RESUMEN
Males with X-linked adrenoleukodystrophy (ALD) are at high risk for developing adrenal insufficiency and/or progressive leukodystrophy (cerebral ALD) at an early age. Pathogenic variants in ABCD1 result in elevated levels of very long-chain fatty acids (VLCFA), including C26:0-lysophosphatidylcholine (C26:0-LPC). Newborn screening for ALD enables prospective monitoring and timely therapeutic intervention, thereby preventing irreversible damage and saving lives. The Dutch Health Council recommended to screen only male newborns for ALD without identifying untreatable conditions associated with elevated C26:0-LPC, like Zellweger spectrum disorders and single peroxisomal enzyme defects. Here, we present the results of the SCAN (Screening for ALD in the Netherlands) study which is the first sex-specific newborn screening program worldwide. Males with ALD are identified based on elevated C26:0-LPC levels, the presence of one X-chromosome and a variant in ABCD1, in heel prick dried bloodspots. Screening of 71 208 newborns resulted in the identification of four boys with ALD who, following referral to the pediatric neurologist and confirmation of the diagnosis, enrolled in a long-term follow-up program. The results of this pilot show the feasibility of employing a boys-only screening algorithm that identifies males with ALD without identifying untreatable conditions. This approach will be of interest to countries that are considering ALD newborn screening but are reluctant to identify girls with ALD because for girls there is no direct health benefit. We also analyzed whether gestational age, sex, birth weight and age at heel prick blood sampling affect C26:0-LPC concentrations and demonstrate that these covariates have a minimal effect.
Asunto(s)
Insuficiencia Suprarrenal , Adrenoleucodistrofia , Niño , Femenino , Humanos , Masculino , Recién Nacido , Adrenoleucodistrofia/diagnóstico , Adrenoleucodistrofia/genética , Tamizaje Neonatal/métodos , Estudios Prospectivos , Lisofosfatidilcolinas , Ácidos GrasosRESUMEN
PURPOSE: Beckwith-Wiedemann syndrome (BWS) is a developmental disorder caused by dysregulation of the imprinted gene cluster of chromosome 11p15.5 and often associated with loss of methylation (LOM) of the imprinting center 2 (IC2) located in KCNQ1 intron 10. To unravel the etiological mechanisms underlying these epimutations, we searched for genetic variants associated with IC2 LOM. METHODS: We looked for cases showing the clinical features of both BWS and long QT syndrome (LQTS), which is often associated with KCNQ1 variants. Pathogenic variants were identified by genomic analysis and targeted sequencing. Functional experiments were performed to link these pathogenic variants to the imprinting defect. RESULTS: We found three rare cases in which complete IC2 LOM is associated with maternal transmission of KCNQ1 variants, two of which were demonstrated to affect KCNQ1 transcription upstream of IC2. As a consequence of KCNQ1 haploinsufficiency, these variants also cause LQTS on both maternal and paternal transmission. CONCLUSION: These results are consistent with the hypothesis that, similar to what has been demonstrated in mouse, lack of transcription across IC2 results in failure of methylation establishment in the female germline and BWS later in development, and also suggest a new link between LQTS and BWS that is important for genetic counseling.
Asunto(s)
Síndrome de Beckwith-Wiedemann/genética , Metilación de ADN/genética , Canal de Potasio KCNQ1/genética , Adolescente , Adulto , Animales , Síndrome de Beckwith-Wiedemann/epidemiología , Síndrome de Beckwith-Wiedemann/patología , Niño , Preescolar , Cromosomas Humanos Par 11/genética , Femenino , Impresión Genómica/genética , Humanos , Lactante , Intrones/genética , Masculino , Herencia Materna/genética , Ratones , Linaje , Adulto JovenRESUMEN
Beckwith-Wiedemann syndrome (BWS) and Silver-Russell syndrome (SRS) are two imprinting disorders associated with opposite molecular alterations in the 11p15.5 imprinting centres. Their clinical diagnosis is confirmed by molecular testing in 50-70% of patients. The authors from different reference centres for BWS and SRS have identified single patients with unexpected and even contradictory molecular findings in respect to the clinical diagnosis. These patients clinically do not fit the characteristic phenotypes of SRS or BWS, but illustrate their clinical heterogeneity. Thus, comprehensive molecular testing is essential for accurate diagnosis and appropriate management, to avoid premature clinical diagnosis and anxiety for the families.
Asunto(s)
Síndrome de Beckwith-Wiedemann/genética , Síndrome de Silver-Russell/genética , Síndrome de Beckwith-Wiedemann/diagnóstico , Cromosomas Humanos Par 11/genética , Metilación de ADN , Predisposición Genética a la Enfermedad/genética , Pruebas Genéticas , Humanos , Fenotipo , Síndrome de Silver-Russell/diagnósticoRESUMEN
Mosaic genome-wide paternal uniparental disomy is an infrequently described disorder in which affected individuals have signs and symptoms that may resemble Beckwith-Wiedemann syndrome. In addition, they can develop multiple benign and malignant tumors throughout life. Routine molecular diagnostics may not detect the (characteristic) low level of mosaicism, and the diagnosis is likely to be missed. Genetic counseling and a life-long alertness for the development of tumors is indicated. We describe the long diagnostic process of a patient who already had a tumor at birth and developed multiple tumors in childhood and adulthood. Furthermore, we offer clues to recognize the entity.
Asunto(s)
Cromosomas Humanos/genética , Estudio de Asociación del Genoma Completo , Mosaicismo , Neoplasias/diagnóstico , Neoplasias/genética , Disomía Uniparental/diagnóstico , Disomía Uniparental/genética , Adulto , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Femenino , Impresión Genómica , Genotipo , Humanos , Recién Nacido , Masculino , Neoplasias/clasificación , Polimorfismo de Nucleótido Simple , PronósticoRESUMEN
Patients with Beckwith-Wiedemann syndrome (BWS) have an increased risk to develop cancer in childhood, especially Wilms tumor and hepatoblastoma. The risk varies depending on the cause of BWS. We obtained clinical and molecular data in our cohort of children with BWS, including tumor occurrences, and correlated phenotype and genotype. We obtained similar data from larger cohorts reported in the literature. Phenotype, genotype and tumor occurrence were available in 229 of our own patients. Minor differences in phenotype existed depending on genotype/epigenotype, similar to earlier studies. By adding patients from the literature, we obtained data on genotype and tumor occurrence of in total 1,971 BWS patients. Tumor risks were highest in the IC1 (H19/IGF2:IG-DMR) hypermethylation subgroup (28%) and pUPD subgroup (16%) and were lower in the KCNQ1OT1:TSS-DMR (IC2) subgroup (2.6%), CDKN1C (6.9%) subgroup, and the group in whom no molecular defect was detectable (6.7%). Wilms tumors (median age 24 months) were frequent in the IC1 (24%) and pUPD (7.9%) subgroups. Hepatoblastoma occurred mostly in the pUPD (3.5%) and IC2 (0.7%) subgroups, never in the IC1 and CDKN1C subgroups, and always before 30 months of age. In the CDKN1C subgroup 2.8% of patients developed neuroblastoma. We conclude tumor risks in BWS differ markedly depending on molecular background. We propose a differentiated surveillance protocol, based on tumor risks in the various molecular subgroups causing BWS. © 2016 Wiley Periodicals, Inc.
Asunto(s)
Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Estudios de Asociación Genética , Neoplasias/etiología , Fenotipo , Vigilancia de la Población , Adolescente , Síndrome de Beckwith-Wiedemann/epidemiología , Niño , Estudios de Cohortes , Metilación de ADN , Femenino , Impresión Genómica , Hepatoblastoma/epidemiología , Hepatoblastoma/etiología , Humanos , Factor II del Crecimiento Similar a la Insulina/genética , Masculino , Repeticiones de Minisatélite , Neoplasias/epidemiología , Canales de Potasio con Entrada de Voltaje/genética , ARN Largo no Codificante/genética , Riesgo , Tumor de Wilms/epidemiología , Tumor de Wilms/etiología , Adulto JovenRESUMEN
BACKGROUND: Imprinting disorders are rare diseases resulting from altered expression of imprinted genes, which exhibit parent-of-origin-specific expression patterns regulated through differential DNA methylation. A subgroup of patients with imprinting disorders have DNA methylation changes at multiple imprinted loci, a condition referred to as multi-locus imprinting disturbance (MLID). MLID is recognised in most but not all imprinting disorders and is also found in individuals with atypical clinical features; the presence of MLID often alters the management or prognosis of the affected person. Some cases of MLID are caused by trans-acting genetic variants, frequently not in the patients but their mothers, which have counselling implications. There is currently no consensus on the definition of MLID, clinical indications prompting testing, molecular procedures and methods for epigenetic and genetic diagnosis, recommendations for laboratory reporting, considerations for counselling, and implications for prognosis and management. The purpose of this study is thus to cover this unmet need. METHODS: A comprehensive literature search was conducted resulting in identification of more than 100 articles which formed the basis of discussions by two working groups focusing on clinical diagnosis (n = 12 members) and molecular testing (n = 19 members). Following eight months of preparations and regular online discussions, the experts from 11 countries compiled the preliminary documentation and determined the questions to be addressed during a face-to-face meeting which was held with the attendance of the experts together with four representatives of patient advocacy organisations. RESULTS: In light of available evidence and expert consensus, we formulated 16 propositions and 8 recommendations as interim guidance for the clinical and molecular diagnosis of MLID. CONCLUSIONS: MLID is a molecular designation, and for patients with MLID and atypical phenotypes, we propose the alternative term multi-locus imprinting syndrome. Due to the intrinsic variability of MLID, the guidelines underscore the importance of involving experts from various fields to ensure a confident approach to diagnosis, counselling, and care. The authors advocate for global, collaborative efforts in both basic and translational research to tackle numerous crucial questions that currently lack answers, and suggest reconvening within the next 3-5 years to evaluate the research advancements and update this guidance as needed.
Asunto(s)
Metilación de ADN , Impresión Genómica , Humanos , Impresión Genómica/genética , Metilación de ADN/genética , Pruebas Genéticas/métodosRESUMEN
BACKGROUND: Imprinting disorders are a group of congenital diseases which are characterized by molecular alterations affecting differentially methylated regions (DMRs). To date, at least twelve imprinting disorders have been defined with overlapping but variable clinical features including growth and metabolic disturbances, cognitive dysfunction, abdominal wall defects and asymmetry. In general, a single specific DMR is affected in an individual with a given imprinting disorder, but there are a growing number of reports on individuals with so-called multilocus imprinting disturbances (MLID), where aberrant imprinting marks (most commonly loss of methylation) occur at multiple DMRs. However, as the literature is fragmented, we reviewed the molecular and clinical data of 55 previously reported or newly identified MLID families with putative pathogenic variants in maternal effect genes (NLRP2, NLRP5, NLRP7, KHDC3L, OOEP, PADI6) and in other candidate genes (ZFP57, ARID4A, ZAR1, UHRF1, ZNF445). RESULTS: In 55 families, a total of 68 different candidate pathogenic variants were identified (7 in NLRP2, 16 in NLRP5, 7 in NLRP7, 17 in PADI6, 15 in ZFP57, and a single variant in each of the genes ARID4A, ZAR1, OOEP, UHRF1, KHDC3L and ZNF445). Clinical diagnoses of affected offspring included Beckwith-Wiedemann syndrome spectrum, Silver-Russell syndrome spectrum, transient neonatal diabetes mellitus, or they were suspected for an imprinting disorder (undiagnosed). Some families had recurrent pregnancy loss. CONCLUSIONS: Genomic maternal effect and foetal variants causing MLID allow insights into the mechanisms behind the imprinting cycle of life, and the spatial and temporal function of the different factors involved in oocyte maturation and early development. Further basic research together with identification of new MLID families will enable a better understanding of the link between the different reproductive issues such as recurrent miscarriages and preeclampsia in maternal effect variant carriers/families and aneuploidy and the MLID observed in the offsprings. The current knowledge can already be employed in reproductive and genetic counselling in specific situations.
Asunto(s)
Síndrome de Beckwith-Wiedemann , Síndrome de Silver-Russell , Proteínas Adaptadoras Transductoras de Señales/genética , Síndrome de Beckwith-Wiedemann/genética , Proteínas Potenciadoras de Unión a CCAAT/genética , Metilación de ADN , Femenino , Impresión Genómica , Humanos , Herencia Materna , Embarazo , Síndrome de Silver-Russell/diagnóstico , Síndrome de Silver-Russell/genética , Ubiquitina-Proteína Ligasas/genéticaRESUMEN
BACKGROUND: Imprinting disorders, which affect growth, development, metabolism and neoplasia risk, are caused by genetic or epigenetic changes to genes that are expressed from only one parental allele. Disease may result from changes in coding sequences, copy number changes, uniparental disomy or imprinting defects. Some imprinting disorders are clinically heterogeneous, some are associated with more than one imprinted locus, and some patients have alterations affecting multiple loci. Most imprinting disorders are diagnosed by stepwise analysis of gene dosage and methylation of single loci, but some laboratories assay a panel of loci associated with different imprinting disorders. We looked into the experience of several laboratories using single-locus and/or multi-locus diagnostic testing to explore how different testing strategies affect diagnostic outcomes and whether multi-locus testing has the potential to increase the diagnostic efficiency or reveal unforeseen diagnoses. RESULTS: We collected data from 11 laboratories in seven countries, involving 16,364 individuals and eight imprinting disorders. Among the 4721 individuals tested for the growth restriction disorder Silver-Russell syndrome, 731 had changes on chromosomes 7 and 11 classically associated with the disorder, but 115 had unexpected diagnoses that involved atypical molecular changes, imprinted loci on chromosomes other than 7 or 11 or multi-locus imprinting disorder. In a similar way, the molecular changes detected in Beckwith-Wiedemann syndrome and other imprinting disorders depended on the testing strategies employed by the different laboratories. CONCLUSIONS: Based on our findings, we discuss how multi-locus testing might optimise diagnosis for patients with classical and less familiar clinical imprinting disorders. Additionally, our compiled data reflect the daily life experiences of diagnostic laboratories, with a lower diagnostic yield than in clinically well-characterised cohorts, and illustrate the need for systematising clinical and molecular data.
Asunto(s)
Síndrome de Beckwith-Wiedemann , Síndrome de Silver-Russell , Humanos , Impresión Genómica , Metilación de ADN , Síndrome de Silver-Russell/diagnóstico , Síndrome de Silver-Russell/genética , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Trastornos del Crecimiento/genética , Técnicas y Procedimientos DiagnósticosRESUMEN
PURPOSE: Wilms tumor (WT) is associated with (epi)genetic predisposing factors affecting a growing number of WT predisposing genes and loci, including those causing Beckwith-Wiedemann spectrum (BWSp) or WT1-related syndromes. To guide genetic counseling and testing, we need insight into the prevalence of WT predisposing (epi)genetic factors. PATIENTS AND METHODS: All children diagnosed with WT in the Netherlands between 2015 and 2020 were referred to a clinical geneticist. Phenotypic data, disease characteristics, and diagnostic test results were collected. If no genetic predisposition was identified by targeted diagnostic testing, germline (trio-)whole-exome sequencing and BWSp testing on normal kidney-derived DNA were offered. RESULTS: A total of 126 cases were analyzed of 128 identified patients. (Epi)genetic predisposing factors were present in 42 of 126 patients (33.3%) on the basis of a molecular diagnosis in blood-derived DNA (n = 26), normal kidney-derived DNA (n = 12), or solely a clinical diagnosis of BWSp (n = 4). Constitutional, heterozygous DIS3L2 variants were identified as a recurrent predisposing factor in five patients (4%), with a second somatic hit in 4 of 5 tumors. Twenty patients (16%) were diagnosed with BWSp while four additional patients without BWSp features harbored chromosome 11p15 methylation defects in normal kidney tissue. Remaining findings included WT1-related syndromes (n = 10), Fanconi anemia (n = 1), neurofibromatosis type 1 (n = 1), and a pathogenic REST variant (n = 1). In addition, (likely) pathogenic variants in adult-onset cancer predisposition genes (BRCA2, PMS2, CHEK2, and MUTYH) were identified in 5 of 56 (8.9%) patients with available whole-exome sequencing data. Several candidate WT predisposition genes were identified, which require further validation. CONCLUSION: (Epi)genetic WT predisposing factors, including mosaic aberrations and recurrent heterozygous DIS3L2 variants, were present in at least 33.3% of patients with WT. On the basis of these results, we encourage standard genetic testing after counseling by a clinical geneticist.
Asunto(s)
Síndrome de Beckwith-Wiedemann , Neoplasias Renales , Tumor de Wilms , Adulto , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , Síndrome de Beckwith-Wiedemann/patología , Causalidad , Niño , Predisposición Genética a la Enfermedad , Genómica , Mutación de Línea Germinal , Humanos , Neoplasias Renales/epidemiología , Neoplasias Renales/genética , Neoplasias Renales/patología , Prevalencia , Tumor de Wilms/epidemiología , Tumor de Wilms/genética , Tumor de Wilms/patologíaRESUMEN
[This corrects the article DOI: 10.3389/fcell.2020.00499.].
RESUMEN
X-linked adrenoleukodystrophy (ALD) is a devastating metabolic disorder affecting the adrenal glands, brain and spinal cord. Males with ALD are at high risk for developing adrenal insufficiency or progressive cerebral white matter lesions (cerebral ALD) at an early age. If untreated, cerebral ALD is often fatal. Women with ALD are not at risk for adrenal insufficiency or cerebral ALD. Newborn screening for ALD in males enables prospective monitoring and timely therapeutic intervention, thereby preventing irreparable damage and saving lives. The Dutch Ministry of Health adopted the advice of the Dutch Health Council to add a boys-only screen for ALD to the newborn screening panel. The recommendation made by the Dutch Health Council to only screen boys, without gathering any unsolicited findings, posed a challenge. We were invited to set up a prospective pilot study that became known as the SCAN study (SCreening for ALD in the Netherlands). The objectives of the SCAN study are: (1) designing a boys-only screening algorithm that identifies males with ALD and without unsolicited findings; (2) integrating this algorithm into the structure of the Dutch newborn screening program without harming the current newborn screening; (3) assessing the practical and ethical implications of screening only boys for ALD; and (4) setting up a comprehensive follow-up that is both patient- and parent-friendly. We successfully developed and validated a screening algorithm that can be integrated into the Dutch newborn screening program. The core of this algorithm is the "X-counter." The X-counter determines the number of X chromosomes without assessing the presence of a Y chromosome. The X-counter is integrated as second tier in our 4-tier screening algorithm. Furthermore, we ensured that our screening algorithm does not result in unsolicited findings. Finally, we developed a patient- and parent-friendly, multidisciplinary, centralized follow-up protocol. Our boys-only ALD screening algorithm offers a solution for countries that encounter similar ethical considerations, for ALD as well as for other X-linked diseases. For ALD, this alternative boys-only screening algorithm may result in a more rapid inclusion of ALD in newborn screening programs worldwide.
RESUMEN
OBJECTIVE: To investigate whether epigenotyping of patients with isolated hemihyperplasia (IH) can, analogous to genetic screening of patients with Beckwith-Wiedemann syndrome, be used for the prediction of tumor risk and tumor type of individual patients. STUDY DESIGN: Methylation analysis of H19 and KCNQ1OT1 of 73 patients. Questionnaires were sent to referring clinicians. RESULTS: In 75% of the clinically confirmed patients with IH no epigenetic defect was detected. Paternal uniparental disomy was found in 15%, demethylation of KCNQ1OT1 in only 6%, and hypermethylation of H19 in 3% of isolated hemihyperplasia cases. Ten percent of the patients with IH had development of a childhood tumor associated with paternal uniparental disomy (2/8) or no methylation defect (2/30). No genetic defect was detected in 10 of 14 additional patients with cancer with IH. In these latter patients, a methylation defect of H19 was seen 3 times and a paternal uniparental disomy once. The female-to-male ratio was 6:1. CONCLUSIONS: Aberrant methylation of the 11p15 region is not common in patients with IH and can at present not be used for tumor risk determination.
Asunto(s)
Síndrome de Beckwith-Wiedemann/complicaciones , Síndrome de Beckwith-Wiedemann/genética , Neoplasias/complicaciones , Niño , Preescolar , Metilación de ADN , Epigénesis Genética , Femenino , Genotipo , Humanos , Lactante , Masculino , Modelos Genéticos , Neoplasias/genética , Fenotipo , Factores de Riesgo , Disomía UniparentalAsunto(s)
Síndrome de Beckwith-Wiedemann , Disomía Uniparental , Humanos , Disomía Uniparental/diagnóstico , Disomía Uniparental/genética , Impresión Genómica , Metilación de ADN , Técnicas y Procedimientos Diagnósticos , Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/genética , MosaicismoRESUMEN
Beckwith-Wiedemann syndrome (BWS), a human genomic imprinting disorder, is characterized by phenotypic variability that might include overgrowth, macroglossia, abdominal wall defects, neonatal hypoglycaemia, lateralized overgrowth and predisposition to embryonal tumours. Delineation of the molecular defects within the imprinted 11p15.5 region can predict familial recurrence risks and the risk (and type) of embryonal tumour. Despite recent advances in knowledge, there is marked heterogeneity in clinical diagnostic criteria and care. As detailed in this Consensus Statement, an international consensus group agreed upon 72 recommendations for the clinical and molecular diagnosis and management of BWS, including comprehensive protocols for the molecular investigation, care and treatment of patients from the prenatal period to adulthood. The consensus recommendations apply to patients with Beckwith-Wiedemann spectrum (BWSp), covering classical BWS without a molecular diagnosis and BWS-related phenotypes with an 11p15.5 molecular anomaly. Although the consensus group recommends a tumour surveillance programme targeted by molecular subgroups, surveillance might differ according to the local health-care system (for example, in the United States), and the results of targeted and universal surveillance should be evaluated prospectively. International collaboration, including a prospective audit of the results of implementing these consensus recommendations, is required to expand the evidence base for the design of optimum care pathways.
Asunto(s)
Síndrome de Beckwith-Wiedemann/diagnóstico , Síndrome de Beckwith-Wiedemann/terapia , Consenso , Síndrome de Beckwith-Wiedemann/complicaciones , Síndrome de Beckwith-Wiedemann/genética , Variaciones en el Número de Copia de ADN , Metilación de ADN , Humanos , Técnicas de Diagnóstico Molecular , Neoplasias de Células Germinales y Embrionarias/etiología , Polimorfismo de Nucleótido Simple , Diagnóstico Prenatal , Técnicas Reproductivas AsistidasRESUMEN
This Consensus Statement summarizes recommendations for clinical diagnosis, investigation and management of patients with Silver-Russell syndrome (SRS), an imprinting disorder that causes prenatal and postnatal growth retardation. Considerable overlap exists between the care of individuals born small for gestational age and those with SRS. However, many specific management issues exist and evidence from controlled trials remains limited. SRS is primarily a clinical diagnosis; however, molecular testing enables confirmation of the clinical diagnosis and defines the subtype. A 'normal' result from a molecular test does not exclude the diagnosis of SRS. The management of children with SRS requires an experienced, multidisciplinary approach. Specific issues include growth failure, severe feeding difficulties, gastrointestinal problems, hypoglycaemia, body asymmetry, scoliosis, motor and speech delay and psychosocial challenges. An early emphasis on adequate nutritional status is important, with awareness that rapid postnatal weight gain might lead to subsequent increased risk of metabolic disorders. The benefits of treating patients with SRS with growth hormone include improved body composition, motor development and appetite, reduced risk of hypoglycaemia and increased height. Clinicians should be aware of possible premature adrenarche, fairly early and rapid central puberty and insulin resistance. Treatment with gonadotropin-releasing hormone analogues can delay progression of central puberty and preserve adult height potential. Long-term follow up is essential to determine the natural history and optimal management in adulthood.
Asunto(s)
Manejo de la Enfermedad , Internacionalidad , Síndrome de Silver-Russell/diagnóstico , Síndrome de Silver-Russell/terapia , Hormona Liberadora de Gonadotropina/uso terapéutico , Hormona de Crecimiento Humana/uso terapéutico , Humanos , Síndrome de Silver-Russell/metabolismoRESUMEN
Beckwith-Wiedemann and Silver-Russell syndromes (BWS/SRS) are two imprinting disorders (IDs) associated with disturbances of the 11p15.5 chromosomal region. In BWS, epimutations and genomic alterations within 11p15.5 are observed in >70% of patients, whereas in SRS they are observed in about 60% of the cases. In addition, 10% of the SRS patients carry a maternal uniparental disomy of chromosome 7 11p15.5. There is an increasing demand for prenatal testing of these disorders owing to family history, indicative prenatal ultrasound findings or aberrations involving chromosomes 7 and 11. The complex molecular findings underlying these disorders are a challenge not only for laboratories offering these tests but also for geneticists counseling affected families. The scope of counseling must consider the range of detectable disturbances and their origin, the lack of precise quantitative knowledge concerning the inheritance and recurrence risks for the epigenetic abnormalities, which are hallmarks of these developmental disorders. In this paper, experts in the field of BWS and SRS, including members of the European network of congenital IDs (EUCID.net; www.imprinting-disorders.eu), put together their experience and work in the field of 11p15.5-associated IDs with a focus on prenatal testing. Altogether, prenatal tests of 160 fetuses (122 referred for BWS, 38 for SRS testing) from 5 centers were analyzed and reviewed. We summarize the current knowledge on BWS and SRS with respect to diagnostic testing, the consequences for prenatal genetic testing and counseling and our cumulative experience in dealing with these disorders.
Asunto(s)
Síndrome de Beckwith-Wiedemann/genética , Asesoramiento Genético/métodos , Pruebas Genéticas/métodos , Diagnóstico Prenatal/métodos , Síndrome de Silver-Russell/genética , Síndrome de Beckwith-Wiedemann/diagnóstico , Asesoramiento Genético/normas , Pruebas Genéticas/normas , Humanos , Diagnóstico Prenatal/normas , Síndrome de Silver-Russell/diagnósticoRESUMEN
Molecular genetic testing for the 11p15-associated imprinting disorders Silver-Russell and Beckwith-Wiedemann syndrome (SRS, BWS) is challenging because of the molecular heterogeneity and complexity of the affected imprinted regions. With the growing knowledge on the molecular basis of these disorders and the demand for molecular testing, it turned out that there is an urgent need for a standardized molecular diagnostic testing and reporting strategy. Based on the results from the first external pilot quality assessment schemes organized by the European Molecular Quality Network (EMQN) in 2014 and in context with activities of the European Network of Imprinting Disorders (EUCID.net) towards a consensus in diagnostics and management of SRS and BWS, best practice guidelines have now been developed. Members of institutions working in the field of SRS and BWS diagnostics were invited to comment, and in the light of their feedback amendments were made. The final document was ratified in the course of an EMQN best practice guideline meeting and is in accordance with the general SRS and BWS consensus guidelines, which are in preparation. These guidelines are based on the knowledge acquired from peer-reviewed and published data, as well as observations of the authors in their practice. However, these guidelines can only provide a snapshot of current knowledge at the time of manuscript submission and readers are advised to keep up with the literature.
Asunto(s)
Síndrome de Beckwith-Wiedemann/genética , Cromosomas Humanos Par 11/genética , Pruebas Genéticas/normas , Guías de Práctica Clínica como Asunto , Síndrome de Silver-Russell/genética , Síndrome de Beckwith-Wiedemann/diagnóstico , Europa (Continente) , Impresión Genómica , Humanos , Síndrome de Silver-Russell/diagnóstico , Sociedades MédicasRESUMEN
Beckwith-Wiedemann Syndrome (BWS) results from mutations or epigenetic events involving imprinted genes at 11p15.5. Most BWS cases are sporadic and uniparental disomy (UPD) or putative imprinting errors predominate in this group. Sporadic cases with putative imprinting defects may be subdivided into (a) those with loss of imprinting (LOI) of IGF2 and H19 hypermethylation and silencing due to a defect in a distal 11p15.5 imprinting control element (IC1) and (b) those with loss of methylation at KvDMR1, LOI of KCNQ1OT1 (LIT1) and variable LOI of IGF2 in whom there is a defect at a more proximal imprinting control element (IC2). We investigated genotype/epigenotype-phenotype correlations in 200 cases with a confirmed molecular genetic diagnosis of BWS (16 with CDKN1C mutations, 116 with imprinting centre 2 defects, 14 with imprinting centre 1 defects and 54 with UPD). Hemihypertrophy was strongly associated with UPD (P<0.0001) and exomphalos was associated with an IC2 defect or CDKN1C mutation but not UPD or IC1 defect (P<0.0001). When comparing birth weight centile, IC1 defect cases were significantly heavier than the patients with CDKN1C mutations or IC2 defect (P=0.018). The risk of neoplasia was significantly higher in UPD and IC1 defect cases than in IC2 defect and CDKN1C mutation cases. Kaplan-Meier analysis revealed a risk of neoplasia for all patients of 9% at age 5 years, but 24% in the UPD subgroup. The risk of Wilms' tumour in the IC2 defect subgroup appears to be minimal and intensive screening for Wilms' tumour appears not to be indicated. In UPD patients, UPD extending to WT1 was associated with renal neoplasia (P=0.054). These findings demonstrate that BWS represents a spectrum of disorders. Identification of the molecular subtype allows more accurate prognostic predictions and enhances the management and surveillance of BWS children such that screening for Wilms' tumour and hepatoblastoma can be focused on those at highest risk.
Asunto(s)
Síndrome de Beckwith-Wiedemann/genética , Impresión Genómica/genética , Alelos , Secuencia de Bases , Niño , Femenino , Genotipo , Humanos , Neoplasias/genética , Fenotipo , Disomía Uniparental , Tumor de Wilms/genéticaRESUMEN
The Beckwith-Wiedemann syndrome is caused by disturbed imprinting of genes at 11p15.5. Routine diagnostic testing for Beckwith-Wiedemann syndrome (BWS) includes methylation analysis of the imprinting centers ICR1 and ICR2 in DNA extracted from lymphocytes. In approximately 15% of BWS patients the diagnosis cannot be molecularly confirmed. In this study we determined the methylation status in resected tongue tissue of 11 BWS patients and compared this to the genetic defects found by routine diagnostic screening of blood lymphocytes. In all three patients with normal methylation levels in blood, aberrant methylation patterns were found in tongue tissue. In two patients a UPD was detected and the third case had hypermethylation of ICR1. This result shows that tissue specific mosaic (epi)genetic changes, not present in blood, is the underlying defect in at least a subset of BWS patients without a molecular diagnosis after standard genetic testing.