoids with and without the adjuvants microcrystalline tyrosine (MCT) and monophosphoryl lipid A (MPL) in a murine model of HDM allergy. METHODS: Cellular, humoral, and clinical effects of the different AIT strategies were assessed applying a new experimental AIT model of murine allergic asthma based on physiological, adjuvant-free intranasal sensitization followed by subcutaneous AIT. RESULTS: While low-dose allergoid and high-dose extract AIT demonstrated comparable potency to suppress allergic airway inflammation and Th2-type cytokine secretion of lung-resident lymphocytes and draining lymph node cells, low-dose allergoid AIT was less effective in inducing a potentially protective IgG1 response. Combining low-dose allergoid AIT with MCT or MCT and dose-adjusted MPL promoted Th1-inducing mechanisms and robust B-cell activation counterbalancing the allergic Th2 immune response. CONCLUSION: Low allergen doses induce cellular and humoral mechanisms counteracting Th2-driven inflammation by using allergoids and dose-adjusted adjuvants. In light of safety and efficacy improvement, future therapeutic approaches may use low-dose allergoid strategies to drive cellular tolerance and adjuvants to modulate humoral responses.


Asunto(s)
Desensibilización Inmunológica , Hipersensibilidad , Adyuvantes Inmunológicos , Alérgenos , Alergoides , Animales , Antígenos Dermatofagoides , Humanos , Hipersensibilidad/terapia , Inflamación , Ratones , Extractos Vegetales , Pyroglyphidae
5.
Allergy ; 76(7): 2153-2165, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33345329

RESUMEN

BACKGROUND: The prevalence of allergy to cat is expanding worldwide. Allergen-specific immunotherapy (AIT) has advantages over symptomatic pharmacotherapy and promises long-lasting disease control in allergic patients. However, there is still a need to improve cat AIT regarding efficacy, safety, and adherence to the treatment. Here, we aim to boost immune tolerance to the major cat allergen Fel d 1 by increasing the anti-inflammatory activity of AIT with the established immunomodulatory adjuvant CpG, but at a higher dose than previously used in AIT. METHODS: Together with CpG, we used endotoxin-free Fel d 1 as therapeutic allergen throughout the study in a BALB/c model of allergy to Fel d 1, thus mimicking the conditions of human AIT trials. Multidimensional immune phenotyping including mass cytometry (CyTOF) was applied to analyze AIT-specific immune signatures. RESULTS: We show that AIT with high-dose CpG in combination with endotoxin-free Fel d 1 reverts all major hallmarks of allergy. High-dimensional CyTOF analysis of the immune cell signatures initiating and sustaining the AIT effect indicates the simultaneous engagement of both, the pDC-Treg and B-cell axis, with the emergence of a systemic GATA3+ FoxP3hi biTreg population. The regulatory immune signature also suggests the involvement of the anti-inflammatory TNF/TNFR2 signaling cascade in NK and B cells at an early stage and in Tregs later during AIT. CONCLUSION: Our results highlight the potential of CpG adjuvant in a novel formulation to be further exploited for inducing allergen-specific tolerance in patients with cat allergy or other allergic diseases.


Asunto(s)
Glicoproteínas/inmunología , Hipersensibilidad , Receptores Tipo II del Factor de Necrosis Tumoral , Alérgenos , Animales , Gatos , Desensibilización Inmunológica , Modelos Animales de Enfermedad , Humanos , Hipersensibilidad/terapia , Tolerancia Inmunológica , Ratones
6.
Allergy ; 76(9): 2827-2839, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33969495

RESUMEN

BACKGROUND: Studies show that proallergic TH 2 cells decrease after successful allergen-specific immunotherapy (AIT). It is likely that iatrogenic administration of allergens drives these cells to exhaustion due to chronic T-cell receptor stimulation. This study aimed to investigate the exhaustion of T cells in connection with allergen exposure during AIT in mice and two independent patient cohorts. METHODS: OVA-sensitized C57BL/6J mice were challenged and treated with OVA, and the development of exhaustion in local and systemic TH 2 cells was analyzed. In patients, the expression of exhaustion-associated surface markers on TH 2 cells was evaluated using flow cytometry in a cross-sectional grass pollen allergy cohort with and without AIT. The treatment effect was further studied in PBMC collected from a prospective long-term AIT cohort. RESULTS: The exhaustion-associated surface markers CTLA-4 and PD-1 were significantly upregulated on TH 2 cells upon OVA aerosol exposure in OVA-allergic compared to non-allergic mice. CTLA-4 and PD-1 decreased after AIT, in particular on the surface of local lung TH 2 cells. Similarly, CTLA-4 and PD-1 expression was enhanced on TH 2 cells from patients with allergic rhinitis with an even stronger effect in those with concomitant asthma. Using an unbiased Louvain clustering analysis, we discovered a late-differentiated TH 2 population expressing both markers that decreased during up-dosing but persisted long term during the maintenance phase. CONCLUSIONS: This study shows that allergen exposure promotes CTLA-4 and PD-1 expression on TH 2 cells and that the dynamic change in frequencies of exhausted TH 2 cells exhibits a differential pattern during the up-dosing versus the maintenance phases of AIT.


Asunto(s)
Desensibilización Inmunológica , Leucocitos Mononucleares , Alérgenos , Animales , Estudios Transversales , Humanos , Ratones , Ratones Endogámicos C57BL , Fenotipo , Estudios Prospectivos
7.
J Immunol ; 203(10): 2602-2613, 2019 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-31578269

RESUMEN

Foxp3+ regulatory T cells are well-known immune suppressor cells in various settings. In this study, we provide evidence that knockout of the relB gene in dendritic cells (DCs) of C57BL/6 mice results in a spontaneous and systemic accumulation of Foxp3+ T regulatory T cells (Tregs) partially at the expense of microbiota-reactive Tregs. Deletion of nfkb2 does not fully recapitulate this phenotype, indicating that alternative NF-κB activation via the RelB/p52 complex is not solely responsible for Treg accumulation. Deletion of RelB in DCs further results in an impaired oral tolerance induction and a marked type 2 immune bias among accumulated Foxp3+ Tregs reminiscent of a tissue Treg signature. Tissue Tregs were fully functional, expanded independently of IL-33, and led to an almost complete Treg-dependent protection from experimental autoimmune encephalomyelitis. Thus, we provide clear evidence that RelB-dependent pathways regulate the capacity of DCs to quantitatively and qualitatively impact on Treg biology and constitute an attractive target for treatment of autoimmune diseases but may come at risk for reduced immune tolerance in the intestinal tract.


Asunto(s)
Autoinmunidad/genética , Células Dendríticas/inmunología , Encefalomielitis Autoinmune Experimental/inmunología , Linfocitos T Reguladores/inmunología , Factor de Transcripción ReIB/metabolismo , Animales , Células Cultivadas , Factores de Transcripción Forkhead/metabolismo , Técnicas de Inactivación de Genes , Homeostasis/inmunología , Tolerancia Inmunológica/inmunología , Inflamación/inmunología , Interleucina-33/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Subunidad p52 de NF-kappa B/metabolismo , Factor de Transcripción ReIB/deficiencia , Factor de Transcripción ReIB/genética
8.
Allergy ; 75(2): 259-272, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31230373

RESUMEN

Mobile health (mHealth) uses mobile communication devices such as smartphones and tablet computers to support and improve health-related services, data and information flow, patient self-management, surveillance, and disease management from the moment of first diagnosis to an optimized treatment. The European Academy of Allergy and Clinical Immunology created a task force to assess the state of the art and future potential of mHealth in allergology. The task force endorsed the "Be He@lthy, Be Mobile" WHO initiative and debated the quality, usability, efficiency, advantages, limitations, and risks of mobile solutions for allergic diseases. The results are summarized in this position paper, analyzing also the regulatory background with regard to the "General Data Protection Regulation" and Medical Directives of the European Community. The task force assessed the design, user engagement, content, potential of inducing behavioral change, credibility/accountability, and privacy policies of mHealth products. The perspectives of healthcare professionals and allergic patients are discussed, underlining the need of thorough investigation for an effective design of mHealth technologies as auxiliary tools to improve quality of care. Within the context of precision medicine, these could facilitate the change in perspective from clinician- to patient-centered care. The current and future potential of mHealth is then examined for specific areas of allergology, including allergic rhinitis, aerobiology, allergen immunotherapy, asthma, dermatological diseases, food allergies, anaphylaxis, insect venom, and drug allergy. The impact of mobile technologies and associated big data sets are outlined. Facts and recommendations for future mHealth initiatives within EAACI are listed.


Asunto(s)
Anafilaxia/terapia , Asma/terapia , Urticaria Crónica/terapia , Dermatitis Alérgica por Contacto/terapia , Dermatitis Atópica/terapia , Hipersensibilidad a las Drogas/terapia , Hipersensibilidad a los Alimentos/terapia , Rinitis Alérgica Estacional/terapia , Telemedicina/métodos , Desensibilización Inmunológica/métodos , Manejo de la Enfermedad , Humanos , Aplicaciones Móviles , Relaciones Médico-Paciente
9.
Curr Allergy Asthma Rep ; 20(9): 48, 2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32548726

RESUMEN

PURPOSE OF REVIEW: In Hymenoptera venom allergy, the research focus has moved from whole venoms to individual allergenic molecules. Api m 10 (icarapin) has been described as a major allergen of honeybee venom (HBV) with potentially high relevance for diagnostics and therapy of venom allergy. Here, we review recent studies on Api m 10 characteristics as well as its role in component-resolved diagnostics and potential implications for venom-specific immunotherapy (VIT). RECENT FINDINGS: Api m 10 is a major allergen of low abundance in HBV. It is an obviously unstable protein of unknown function that exhibits homologs in other insect species. Despite its low abundance in HBV, 35 to 72% of HBV-allergic patients show relevant sensitization to this allergen. Api m 10 is a marker allergen for HBV sensitization, which in many cases can help to identify primary sensitization to HBV and, hence, to discriminate between genuine sensitization and cross-reactivity. Moreover, Api m 10 might support personalized risk stratification in VIT, as dominant sensitization to Api m 10 has been identified as risk factor for treatment failure. This might be of particular importance since Api m 10 is strongly underrepresented in some therapeutic preparations commonly used for VIT. Although the role of Api m 10 in HBV allergy and tolerance induction during VIT is not fully understood, it certainly is a useful tool to unravel primary sensitization and individual sensitization profiles in component-resolved diagnostics (CRD). Moreover, a potential of Api m 10 to contribute to personalized treatment strategies in HBV allergy is emerging.


Asunto(s)
Alérgenos/uso terapéutico , Venenos de Artrópodos/uso terapéutico , Venenos de Abeja/uso terapéutico , Desensibilización Inmunológica/métodos , Himenópteros/patogenicidad , Mordeduras y Picaduras de Insectos/terapia , Animales , Venenos de Artrópodos/farmacología , Venenos de Abeja/farmacología , Humanos , Factores de Riesgo
10.
Curr Allergy Asthma Rep ; 20(10): 58, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32647993

RESUMEN

PURPOSE OF REVIEW: Stings of Hymenoptera of the superfamily Vespoidea such as yellow jackets, paper wasps or stinging ants are common triggers for severe and even fatal allergic reactions. Antigen 5 allergens are potent allergens in the majority of these venoms with major importance for diagnosis and therapy. Reviewed here are the characteristics of antigen 5 allergens, their role in component-resolved diagnostics as well as current limitations of the available diagnostics for proper therapeutic decisions. RECENT FINDINGS: Antigens 5 are proteins of unknown function in Hymenoptera venoms with high allergenic potency. They represent key elements in component-resolved diagnosis to discriminate between honeybee and vespid venom allergy. However, due to their pronounced cross-reactivity, there are remaining diagnostic and therapeutic challenges that have to be addressed. Antigens 5 are highly relevant venom allergens of the Vespoidea superfamily. Although their use in component-resolved diagnosis facilitates dissection of cross-reactivity and primary allergy in double sensitization to honeybee and vespid venom, new diagnostic concepts are needed to discriminate between allergies to different vespid species.


Asunto(s)
Venenos de Artrópodos/efectos adversos , Hipersensibilidad/terapia , Venenos de Avispas/sangre , Animales , Humanos
11.
J Allergy Clin Immunol ; 143(1): 182-189, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30125663

RESUMEN

BACKGROUND: Galactose-alpha-1,3-galactose (alpha-gal) syndrome is characterized by the presence of serum specific IgE antibodies to alpha-gal and delayed type I allergic reactions to the carbohydrate alpha-gal after consumption of mammalian (red) meat products and drugs of mammalian origin. Diagnostics currently rely on patient history, skin tests, determination of serum specific IgE antibodies, and oral food or drug challenges. OBJECTIVE: We sought to assess the utility of different basophil parameters (basophil reactivity and sensitivity, the ratio of the percentage of CD63+ basophils induced by the alpha-gal-containing allergen to the percentage of CD63+ basophils after stimulation with anti-FcεRI antibody [%CD63+/anti-FcεRI], and area under the dose-response curve [AUC]) as biomarkers for the clinical outcome of patients with alpha-gal syndrome compared with subjects with asymptomatic alpha-gal sensitization. METHODS: In addition to routine diagnostics, a basophil activation test (Flow CAST) with different concentrations of alpha-gal-containing allergens (eg, commercially available alpha-gal-carrying proteins and pork kidney extracts) was performed in 21 patients with alpha-gal syndrome, 12 alpha-gal-sensitized subjects, and 18 control subjects. RESULTS: Alpha-gal-containing allergens induced strong basophil activation in a dose-dependent manner in patients. Basophil reactivity at distinct allergen concentrations, the %CD63+/anti-FcεRI ratio across most allergen concentrations, the AUC of dose-response curves, and basophil allergen threshold sensitivity (CD-sens) with pork kidney extract were significantly higher in patients with alpha-gal syndrome compared with those in sensitized subjects. All parameters were negative in control subjects. CONCLUSION: The basophil activation test should be considered as an additional diagnostic test before performing time-consuming and potentially risky oral provocation tests. The %CD63+/anti-FcεRI ratio for all allergens and AUCs for pork kidney were the best parameters for distinguishing patients with alpha-gal syndrome from subjects with asymptomatic alpha-gal sensitization.


Asunto(s)
Anafilaxia , Basófilos/inmunología , Galactosa/efectos adversos , Inmunoglobulina E/inmunología , Adulto , Anafilaxia/diagnóstico , Anafilaxia/inmunología , Anafilaxia/patología , Basófilos/patología , Femenino , Galactosa/inmunología , Humanos , Masculino , Persona de Mediana Edad , Pruebas Cutáneas , Síndrome
12.
Allergy ; 74(5): 874-887, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-30644576

RESUMEN

Adverse reactions to insects occur in both human and veterinary patients. Systematic comparison may lead to improved recommendations for prevention and treatment in all species. In this position paper, we summarize the current knowledge on insect allergy induced via stings, bites, inhalation or ingestion, and compare reactions in companion animals to those in people. With few exceptions, the situation in human insect allergy is better documented than in animals. We focus on a review of recent literature and give overviews of the epidemiology and clinical signs. We discuss allergen sources and allergenic molecules to the extent described, and aspects of diagnosis, prophylaxis, management and therapy.


Asunto(s)
Alérgenos/inmunología , Hipersensibilidad/diagnóstico , Hipersensibilidad/etiología , Mordeduras y Picaduras de Insectos/inmunología , Insectos/inmunología , Animales , Manejo de la Enfermedad , Susceptibilidad a Enfermedades , Humanos , Hipersensibilidad/epidemiología , Hipersensibilidad/terapia , Fenotipo , Vigilancia en Salud Pública , Piel/patología , Evaluación de Síntomas
13.
Curr Allergy Asthma Rep ; 15(5): 26, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-26139335

RESUMEN

Anaphylaxis due to Hymenoptera stings is one of the most severe consequences of IgE-mediated hypersensitivity reactions. Although allergic reactions to Hymenoptera stings are often considered as a general model for the underlying principles of allergic disease, diagnostic tests are still hampered by a lack of specificity and venom immunotherapy by severe side effects and incomplete protection. In recent years, the knowledge about the molecular composition of Hymenoptera venoms has significantly increased and more and more recombinant venom allergens with advanced characteristics have become available for diagnostic measurement of specific IgE in venom-allergic patients. These recombinant venom allergens offer several promising possibilities for an improved diagnostic algorithm. Reviewed here are the current status, recent developments, and future perspectives of molecular diagnostics of venom allergy. Already to date, it is foreseeable that component-resolution already has now or will in the future have the potential to discriminate between clinically significant and irrelevant sensitization, to increase the specificity and sensitivity of diagnostics, to monitor immunotherapeutic intervention, and to contribute to the understanding of the immunological mechanisms elicited by insect venoms.


Asunto(s)
Alérgenos/inmunología , Anafilaxia/diagnóstico , Anafilaxia/inmunología , Mordeduras y Picaduras de Insectos/inmunología , Animales , Humanos , Hipersensibilidad/inmunología , Mordeduras y Picaduras de Insectos/complicaciones , Patología Molecular/métodos
14.
J Allergy Clin Immunol ; 133(5): 1383-9, 1389.e1-6, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24440283

RESUMEN

BACKGROUND: Detection of IgE to recombinant Hymenoptera venom allergens has been suggested to improve the diagnostic precision in Hymenoptera venom allergy. However, the frequency of sensitization to the only available recombinant honeybee venom (HBV) allergen, rApi m 1, in patients with HBV allergy is limited, suggesting that additional HBV allergens might be of relevance. OBJECTIVE: We performed an analysis of sensitization profiles of patients with HBV allergy to a panel of HBV allergens. METHODS: Diagnosis of HBV allergy (n = 144) was based on history, skin test results, and allergen-specific IgE levels to HBV. IgE reactivity to 6 HBV allergens devoid of cross-reactive carbohydrate determinants (CCD) was analyzed by ImmunoCAP. RESULTS: IgE reactivity to rApi m 1, rApi m 2, rApi m 3, nApi m 4, rApi m 5, and rApi m 10 was detected in 72.2%, 47.9%, 50.0%, 22.9%, 58.3%, and 61.8% of the patients with HBV allergy, respectively. Positive results to at least 1 HBV allergen were detected in 94.4%. IgE reactivity to Api m 3, Api m 10, or both was detected in 68.0% and represented the only HBV allergen-specific IgE in 5% of the patients. Limited inhibition of IgE binding by therapeutic HBV and limited induction of Api m 3- and Api m 10-specific IgG4 in patients obtaining immunotherapy supports recent reports on the underrepresentation of these allergens in therapeutic HBV preparations. CONCLUSION: Analysis of a panel of CCD-free HBV allergens improved diagnostic sensitivity compared with use of rApi m 1 alone, identified additional major allergens, and revealed sensitizations to allergens that have been reported to be absent or underrepresented in therapeutic HBV preparations.


Asunto(s)
Alérgenos/inmunología , Venenos de Abeja/inmunología , Abejas , Hipersensibilidad/inmunología , Mordeduras y Picaduras de Insectos/inmunología , Proteínas de Insectos/inmunología , Alérgenos/química , Animales , Venenos de Abeja/química , Reacciones Cruzadas , Femenino , Humanos , Inmunoglobulina E/inmunología , Inmunoglobulina G/inmunología , Mordeduras y Picaduras de Insectos/diagnóstico , Proteínas de Insectos/química , Masculino
17.
Toxins (Basel) ; 16(3)2024 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-38535796

RESUMEN

Nature abounds with an unprecedented diversity of biomolecular innovation [...].


Asunto(s)
Toxinas Biológicas , Animales
18.
Allergol Select ; 8: 293-298, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39211355

RESUMEN

Before starting venom-specific immunotherapy (VIT), systemic sting reactions to Hymenoptera venoms require allergological workup in order to prove an IgE-mediated reaction and to identify the culprit insect venom. In addition to skin tests and the determination of specific IgE antibodies, the basophil activation test (BAT) using flow cytometry has emerged as a powerful tool and sensitive marker for this purpose in recent years. BAT seems to have a better informative value in terms of clinical relevance compared to the other tests. In Hymenoptera venom allergies, BAT is particularly useful for the diagnosis of cases with unclear or contradictory history and sensitization profile. Its results are associated with adverse reactions during VIT and efficacy of VIT and therefore have a certain predictive value for side effects and treatment failure of VIT. In research, it is mainly used to characterize the allergenic components of Hymenoptera venoms. This review article focuses on these topics.

19.
Artículo en Inglés | MEDLINE | ID: mdl-39097146

RESUMEN

Accurate identification of allergy-eliciting stinging insect(s) is essential to ensuring effective management of Hymenoptera venom-allergic individuals with venom-specific immunotherapy. Diagnostic testing using whole-venom extracts with skin tests and serologic-based analyses remains the first level of discrimination for honeybee versus vespid venom sensitization in patients with a positive clinical history. As a second-level evaluation, serologic testing using molecular venom allergens can further discriminate genuine sensitization (honeybee venom: Api m 1, 3, 4, and 10 vs yellow jacket venom/Polistes dominula venom Ves v 1/Pol d 1 and Ves v 5/Pol d 5) from interspecies cross-reactivity (hyaluronidases [Api m 2, Ves v 2, and Pol d 2] and dipeptidyl peptidases IV [Api m 5, Ves v 3, and Pol d 3]). Clinical laboratories use a number of singleplex, oligoplex, and multiplex immunoassays that employ both extracted whole-venom and molecular venom allergens (highlighted earlier) for confirmation of allergic venom sensitization. Established quantitative singleplex autoanalyzers have general governmental regulatory clearance worldwide for venom-allergic patient testing with maximally achievable analytical sensitivity (0.1 kUA/L) and confirmed reproducibility (interassay coefficient of variation <10%). Emerging oligoplex and multiplex (fixed-panel) assays conserve on serum and are more cost-effective, but they need regulatory clearance in some countries and are prone to higher rates of detecting asymptomatic sensitization. Ultimately, the patient's clinical history, combined with proof of sensitization, is the final arbiter in the diagnosis of Hymenoptera venom allergy.

20.
Front Immunol ; 15: 1397072, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38915403

RESUMEN

Background: Allergen-specific immunotherapy (AIT) is able to restore immune tolerance to allergens in allergic patients. However, some patients do not or only poorly respond to current treatment protocols. Therefore, there is a need for deeper mechanistic insights and further improvement of treatment strategies. The relevance of the aryl hydrocarbon receptor (AhR), a ligand-dependent transcription factor, has been investigated in several inflammatory diseases, including allergic asthma. However, its potential role in AIT still needs to be addressed. Methods: A murine model of AIT in ovalbumin-induced allergic airway inflammation was performed in AhR-deficient (AhR-/-) and wild-type mice. Furthermore, AIT was combined with the application of the high-affinity AhR agonist 10-chloro-7H-benzimidazo[2,1-a]benzo[de]iso-quinolin-7-one (10-Cl-BBQ) as an adjuvant to investigate the effects of AhR activation on therapeutic outcome. Results: Although AhR-/- mice suffer stronger allergic responses than wild-type mice, experimental AIT is comparably effective in both. Nevertheless, combining AIT with the administration of 10-Cl-BBQ improved therapeutic effects by an AhR-dependent mechanism, resulting in decreased cell counts in the bronchoalveolar fluid, decreased pulmonary Th2 and Th17 cell levels, and lower sIgE levels. Conclusion: This study demonstrates that the success of AIT is not dependent on the AhR. However, targeting the AhR during AIT can help to dampen inflammation and improve tolerogenic vaccination. Therefore, AhR ligands might represent promising candidates as immunomodulators to enhance the efficacy of AIT.


Asunto(s)
Adyuvantes Inmunológicos , Alérgenos , Asma , Desensibilización Inmunológica , Modelos Animales de Enfermedad , Ratones Noqueados , Receptores de Hidrocarburo de Aril , Animales , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/inmunología , Receptores de Hidrocarburo de Aril/agonistas , Ratones , Desensibilización Inmunológica/métodos , Alérgenos/inmunología , Asma/inmunología , Asma/terapia , Ovalbúmina/inmunología , Femenino , Ratones Endogámicos C57BL , Células Th2/inmunología , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA