Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(13): 3376-3393.e17, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34043940

RESUMEN

We present a global atlas of 4,728 metagenomic samples from mass-transit systems in 60 cities over 3 years, representing the first systematic, worldwide catalog of the urban microbial ecosystem. This atlas provides an annotated, geospatial profile of microbial strains, functional characteristics, antimicrobial resistance (AMR) markers, and genetic elements, including 10,928 viruses, 1,302 bacteria, 2 archaea, and 838,532 CRISPR arrays not found in reference databases. We identified 4,246 known species of urban microorganisms and a consistent set of 31 species found in 97% of samples that were distinct from human commensal organisms. Profiles of AMR genes varied widely in type and density across cities. Cities showed distinct microbial taxonomic signatures that were driven by climate and geographic differences. These results constitute a high-resolution global metagenomic atlas that enables discovery of organisms and genes, highlights potential public health and forensic applications, and provides a culture-independent view of AMR burden in cities.


Asunto(s)
Farmacorresistencia Bacteriana/genética , Metagenómica , Microbiota/genética , Población Urbana , Biodiversidad , Bases de Datos Genéticas , Humanos
2.
Cell ; 182(6): 1460-1473.e17, 2020 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-32916129

RESUMEN

The gut microbiome has been implicated in multiple human chronic gastrointestinal (GI) disorders. Determining its mechanistic role in disease has been difficult due to apparent disconnects between animal and human studies and lack of an integrated multi-omics view of disease-specific physiological changes. We integrated longitudinal multi-omics data from the gut microbiome, metabolome, host epigenome, and transcriptome in the context of irritable bowel syndrome (IBS) host physiology. We identified IBS subtype-specific and symptom-related variation in microbial composition and function. A subset of identified changes in microbial metabolites correspond to host physiological mechanisms that are relevant to IBS. By integrating multiple data layers, we identified purine metabolism as a novel host-microbial metabolic pathway in IBS with translational potential. Our study highlights the importance of longitudinal sampling and integrating complementary multi-omics data to identify functional mechanisms that can serve as therapeutic targets in a comprehensive treatment strategy for chronic GI diseases. VIDEO ABSTRACT.


Asunto(s)
Microbioma Gastrointestinal/genética , Regulación de la Expresión Génica/genética , Síndrome del Colon Irritable/metabolismo , Metaboloma , Purinas/metabolismo , Transcriptoma/genética , Animales , Ácidos y Sales Biliares/metabolismo , Biopsia , Butiratos/metabolismo , Cromatografía Liquida , Estudios Transversales , Epigenómica , Heces/microbiología , Femenino , Microbioma Gastrointestinal/fisiología , Regulación de la Expresión Génica/fisiología , Interacciones Microbiota-Huesped/genética , Humanos , Hipoxantina/metabolismo , Síndrome del Colon Irritable/genética , Síndrome del Colon Irritable/microbiología , Estudios Longitudinales , Masculino , Metaboloma/fisiología , Ratones , Estudios Observacionales como Asunto , Estudios Prospectivos , Programas Informáticos , Espectrometría de Masas en Tándem , Transcriptoma/fisiología
3.
Cell ; 167(3): 657-669.e21, 2016 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-27768889

RESUMEN

Individuals from different populations vary considerably in their susceptibility to immune-related diseases. To understand how genetic variation and natural selection contribute to these differences, we tested for the effects of African versus European ancestry on the transcriptional response of primary macrophages to live bacterial pathogens. A total of 9.3% of macrophage-expressed genes show ancestry-associated differences in the gene regulatory response to infection, and African ancestry specifically predicts a stronger inflammatory response and reduced intracellular bacterial growth. A large proportion of these differences are under genetic control: for 804 genes, more than 75% of ancestry effects on the immune response can be explained by a single cis- or trans-acting expression quantitative trait locus (eQTL). Finally, we show that genetic effects on the immune response are strongly enriched for recent, population-specific signatures of adaptation. Together, our results demonstrate how historical selective events continue to shape human phenotypic diversity today, including for traits that are key to controlling infection.

5.
Cell ; 159(4): 789-99, 2014 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-25417156

RESUMEN

Host genetics and the gut microbiome can both influence metabolic phenotypes. However, whether host genetic variation shapes the gut microbiome and interacts with it to affect host phenotype is unclear. Here, we compared microbiotas across >1,000 fecal samples obtained from the TwinsUK population, including 416 twin pairs. We identified many microbial taxa whose abundances were influenced by host genetics. The most heritable taxon, the family Christensenellaceae, formed a co-occurrence network with other heritable Bacteria and with methanogenic Archaea. Furthermore, Christensenellaceae and its partners were enriched in individuals with low body mass index (BMI). An obese-associated microbiome was amended with Christensenella minuta, a cultured member of the Christensenellaceae, and transplanted to germ-free mice. C. minuta amendment reduced weight gain and altered the microbiome of recipient mice. Our findings indicate that host genetics influence the composition of the human gut microbiome and can do so in ways that impact host metabolism.


Asunto(s)
Bacterias/clasificación , Bacterias/aislamiento & purificación , Heces/microbiología , Microbiota , Animales , Bacterias/metabolismo , Índice de Masa Corporal , Femenino , Tracto Gastrointestinal/microbiología , Vida Libre de Gérmenes , Humanos , Masculino , Ratones , Obesidad/microbiología , Gemelos Dicigóticos , Gemelos Monocigóticos
6.
PLoS Biol ; 20(2): e3001536, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35167588

RESUMEN

The importance of sampling from globally representative populations has been well established in human genomics. In human microbiome research, however, we lack a full understanding of the global distribution of sampling in research studies. This information is crucial to better understand global patterns of microbiome-associated diseases and to extend the health benefits of this research to all populations. Here, we analyze the country of origin of all 444,829 human microbiome samples that are available from the world's 3 largest genomic data repositories, including the Sequence Read Archive (SRA). The samples are from 2,592 studies of 19 body sites, including 220,017 samples of the gut microbiome. We show that more than 71% of samples with a known origin come from Europe, the United States, and Canada, including 46.8% from the US alone, despite the country representing only 4.3% of the global population. We also find that central and southern Asia is the most underrepresented region: Countries such as India, Pakistan, and Bangladesh account for more than a quarter of the world population but make up only 1.8% of human microbiome samples. These results demonstrate a critical need to ensure more global representation of participants in microbiome studies.


Asunto(s)
Microbioma Gastrointestinal/genética , Genómica/métodos , Metagenoma/genética , Metagenómica/métodos , Microbiota/genética , Asia , Bangladesh , Canadá , Países Desarrollados , Europa (Continente) , Genómica/estadística & datos numéricos , Geografía , Humanos , India , Metagenómica/estadística & datos numéricos , Pakistán , Estados Unidos
7.
Am J Primatol ; : e23656, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38873762

RESUMEN

The gut microbiome is a plastic phenotype; gut microbial composition is highly variable across an individual host's lifetime and between host social groups, and this variation has consequences for host health. However, we do not yet fully understand how longitudinal microbial dynamics and their social drivers may be influenced by ecological stressors, such as habitat degradation. Answering these questions is difficult in most wild animal systems, as it requires long-term collections of matched host, microbiome, and environmental trait data. To test if temporal and social influences on microbiome composition differ by the history of human disturbance, we leveraged banked, desiccated fecal samples collected over 5 months in 2004 from two ecologically distinct populations of wild, red-bellied lemurs (Eulemur rubriventer) that are part of a long-term study system. We found that social group explained more variation in microbiome composition than host population membership did, and that temporal variation in common microbial taxa was similar between populations, despite differences in history of human disturbance. Furthermore, we found that social group membership and collection month were both more important than individual lemur identity. Taken together, our results suggest that synchronized environments use can lead to synchronized microbial dynamics over time, even between habitats of varying quality, and that desiccated samples could become a viable approach for studying primate gut microbiota. Our work opens the door for other projects to utilize historic biological sample data sets to answer novel temporal microbiome questions in an ecological context.

8.
Gastroenterology ; 161(4): 1194-1207.e8, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34245762

RESUMEN

BACKGROUND & AIMS: The gut virome includes eukaryotic viruses and bacteriophages that can shape the gut bacterial community and elicit host responses. The virome can be implicated in diseases, such as irritable bowel syndrome (IBS), where gut bacteria play an important role in pathogenesis. We provide a comprehensive and longitudinal characterization of the virome, including DNA and RNA viruses and paired multi-omics data in a cohort of healthy subjects and patients with IBS. METHODS: We selected 2 consecutive stool samples per subject from a longitudinal study cohort and performed metagenomic sequencing on DNA and RNA viruses after enriching for viral-like particles. Viral sequence abundance was evaluated over time, as well as in the context of diet, bacterial composition and function, metabolite levels, colonic gene expression, host genetics, and IBS subsets. RESULTS: We found that the gut virome was temporally stable and correlated with the colonic transcriptome. We identified IBS-subset-specific changes in phage populations; Microviridae, Myoviridae, and Podoviridae species were elevated in diarrhea-predominant IBS, and other Microviridae and Myoviridae species were elevated in constipation-predominant IBS compared to healthy controls. We identified correlations between subsets of the virome and bacterial composition (unclassifiable "dark matter" and phages) and diet (eukaryotic viruses). CONCLUSIONS: We found that the gut virome is stable over time but varies among subsets of patients with IBS. It can be affected by diet and potentially influences host function via interactions with gut bacteria and/or altering host gene expression.


Asunto(s)
Dieta , Intestinos/virología , Síndrome del Colon Irritable/virología , Transcriptoma , Viroma , Virus/crecimiento & desarrollo , Adulto , Bacteriófagos/genética , Bacteriófagos/crecimiento & desarrollo , Estudios de Casos y Controles , Dieta/efectos adversos , Femenino , Microbioma Gastrointestinal , Perfilación de la Expresión Génica , Regulación de la Expresión Génica , Interacciones Huésped-Patógeno , Humanos , Intestinos/microbiología , Síndrome del Colon Irritable/diagnóstico , Síndrome del Colon Irritable/genética , Síndrome del Colon Irritable/microbiología , Estudios Longitudinales , Masculino , Metagenoma , Metagenómica , Persona de Mediana Edad , Virología , Virus/genética
9.
PLoS Biol ; 17(5): e3000269, 2019 05.
Artículo en Inglés | MEDLINE | ID: mdl-31112533

RESUMEN

Preprints have arrived. In increasing numbers, researchers across the life sciences are embracing the once-niche practice, shaking off decades of reluctance and posting hundreds of papers per week to preprint servers, sharing their findings with the community before embarking on the weary march through peer review. However, there are limited methods for individuals sifting through this avalanche of research to identify the preprints that are most relevant to their interests. Here, we describe Rxivist.org, a website that indexes all preprints posted to bioRxiv.org, the largest preprint server in the life sciences, and allows users to filter and sort papers based on download metrics and Twitter activity over a variety of categories and time periods. In this work, we hope to make it easier for readers to find relevant research on bioRxiv and to improve the visibility of preprints currently being read and discussed online.


Asunto(s)
Bibliometría , Biología , Edición , Medios de Comunicación Sociales
10.
PLoS Biol ; 17(6): e3000333, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-31220077

RESUMEN

Developing new software tools for analysis of large-scale biological data is a key component of advancing modern biomedical research. Scientific reproduction of published findings requires running computational tools on data generated by such studies, yet little attention is presently allocated to the installability and archival stability of computational software tools. Scientific journals require data and code sharing, but none currently require authors to guarantee the continuing functionality of newly published tools. We have estimated the archival stability of computational biology software tools by performing an empirical analysis of the internet presence for 36,702 omics software resources published from 2005 to 2017. We found that almost 28% of all resources are currently not accessible through uniform resource locators (URLs) published in the paper they first appeared in. Among the 98 software tools selected for our installability test, 51% were deemed "easy to install," and 28% of the tools failed to be installed at all because of problems in the implementation. Moreover, for papers introducing new software, we found that the number of citations significantly increased when authors provided an easy installation process. We propose for incorporation into journal policy several practical solutions for increasing the widespread installability and archival stability of published bioinformatics software.


Asunto(s)
Biología Computacional/métodos , Difusión de la Información/métodos , Almacenamiento y Recuperación de la Información/métodos , Investigación Biomédica , Bases de Datos Factuales , Humanos , Internet , Programas Informáticos/tendencias
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA