Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Biochim Biophys Acta ; 1850(11): 2168-76, 2015 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-26164367

RESUMEN

Calmodulin (CaM) is a cytoplasmic calcium sensor that interacts with the cardiac ryanodine receptor (RyR2), a large Ca(2+) channel complex that mediates Ca(2+) efflux from the sarcoplasmic reticulum (SR) to activate cardiac muscle contraction. Direct CaM association with RyR2 is an important physiological regulator of cardiac muscle excitation-contraction coupling and defective CaM-RyR2 protein interaction has been reported in cases of heart failure. Recent genetic studies have identified CaM missense mutations in patients with a history of severe cardiac arrhythmogenic disorders that present divergent clinical features, including catecholaminergic polymorphic ventricular tachycardia (CPVT), long QT syndrome (LQTS) and idiopathic ventricular fibrillation (IVF). Herein, we describe how two CPVT- (N54I & N98S) and three LQTS-associated (D96V, D130G & F142L) CaM mutations result in alteration of their biochemical and biophysical properties. Ca(2+)-binding studies indicate that the CPVT-associated CaM mutations, N54I & N98S, exhibit the same or a 3-fold reduced Ca(2+)-binding affinity, respectively, versus wild-type CaM, whereas the LQTS-associated CaM mutants, D96V, D130G & F142L, display more profoundly reduced Ca(2+)-binding affinity. In contrast, all five CaM mutations confer a disparate RyR2 interaction and modulation of [(3)H]ryanodine binding to RyR2, regardless of CPVT or LQTS association. Our findings suggest that the clinical presentation of CPVT or LQTS associated with these five CaM mutations may involve both altered intrinsic Ca(2+)-binding as well as defective interaction with RyR2.


Asunto(s)
Calmodulina/genética , Síndrome de QT Prolongado/etiología , Mutación , Canal Liberador de Calcio Receptor de Rianodina/fisiología , Taquicardia Ventricular/etiología , Animales , Calcio/metabolismo , Porcinos
2.
Biochim Biophys Acta ; 1830(10): 4426-32, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23747301

RESUMEN

BACKGROUND: This study was designed to determine whether the cardiac ryanodine receptor (RyR2) central domain, a region associated with catecholamine polymorphic ventricular tachycardia (CPVT) mutations, interacts with the RyR2 regulators, ATP and the FK506-binding protein 12.6 (FKBP12.6). METHODS: Wild-type (WT) RyR2 central domain constructs (G(2236)to G(2491)) and those containing the CPVT mutations P2328S and N2386I, were expressed as recombinant proteins. Folding and stability of the proteins were examined by circular dichroism (CD) spectroscopy and guanidine hydrochloride chemical denaturation. RESULTS: The far-UV CD spectra showed a soluble stably-folded protein with WT and mutant proteins exhibiting a similar secondary structure. Chemical denaturation analysis also confirmed a stable protein for both WT and mutant constructs with similar two-state unfolding. ATP and caffeine binding was measured by fluorescence spectroscopy. Both ATP and caffeine bound with an EC50 of ~200-400µM, and the affinity was the same for WT and mutant constructs. Sequence alignment with other ATP binding proteins indicated the RyR2 central domain contains the signature of an ATP binding pocket. Interaction of the central domain with FKBP12.6 was tested by glutaraldehyde cross-linking and no association was found. CONCLUSIONS: The RyR2 central domain, expressed as a 'correctly' folded recombinant protein, bound ATP in accord with bioinformatics evidence of conserved ATP binding sequence motifs. An interaction with FKBP12.6 was not evident. CPVT mutations did not disrupt the secondary structure nor binding to ATP. GENERAL SIGNIFICANCE: Part of the RyR2 central domain CPVT mutation cluster, can be expressed independently with retention of ATP binding.


Asunto(s)
Adenosina Trifosfato/metabolismo , Mutación , Miocardio/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Dicroismo Circular , Humanos , Canal Liberador de Calcio Receptor de Rianodina/genética , Espectrofotometría Ultravioleta , Proteínas de Unión a Tacrolimus/metabolismo
3.
J Mol Biol ; 349(3): 538-46, 2005 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-15878596

RESUMEN

Ryanodine receptor-calcium release channels play a pivotal role in the calcium signaling that mediates muscle excitation-contraction coupling. Their membrane organization into regular patterns, functional gating studies and theoretical analysis of receptor clustering have led to models that invoke allosteric interaction between individual channel oligomers as a critical mechanism for control of calcium release. Here we show that in reconstituted "checkerboard-like" lattices that mimic in situ membrane channel arrays, each oligomer is interlocked physically with four adjacent oligomers via a specific domain-domain interaction. Direct physical coupling between ryanodine receptors provides structural evidence for an inter-oligomer allosteric mechanism in channel regulation. Therefore, in addition to established cytosolic and luminal regulation of function, these observations indicate that channel-channel communication through physical coupling provides a novel mode of regulation of intracellular calcium release channels.


Asunto(s)
Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Señalización del Calcio/fisiología , Modelos Moleculares , Estructura Terciaria de Proteína , Conejos , Canal Liberador de Calcio Receptor de Rianodina/química , Retículo Sarcoplasmático/metabolismo
4.
FEBS Lett ; 588(17): 2898-902, 2014 Aug 25.
Artículo en Inglés | MEDLINE | ID: mdl-25036739

RESUMEN

Calmodulin (CaM) association with the cardiac muscle ryanodine receptor (RyR2) regulates excitation-contraction coupling. Defective CaM-RyR2 interaction is associated with heart failure. A novel CaM mutation (CaM(F90L)) was recently identified in a family with idiopathic ventricular fibrillation (IVF) and early onset sudden cardiac death. We report the first biochemical characterization of CaM(F90L). F90L confers a deleterious effect on protein stability. Ca(2+)-binding studies reveal reduced Ca(2+)-binding affinity and a loss of co-operativity. Moreover, CaM(F90L) displays reduced RyR2 interaction and defective modulation of [(3)H]ryanodine binding. Hence, dysregulation of RyR2-mediated Ca(2+) release via aberrant CaM(F90L)-RyR2 interaction is a potential mechanism that underlies familial IVF.


Asunto(s)
Calmodulina/genética , Calmodulina/metabolismo , Muerte Súbita Cardíaca , Mutación , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Fibrilación Ventricular/genética , Sitios de Unión , Calcio/metabolismo , Calmodulina/química , Humanos , Modelos Moleculares , Conformación Proteica , Retículo Sarcoplasmático/metabolismo
5.
Cardiovasc Res ; 85(1): 68-78, 2010 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-19661110

RESUMEN

AIMS: Our objective was to explore the functional interdependence of protein kinase A (PKA) phosphorylation with binding of modulatory FK506 binding proteins (FKBP12/12.6) to the ryanodine receptor (RyR). RyR type 1 or type 2 was prepared from rabbit skeletal muscle or pig cardiac muscle, respectively. In heart failure, RyR2 dysfunction is implicated in fatal arrhythmia and RyR1 dysfunction is associated with muscle fatigue. A controversial underlying mechanism of RyR1/2 dysfunction is proposed to be hyperphosphorylation of RyR1/2 by PKA, causing loss of FKBP12/12.6 binding that is reversible by the experimental inhibitory drug K201 (JTV519). Phosphorylation is also a trigger for fatal arrhythmia in catecholaminergic polymorphic ventricular tachycardia associated with point mutations in RyR2. METHODS AND RESULTS: Equilibrium binding kinetics of RyR1/2 to FKBP12/12.6 were measured using surface plasmon resonance (Biacore). Free Ca(2+) concentration was used to modulate the open/closed conformation of RyR1/2 channels measured using [(3)H]ryanodine binding assays. The affinity constant-K(A), for RyR1/2 binding to FKBP12/12.6, was significantly greater for the closed compared with the open conformation. The effect of phosphorylation or K201 was to reduce the K(A) of the closed conformation by increasing the rate of dissociation k(d). K201 reduced [(3)H]ryanodine binding to RyR1/2 at all free Ca(2+) concentrations including PKA phosphorylated preparations. CONCLUSION: The results are explained through a model proposing that phosphorylation and K201 acted similarly to change the conformation of RyR1/2 and regulate FKBP12/12.6 binding. K201 stabilized the conformation, whereas phosphorylation facilitated a subsequent molecular event that might increase the rate of an open/closed conformational transition.


Asunto(s)
Proteínas Quinasas Dependientes de AMP Cíclico/fisiología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Proteína 1A de Unión a Tacrolimus/metabolismo , Proteínas de Unión a Tacrolimus/metabolismo , Tiazepinas/farmacología , Animales , Masculino , Fosforilación , Conformación Proteica , Conejos , Rianodina/metabolismo , Canal Liberador de Calcio Receptor de Rianodina/química , Porcinos , Proteína 1A de Unión a Tacrolimus/farmacología
6.
Pharmacol Ther ; 123(2): 151-77, 2009 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-19345240

RESUMEN

The cardiac ryanodine receptor-Ca2+ release channel (RyR2) is an essential sarcoplasmic reticulum (SR) transmembrane protein that plays a central role in excitation-contraction coupling (ECC) in cardiomyocytes. Aberrant spontaneous, diastolic Ca2+ leak from the SR due to dysfunctional RyR2 contributes to the formation of delayed after-depolarisations, which are thought to underlie the fatal arrhythmia that occurs in both heart failure (HF) and in catecholaminergic polymorphic ventricular tachycardia (CPVT). CPVT is an inherited disorder associated with mutations in either the RyR2 or a SR luminal protein, calsequestrin. RyR2 shows normal function at rest in CPVT but the RyR2 dysfunction is unmasked by physical exercise or emotional stress, suggesting abnormal RyR2 activation as an underlying mechanism. Several potential mechanisms have been advanced to explain the dysfunctional RyR2 observed in HF and CPVT, including enhanced RyR2 phosphorylation status, altered RyR2 regulation at luminal/cytoplasmic sites and perturbed RyR2 intra/inter-molecular interactions. This review considers RyR2 dysfunction in the context of the structural and functional modulation of the channel, and potential therapeutic strategies to stabilise RyR2 function in cardiac pathology.


Asunto(s)
Arritmias Cardíacas/etiología , Muerte Súbita Cardíaca/etiología , Canal Liberador de Calcio Receptor de Rianodina/genética , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Animales , Calcio/metabolismo , Catecolaminas/metabolismo , Mutación , Miocardio/metabolismo , Fosforilación , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/metabolismo , Taquicardia Ventricular/etiología , Taquicardia Ventricular/fisiopatología
7.
J Cell Sci ; 118(Pt 20): 4613-9, 2005 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-16176935

RESUMEN

Ryanodine receptor (RyR) Ca2+ release channels undergo a conformational change between the open and closed states. Its protein modulator, FK506 binding protein 12 (FKBP12), stabilises the channel gating between the four subunits that surround a central Ca2+-conducting pore. To understand the interdependence of RyR and FKBP12 binding, physiological and pharmacological agents were used to modulate the RyR open/closed state. ELISA sandwich binding assays showed that FKBP12 binding was dependent on the free Ca2+ and was lower at 1-10 microM free Ca2+ compared with 1 mM EGTA and 1 mM Ca2+, and this effect was enhanced by the inclusion of 1 mM ATP. Ruthenium red increased the binding of FKBP12. [3H]Ryanodine binding confirmed that 1 mM EGTA, 1 mM Ca2+ and 1 microM ruthenium red closed the channel, whereas 1 microM free Ca2+, 1 microM free Ca2+ + 1 mM ATP, or 10 mM caffeine opened it. These binding conditions were used in surface plasmon resonance studies to measure equilibrium binding kinetics. The affinity constant KA was significantly greater for the closed than the open channel, a change mediated by a decreased dissociation rate constant, kd. The results show that surface plasmon resonance is a powerful technique that can measure differences in RyR1 equilibrium binding kinetics with FKBP12.


Asunto(s)
Activación del Canal Iónico/fisiología , Canal Liberador de Calcio Receptor de Rianodina/metabolismo , Proteína 1A de Unión a Tacrolimus/metabolismo , Animales , Cafeína/farmacología , Ensayo de Inmunoadsorción Enzimática , Activación del Canal Iónico/efectos de los fármacos , Conejos , Proteínas Recombinantes de Fusión , Rojo de Rutenio/farmacología , Rianodina/metabolismo , Resonancia por Plasmón de Superficie , Proteína 1A de Unión a Tacrolimus/deficiencia
8.
J Biol Chem ; 280(35): 31011-8, 2005 Sep 02.
Artículo en Inglés | MEDLINE | ID: mdl-16000311

RESUMEN

The sperm-specific phospholipase C-zeta (PLCzeta) elicits fertilization-like Ca2+ oscillations and activation of embryo development when microinjected into mammalian eggs (Saunders, C. M., Larman, M. G., Parrington, J., Cox, L. J., Royse, J., Blayney, L. M., Swann, K., and Lai, F. A. (2002) Development (Camb.) 129, 3533-3544; Cox, L. J., Larman, M. G., Saunders, C. M., Hashimoto, K., Swann, K., and Lai, F. A. (2002) Reproduction 124, 611-623). PLCzeta may represent the physiological stimulus for egg activation and development at mammalian fertilization. PLCzeta is the smallest known mammalian PLC isozyme, comprising two EF hand domains, a C2 domain, and the catalytic X and Y core domains. To gain insight into PLCzeta structure-function, we assessed the ability of PLCzeta and a series of domain-deletion constructs to cause phosphatidylinositol 4,5-bisphosphate hydrolysis in vitro and also to generate cytoplasmic Ca2+ changes in intact mouse eggs. PLCzeta and the closely related PLCdelta1 had similar K(m) values for phosphatidylinositol 4,5-bisphosphate, but PLCzeta was around 100 times more sensitive to Ca2+ than was PLCdelta1. Notably, specific phosphatidylinositol 4,5-bisphosphate hydrolysis activity was retained in PLCzeta constructs that had either EF hand domains or the C2 domain removed, or both. In contrast, Ca2+ sensitivity was greatly reduced when either one, or both, of the EF hand domains were absent, and the Hill coefficient was reduced upon deletion of the C2 domain. Microinjection into intact mouse eggs revealed that all domain-deletion constructs were ineffective at initiating Ca2+ oscillations. These data suggest that the exquisite Ca2+-dependent features of PLCzeta regulation are essential for it to generate inositol 1,4,5-trisphosphate and Ca2+ oscillations in intact mouse eggs.


Asunto(s)
Calcio/metabolismo , Citoplasma/metabolismo , Fosfatidilinositol 4,5-Difosfato/metabolismo , Conformación Proteica , Fosfolipasas de Tipo C/química , Fosfolipasas de Tipo C/metabolismo , Animales , Citoplasma/química , Femenino , Humanos , Concentración de Iones de Hidrógeno , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Ratones , Microinyecciones , Datos de Secuencia Molecular , Oocitos/citología , Oocitos/fisiología , Fosfatidilinositol 4,5-Difosfato/química , Fosfoinositido Fosfolipasa C , Fosfolipasa C delta , Ratas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Eliminación de Secuencia , Fosfolipasas de Tipo C/genética
9.
J Biol Chem ; 279(15): 14639-48, 2004 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-14722100

RESUMEN

Specific interactions between adjacent ryanodine receptor (RyR) molecules to form ordered two-dimensional arrays in the membrane have been demonstrated using electron microscopy both in situ, in tissues and cells, and in vitro, with the purified protein. RyR interoligomeric association has also been inferred from observations of simultaneous channel gating during multi-RyR channel recordings in lipid bilayers. In this study, we report experiments designed to identify the region(s) of the RyR molecule, participating in this reciprocal interaction. Using epitope-specific antibodies, we identified a RyR tryptic fragment that specifically bound the intact immobilized RyR. Three overlapping RyR fragments encompassing this epitope, expressed using an in vitro mammalian expression system, were immunoprecipitated by RyR. To refine the binding regions, smaller RyR fragments were expressed as glutathione S-transferase (GST) fusion proteins, and their binding to RyR was monitored using a "sandwich" enzyme-linked immunosorbent assay. Three GST-RyR fusion proteins demonstrated specific binding, dependent upon ionic strength. Binding was greatest at 50-150 mm NaCl for two GST-RyR constructs, and a third GST-RyR construct demonstrated maximum binding between 150 and 450 mm NaCl. The binding at high NaCl concentration suggested involvement of a hydrophobic interaction. In silico analysis of secondary structure showed evidence of coil regions in two of these RyR fragment sequences, which might explain these data. In GST pull-down assays, these same three fragments captured RyR2, and two of them retained RyR1. These results identify a region at the center of the linear RyR (residues 2540-3207 of human RyR2) which is able to bind to the RyR oligomer. This region may constitute a specific subdomain participating in RyR-RyR interaction.


Asunto(s)
Canal Liberador de Calcio Receptor de Rianodina/química , Secuencia de Aminoácidos , Animales , Sitios de Unión , Relación Dosis-Respuesta a Droga , Electroforesis en Gel de Poliacrilamida , Ensayo de Inmunoadsorción Enzimática , Epítopos/química , Vectores Genéticos , Glutatión Transferasa/metabolismo , Humanos , Iones , Microscopía Electrónica , Datos de Secuencia Molecular , Pruebas de Precipitina , Unión Proteica , Isoformas de Proteínas , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Proteínas Recombinantes/química , Homología de Secuencia de Aminoácido , Cloruro de Sodio/química , Cloruro de Sodio/farmacología , Tripsina/farmacología
10.
Development ; 129(15): 3533-44, 2002 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12117804

RESUMEN

Upon fertilisation by sperm, mammalian eggs are activated by a series of intracellular Ca(2+) oscillations that are essential for embryo development. The mechanism by which sperm induces this complex signalling phenomenon is unknown. One proposal is that the sperm introduces an exclusive cytosolic factor into the egg that elicits serial Ca(2+) release. The 'sperm factor' hypothesis has not been ratified because a sperm-specific protein that generates repetitive Ca(2+) transients and egg activation has not been found. We identify a novel, sperm-specific phospholipase C, PLC zeta, that triggers Ca(2+) oscillations in mouse eggs indistinguishable from those at fertilisation. PLC zeta removal from sperm extracts abolishes Ca(2+) release in eggs. Moreover, the PLC zeta content of a single sperm was sufficient to produce Ca(2+) oscillations as well as normal embryo development to blastocyst. Our results are consistent with sperm PLC zeta as the molecular trigger for development of a fertilised egg into an embryo.


Asunto(s)
Señalización del Calcio/fisiología , Desarrollo Embrionario y Fetal , Isoenzimas/metabolismo , Óvulo/metabolismo , Espermatozoides/enzimología , Fosfolipasas de Tipo C/metabolismo , Secuencia de Aminoácidos , Animales , Benzofuranos/metabolismo , Clonación Molecular , Fertilización/fisiología , Colorantes Fluorescentes/metabolismo , Imidazoles/metabolismo , Isoenzimas/química , Isoenzimas/genética , Masculino , Ratones , Microinyecciones , Datos de Secuencia Molecular , Fosfoinositido Fosfolipasa C , Filogenia , Alineación de Secuencia , Distribución Tisular , Fosfolipasas de Tipo C/química , Fosfolipasas de Tipo C/clasificación , Fosfolipasas de Tipo C/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA