Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Neurosci ; 25(1): 29, 2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-38926677

RESUMEN

BACKGROUND: Astrocytes are the most abundant cell type of the central nervous system and are fundamentally involved in homeostasis, neuroprotection, and synaptic plasticity. This regulatory function of astrocytes on their neighboring cells in the healthy brain is subject of current research. In the ischemic brain we assume disease specific differences in astrocytic acting. The renin-angiotensin-aldosterone system regulates arterial blood pressure through endothelial cells and perivascular musculature. Moreover, astrocytes express angiotensin II type 1 and 2 receptors. However, their role in astrocytic function has not yet been fully elucidated. We hypothesized that the angiotensin II receptors impact astrocyte function as revealed in an in vitro system mimicking cerebral ischemia. Astrocytes derived from neonatal wistar rats were exposed to telmisartan (angiotensin II type 1 receptor-blocker) or PD123319 (angiotensin II type 2 receptor-blocker) under normal conditions (control) or deprivation from oxygen and glucose. Conditioned medium (CM) of astrocytes was harvested to elucidate astrocyte-mediated indirect effects on microglia and cortical neurons. RESULT: The blockade of angiotensin II type 1 receptor by telmisartan increased the survival of astrocytes during ischemic conditions in vitro without affecting their proliferation rate or disturbing their expression of S100A10, a marker of activation. The inhibition of the angiotensin II type 2 receptor pathway by PD123319 resulted in both increased expression of S100A10 and proliferation rate. The CM of telmisartan-treated astrocytes reduced the expression of pro-inflammatory mediators with simultaneous increase of anti-inflammatory markers in microglia. Increased neuronal activity was observed after treatment of neurons with CM of telmisartan- as well as PD123319-stimulated astrocytes. CONCLUSION: Data show that angiotensin II receptors have functional relevance for astrocytes that differs in healthy and ischemic conditions and effects surrounding microglia and neuronal activity via secretory signals. Above that, this work emphasizes the strong interference of the different cells in the CNS and that targeting astrocytes might serve as a therapeutic strategy to influence the acting of glia-neuronal network in de- and regenerative context.


Asunto(s)
Bloqueadores del Receptor Tipo 1 de Angiotensina II , Bloqueadores del Receptor Tipo 2 de Angiotensina II , Astrocitos , Accidente Cerebrovascular Isquémico , Microglía , Neuronas , Ratas Wistar , Receptor de Angiotensina Tipo 1 , Receptor de Angiotensina Tipo 2 , Telmisartán , Animales , Ratas , Bloqueadores del Receptor Tipo 1 de Angiotensina II/farmacología , Bloqueadores del Receptor Tipo 2 de Angiotensina II/farmacología , Animales Recién Nacidos , Astrocitos/metabolismo , Astrocitos/efectos de los fármacos , Bencimidazoles/farmacología , Comunicación Celular/fisiología , Comunicación Celular/efectos de los fármacos , Células Cultivadas , Imidazoles/farmacología , Accidente Cerebrovascular Isquémico/metabolismo , Accidente Cerebrovascular Isquémico/patología , Microglía/metabolismo , Microglía/efectos de los fármacos , Neuronas/metabolismo , Neuronas/efectos de los fármacos , Piridinas/farmacología , Receptor de Angiotensina Tipo 1/metabolismo , Receptor de Angiotensina Tipo 2/metabolismo , Telmisartán/farmacología
2.
J Neurosci Res ; 99(11): 2822-2843, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34510519

RESUMEN

The glycoprotein osteopontin is highly upregulated in central nervous system (CNS) disorders such as ischemic stroke. Osteopontin regulates cell growth, cell adhesion, homeostasis, migration, and survival of various cell types. Accordingly, osteopontin is considered an essential regulator of regeneration and repair in the ischemic milieu. Astrocytes are the most abundant cells in the CNS and play significant roles in health and disease. Astrocytes are involved in homeostasis, promote neuroprotection, and regulate synaptic plasticity. Upon activation, astrocytes may adopt different phenotypes, termed A1 and A2. The direct effects of osteopontin on astrocytes, especially in distinct activation states, are yet unknown. The current study aimed to elucidate the impact of osteopontin on resting and active astrocytes. We established an inflammatory in vitro model of activated (A1) primary astrocytes derived from neonatal wistar rats by exposure to a distinct combination of proinflammatory cytokines. To model ischemic stroke in vitro, astrocytes were subjected to oxygen and glucose deprivation (OGD) in the presence or absence of osteopontin. Osteopontin modulated the activation phenotype by attenuating A1- and restoring A2-marker expression without compromising the active astrocytes' immunocompetence. Osteopontin promoted the proliferation of active and the migration of resting astrocytes. Following transient OGD, osteopontin mitigated the delayed ongoing death of primary astrocytes, promoting their survival. Data suggest that osteopontin differentially regulates essential functions of resting and active astrocytes and confirm a significant regulatory role of osteopontin in an in vitro ischemia model. Furthermore, the data suggest that osteopontin constitutes a promising target for experimental therapies modulating neuroregeneration and repair.


Asunto(s)
Astrocitos , Osteopontina , Animales , Astrocitos/metabolismo , Proliferación Celular , Plasticidad Neuronal , Fenotipo , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA