Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Mol Biol Evol ; 39(10)2022 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-36063436

RESUMEN

As viral genomic imprints in host genomes, endogenous viral elements (EVEs) shed light on the deep evolutionary history of viruses, ancestral host ranges, and ancient viral-host interactions. In addition, they may provide crucial information for calibrating viral evolutionary timescales. In this study, we conducted a comprehensive in silico screening of a large data set of available mammalian genomes for EVEs deriving from members of the viral family Flaviviridae, an important group of viruses including well-known human pathogens, such as Zika, dengue, or hepatitis C viruses. We identified two novel pestivirus-like EVEs in the reference genome of the Indochinese shrew (Crocidura indochinensis). Homologs of these novel EVEs were subsequently detected in vivo by molecular detection and sequencing in 27 shrew species, including 26 species representing a wide distribution within the Crocidurinae subfamily and one in the Soricinae subfamily on different continents. Based on this wide distribution, we estimate that the integration event occurred before the last common ancestor of the subfamily, about 10.8 million years ago, attesting to an ancient origin of pestiviruses and Flaviviridae in general. Moreover, we provide the first description of Flaviviridae-derived EVEs in mammals even though the family encompasses numerous mammal-infecting members. This also suggests that shrews were past and perhaps also current natural reservoirs of pestiviruses. Taken together, our results expand the current known Pestivirus host range and provide novel insight into the ancient evolutionary history of pestiviruses and the Flaviviridae family in general.


Asunto(s)
Pestivirus , Virus , Infección por el Virus Zika , Virus Zika , Animales , Evolución Molecular , Genoma Viral , Humanos , Pestivirus/genética , Filogenia , Musarañas/genética , Virus/genética , Virus Zika/genética
2.
Antimicrob Agents Chemother ; 65(8): e0234920, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34001508

RESUMEN

Here, we identified a novel class of compounds which demonstrated good antiviral activity against dengue and Zika virus infection. These derivatives constitute intermediates in the synthesis of indole (ervatamine-silicine) alkaloids and share a tetracyclic structure, with an indole and a piperidine fused to a seven-membered carbocyclic ring. Structure-activity relationship studies indicated the importance of substituent at position C-6 and especially the presence of a benzyl ester for the activity and cytotoxicity of the molecules. In addition, the stereochemistry at C-7 and C-8, as well as the presence of an oxazolidine ring, influenced the potency of the compounds. Mechanism of action studies with two analogues of this family (compounds 22 and trans-14) showed that this class of molecules can suppress viral infection during the later stages of the replication cycle (RNA replication/assembly). Moreover, a cell-dependent antiviral profile of the compounds against several Zika strains was observed, possibly implying the involvement of a cellular factor(s) in the activity of the molecules. Sequencing of compound-resistant Zika mutants revealed a single nonsynonymous amino acid mutation (aspartic acid to histidine) at the beginning of the predicted transmembrane domain 1 of NS4B protein, which plays a vital role in the formation of the viral replication complex. To conclude, our study provides detailed information on a new class of NS4B-associated inhibitors and strengthens the importance of identifying host-virus interactions in order to tackle flavivirus infections.


Asunto(s)
Dengue , Infección por el Virus Zika , Virus Zika , Humanos , Alcaloides Indólicos , Proteínas no Estructurales Virales , Replicación Viral , Infección por el Virus Zika/tratamiento farmacológico
3.
BMC Genomics ; 19(1): 617, 2018 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-30115009

RESUMEN

BACKGROUND: In the past decade, many new paramyxoviruses that do not belong to any of the seven established genera in the family Paramyxoviridae have been discovered. Amongst them are J-virus (JPV), Beilong virus (BeiPV) and Tailam virus (TlmPV), three paramyxovirus species found in rodents. Based on their similarities, it has been suggested that these viruses should compose a new genus, tentatively called 'Jeilongvirus'. RESULTS: Here we present the complete genomes of three newly discovered paramyxoviruses, one found in a bank vole (Myodes glareolus) from Slovenia and two in a single, co-infected Rungwe brush-furred rat (Lophuromys machangui) from Mozambique, that represent three new, separate species within the putative genus 'Jeilongvirus'. The genome organization of these viruses is similar to other paramyxoviruses, but like JPV, BeiPV and TlmPV, they possess an additional open reading frame, encoding a transmembrane protein, that is located between the F and G genes. As is the case for all Jeilongviruses, the G genes of the viruses described here are unusually large, and their encoded proteins are characterized by a remarkable amino acid composition pattern that is not seen in other paramyxoviruses, but resembles certain motifs found in Orthopneumovirus G proteins. CONCLUSIONS: The phylogenetic clustering of JPV, BeiPV and TlmPV with the viruses described here, as well as their shared features that set them apart from other paramyxoviruses, provide additional support for the recognition of the genus 'Jeilongvirus'.


Asunto(s)
Genoma Viral , Proteínas de la Membrana/genética , Paramyxovirinae/clasificación , Paramyxovirinae/genética , Proteínas Virales/genética , Secuencia de Aminoácidos , Animales , Clonación Molecular , Paramyxoviridae/clasificación , Paramyxoviridae/genética , Filogenia , Análisis de Secuencia de ADN
4.
J Virol ; 91(1)2017 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-27795428

RESUMEN

The hepatitis C virus (HCV) is a major human pathogen. Genetically related viruses in animals suggest a zoonotic origin of HCV. The closest relative of HCV is found in horses (termed equine hepacivirus [EqHV]). However, low EqHV genetic diversity implies relatively recent acquisition of EqHV by horses, making a derivation of HCV from EqHV unlikely. To unravel the EqHV evolutionary history within equid sister species, we analyzed 829 donkeys and 53 mules sampled in nine European, Asian, African, and American countries by molecular and serologic tools for EqHV infection. Antibodies were found in 278 animals (31.5%), and viral RNA was found in 3 animals (0.3%), all of which were simultaneously seropositive. A low RNA prevalence in spite of high seroprevalence suggests a predominance of acute infection, a possible difference from the mostly chronic hepacivirus infection pattern seen in horses and humans. Limitation of transmission due to short courses of infection may explain the existence of entirely seronegative groups of animals. Donkey and horse EqHV strains were paraphyletic and 97.5 to 98.2% identical in their translated polyprotein sequences, making virus/host cospeciation unlikely. Evolutionary reconstructions supported host switches of EqHV between horses and donkeys without the involvement of adaptive evolution. Global admixture of donkey and horse hepaciviruses was compatible with anthropogenic alterations of EqHV ecology. In summary, our findings do not support EqHV as the origin of the significantly more diversified HCV. Identification of a host system with predominantly acute hepacivirus infection may enable new insights into the chronic infection pattern associated with HCV. IMPORTANCE: The evolutionary origins of the human hepatitis C virus (HCV) are unclear. The closest animal-associated relative of HCV occurs in horses (equine hepacivirus [EqHV]). The low EqHV genetic diversity implies a relatively recent acquisition of EqHV by horses, limiting the time span for potential horse-to-human infections in the past. Horses are genetically related to donkeys, and EqHV may have cospeciated with these host species. Here, we investigated a large panel of donkeys from various countries using serologic and molecular tools. We found EqHV to be globally widespread in donkeys and identify potential differences in EqHV infection patterns, with donkeys potentially showing enhanced EqHV clearance compared to horses. We provide strong evidence against EqHV cospeciation and for its capability to switch hosts among equines. Differential hepacivirus infection patterns in horses and donkeys may enable new insights into the chronic infection pattern associated with HCV.


Asunto(s)
Anticuerpos Antivirales/sangre , Genoma Viral , Hepacivirus/genética , Hepatitis C/epidemiología , Hepatitis C/veterinaria , Filogenia , Enfermedad Aguda , Animales , Evolución Biológica , Equidae , Europa (Continente)/epidemiología , Variación Genética , Hepacivirus/clasificación , Hepacivirus/inmunología , Hepatitis C/transmisión , Hepatitis C/virología , Caballos , Especificidad del Huésped , Humanos , Israel/epidemiología , Kenia/epidemiología , América Latina/epidemiología , Análisis de Secuencia de ADN , Estudios Seroepidemiológicos
5.
Viruses ; 14(7)2022 07 12.
Artículo en Inglés | MEDLINE | ID: mdl-35891501

RESUMEN

Viruses are the cause of a considerable burden to human, animal and plant health, while on the other hand playing an important role in regulating entire ecosystems. The power of new sequencing technologies combined with new tools for processing "Big Data" offers unprecedented opportunities to answer fundamental questions in virology. Virologists have an urgent need for virus-specific bioinformatics tools. These developments have led to the formation of the European Virus Bioinformatics Center, a network of experts in virology and bioinformatics who are joining forces to enable extensive exchange and collaboration between these research areas. The EVBC strives to provide talented researchers with a supportive environment free of gender bias, but the gender gap in science, especially in math-intensive fields such as computer science, persists. To bring more talented women into research and keep them there, we need to highlight role models to spark their interest, and we need to ensure that female scientists are not kept at lower levels but are given the opportunity to lead the field. Here we showcase the work of the EVBC and highlight the achievements of some outstanding women experts in virology and viral bioinformatics.


Asunto(s)
Biología Computacional , Investigadores , Virus , Europa (Continente) , Femenino , Humanos , Investigadores/estadística & datos numéricos , Virus/genética
6.
Viruses ; 13(9)2021 09 15.
Artículo en Inglés | MEDLINE | ID: mdl-34578423

RESUMEN

Recent years have witnessed the discovery of several new viruses belonging to the family Arteriviridae, expanding the known diversity and host range of this group of complex RNA viruses. Although the pathological relevance of these new viruses is not always clear, several well-studied members of the family Arteriviridae are known to be important animal pathogens. Here, we report the complete genome sequences of four new arterivirus variants, belonging to two putative novel species. These new arteriviruses were discovered in African rodents and were given the names Lopma virus and Praja virus. Their genomes follow the characteristic genome organization of all known arteriviruses, even though they are only distantly related to currently known rodent-borne arteriviruses. Phylogenetic analysis shows that Lopma virus clusters in the subfamily Variarterivirinae, while Praja virus clusters near members of the subfamily Heroarterivirinae: the yet undescribed forest pouched giant rat arterivirus and hedgehog arterivirus 1. A co-divergence analysis of rodent-borne arteriviruses confirms that they share similar phylogenetic patterns with their hosts, with only very few cases of host shifting events throughout their evolutionary history. Overall, the genomes described here and their unique clustering with other arteriviruses further illustrate the existence of multiple rodent-borne arterivirus lineages, expanding our knowledge of the evolutionary origin of these viruses.


Asunto(s)
Arteriviridae/genética , Genoma Viral , Infecciones por Virus ARN/veterinaria , Enfermedades de los Roedores/virología , Roedores/virología , África del Sur del Sahara , Animales , Arteriviridae/clasificación , Arteriviridae/aislamiento & purificación , Evolución Biológica , Secuenciación de Nucleótidos de Alto Rendimiento , Filogenia , Infecciones por Virus ARN/virología , Secuenciación Completa del Genoma
7.
Microbiol Resour Announc ; 10(18)2021 May 06.
Artículo en Inglés | MEDLINE | ID: mdl-33958404

RESUMEN

We report here the complete genome sequence of ruloma virus, a novel paramyxovirus detected in a Machangu's brush-furred rat from Tanzania. Ruloma virus has the longest orthoparamyxovirus genome reported to date and forms a sister clade to all currently known members of the genus Jeilongvirus.

8.
Virus Evol ; 7(1): veab036, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34221451

RESUMEN

Hepatitis C virus (HCV; genus Hepacivirus) represents a major public health problem, infecting about three per cent of the human population. Because no animal reservoir carrying closely related hepaciviruses has been identified, the zoonotic origins of HCV still remain unresolved. Motivated by recent findings of divergent hepaciviruses in rodents and a plausible African origin of HCV genotypes, we have screened a large collection of small mammals samples from seven sub-Saharan African countries. Out of 4,303 samples screened, eighty were found positive for the presence of hepaciviruses in twenty-nine different host species. We, here, report fifty-six novel genomes that considerably increase the diversity of three divergent rodent hepacivirus lineages. Furthermore, we provide strong evidence for hepacivirus co-infections in rodents, which were exclusively found in four sampled species of brush-furred mice. We also detect evidence of recombination within specific host lineages. Our study expands the available hepacivirus genomic data and contributes insights into the relatively deep evolutionary history of these pathogens in rodents. Overall, our results emphasize the importance of rodents as a potential hepacivirus reservoir and as models for investigating HCV infection dynamics.

9.
Virus Evol ; 5(2): vez036, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31720009

RESUMEN

The need to estimate divergence times in evolutionary histories in the presence of various sources of substitution rate variation has stimulated a rich development of relaxed molecular clock models. Viral evolutionary studies frequently adopt an uncorrelated clock model as a generic relaxed molecular clock process, but this may impose considerable estimation bias if discrete rate variation exists among clades or lineages. For HIV-1 group M, rate variation among subtypes has been shown to result in inconsistencies in time to the most recent common ancestor estimation. Although this calls into question the adequacy of available molecular dating methods, no solution to this problem has been offered so far. Here, we investigate the use of mixed effects molecular clock models, which combine both fixed and random effects in the evolutionary rate, to estimate divergence times. Using simulation, we demonstrate that this model outperforms existing molecular clock models in a Bayesian framework for estimating time-measured phylogenies in the presence of mixed sources of rate variation, while also maintaining good performance in simpler scenarios. By analysing a comprehensive HIV-1 group M complete genome data set we confirm considerable rate variation among subtypes that is not adequately modelled by uncorrelated relaxed clock models. The mixed effects clock model can accommodate this rate variation and results in a time to the most recent common ancestor of HIV-1 group M of 1920 (1915-25), which is only slightly earlier than the uncorrelated relaxed clock estimate for the same data set. The use of complete genome data appears to have a more profound impact than the molecular clock model because it reduces the credible intervals by 50 per cent relative to similar estimates based on short envelope gene sequences.

10.
Infect Genet Evol ; 32: 305-12, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25791929

RESUMEN

Echovirus 3 (E3) serotype has been related with several neurologic diseases, although it constitutes one of the rarely isolated serotypes, with no report of epidemics in Europe. The aim of the present study was to provide insights into the molecular epidemiology and evolution of this enterovirus serotype, while an E3 strain was isolated from sewage in Greece, four years after the initial isolation of the only reported E3 strain in the same geographical region. Phylogenetic analysis of the complete VP1 genomic region of that E3 strain and of those available in GenBank suggested three main genogroups that were further subdivided into seven subgenogroups. Further evolutionary analysis suggested that VP1 genomic region of E3 was dominated by purifying selection, as the vast majority of genetic diversity presumably occurred through synonymous nucleotide substitutions and the substitution rate for complete and partial VP1 sequences was calculated to be 8.13×10(-3) and 7.72×10(-3) substitutions/site/year respectively. The partial VP1 sequence analysis revealed the composite epidemiology of this serotype, as the strains of the three genogroups presented different epidemiological characteristics.


Asunto(s)
Infecciones por Echovirus/epidemiología , Enterovirus/genética , Evolución Molecular , Epidemiología Molecular , Serogrupo , Bases de Datos Genéticas , Enterovirus/clasificación , Enterovirus/aislamiento & purificación , Variación Genética , Genotipo , Grecia/epidemiología , Familia de Multigenes , Filogenia , ARN Viral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA