Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 170(5): 899-912.e10, 2017 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-28803727

RESUMEN

Microsatellite repeat expansions in DNA produce pathogenic RNA species that cause dominantly inherited diseases such as myotonic dystrophy type 1 and 2 (DM1/2), Huntington's disease, and C9orf72-linked amyotrophic lateral sclerosis (C9-ALS). Means to target these repetitive RNAs are required for diagnostic and therapeutic purposes. Here, we describe the development of a programmable CRISPR system capable of specifically visualizing and eliminating these toxic RNAs. We observe specific targeting and efficient elimination of microsatellite repeat expansion RNAs both when exogenously expressed and in patient cells. Importantly, RNA-targeting Cas9 (RCas9) reverses hallmark features of disease including elimination of RNA foci among all conditions studied (DM1, DM2, C9-ALS, polyglutamine diseases), reduction of polyglutamine protein products, relocalization of repeat-bound proteins to resemble healthy controls, and efficient reversal of DM1-associated splicing abnormalities in patient myotubes. Finally, we report a truncated RCas9 system compatible with adeno-associated viral packaging. This effort highlights the potential of RCas9 for human therapeutics.


Asunto(s)
Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas , Terapia Genética/métodos , Oligonucleótidos Antisentido/farmacología , Animales , Células COS , Línea Celular , Células Cultivadas , Chlorocebus aethiops , Repeticiones de Microsatélite , Empalme del ARN , Expansión de Repetición de Trinucleótido
2.
Mol Cell ; 81(9): 1905-1919.e12, 2021 05 06.
Artículo en Inglés | MEDLINE | ID: mdl-33852893

RESUMEN

Oxidative phosphorylation (OXPHOS) and glycolysis are the two major pathways for ATP production. The reliance on each varies across tissues and cell states, and can influence susceptibility to disease. At present, the full set of molecular mechanisms governing the relative expression and balance of these two pathways is unknown. Here, we focus on genes whose loss leads to an increase in OXPHOS activity. Unexpectedly, this class of genes is enriched for components of the pre-mRNA splicing machinery, in particular for subunits of the U1 snRNP. Among them, we show that LUC7L2 represses OXPHOS and promotes glycolysis by multiple mechanisms, including (1) splicing of the glycolytic enzyme PFKM to suppress glycogen synthesis, (2) splicing of the cystine/glutamate antiporter SLC7A11 (xCT) to suppress glutamate oxidation, and (3) secondary repression of mitochondrial respiratory supercomplex formation. Our results connect LUC7L2 expression and, more generally, the U1 snRNP to cellular energy metabolism.


Asunto(s)
Glucólisis , Fosforilación Oxidativa , Precursores del ARN/metabolismo , Empalme del ARN , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Sistema de Transporte de Aminoácidos y+/genética , Sistema de Transporte de Aminoácidos y+/metabolismo , Proteínas del Complejo de Cadena de Transporte de Electrón/genética , Proteínas del Complejo de Cadena de Transporte de Electrón/metabolismo , Regulación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Ácido Glutámico/metabolismo , Glucógeno/metabolismo , Glucólisis/genética , Células HEK293 , Células HeLa , Humanos , Células K562 , Mitocondrias/genética , Mitocondrias/metabolismo , Oxidación-Reducción , Fosfofructoquinasa-1 Tipo Muscular/genética , Fosfofructoquinasa-1 Tipo Muscular/metabolismo , Precursores del ARN/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Ribonucleoproteína Nuclear Pequeña U1/genética
3.
Mol Cell ; 80(5): 903-914.e8, 2020 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-33242392

RESUMEN

Discovering the interaction mechanism and location of RNA-binding proteins (RBPs) on RNA is critical for understanding gene expression regulation. Here, we apply selective 2'-hydroxyl acylation analyzed by primer extension (SHAPE) on in vivo transcripts compared to protein-absent transcripts in four human cell lines to identify transcriptome-wide footprints (fSHAPE) on RNA. Structural analyses indicate that fSHAPE precisely detects nucleobases that hydrogen bond with protein. We demonstrate that fSHAPE patterns predict binding sites of known RBPs, such as iron response elements in both known loci and previously unknown loci in CDC34, SLC2A4RG, COASY, and H19. Furthermore, by integrating SHAPE and fSHAPE with crosslinking and immunoprecipitation (eCLIP) of desired RBPs, we interrogate specific RNA-protein complexes, such as histone stem-loop elements and their nucleotides that hydrogen bond with stem-loop-binding proteins. Together, these technologies greatly expand our ability to study and understand specific cellular RNA interactions in RNA-protein complexes.


Asunto(s)
Conformación de Ácido Nucleico , Proteínas de Unión al ARN/química , ARN/química , Transcriptoma , Células HeLa , Células Hep G2 , Humanos , Enlace de Hidrógeno , Inmunoprecipitación , Células K562
4.
Nature ; 600(7889): 536-542, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34819669

RESUMEN

The cell is a multi-scale structure with modular organization across at least four orders of magnitude1. Two central approaches for mapping this structure-protein fluorescent imaging and protein biophysical association-each generate extensive datasets, but of distinct qualities and resolutions that are typically treated separately2,3. Here we integrate immunofluorescence images in the Human Protein Atlas4 with affinity purifications in BioPlex5 to create a unified hierarchical map of human cell architecture. Integration is achieved by configuring each approach as a general measure of protein distance, then calibrating the two measures using machine learning. The map, known as the multi-scale integrated cell (MuSIC 1.0), resolves 69 subcellular systems, of which approximately half are to our knowledge undocumented. Accordingly, we perform 134 additional affinity purifications and validate subunit associations for the majority of systems. The map reveals a pre-ribosomal RNA processing assembly and accessory factors, which we show govern rRNA maturation, and functional roles for SRRM1 and FAM120C in chromatin and RPS3A in splicing. By integration across scales, MuSIC increases the resolution of imaging while giving protein interactions a spatial dimension, paving the way to incorporate diverse types of data in proteome-wide cell maps.


Asunto(s)
Cromosomas , Proteoma , Antígenos Nucleares/genética , Antígenos Nucleares/metabolismo , Cromatina/genética , Cromosomas/metabolismo , Humanos , Proteínas Asociadas a Matriz Nuclear/metabolismo , Proteoma/metabolismo , ARN Ribosómico , Proteínas de Unión al ARN/genética
5.
Nature ; 583(7818): 711-719, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32728246

RESUMEN

Many proteins regulate the expression of genes by binding to specific regions encoded in the genome1. Here we introduce a new data set of RNA elements in the human genome that are recognized by RNA-binding proteins (RBPs), generated as part of the Encyclopedia of DNA Elements (ENCODE) project phase III. This class of regulatory elements functions only when transcribed into RNA, as they serve as the binding sites for RBPs that control post-transcriptional processes such as splicing, cleavage and polyadenylation, and the editing, localization, stability and translation of mRNAs. We describe the mapping and characterization of RNA elements recognized by a large collection of human RBPs in K562 and HepG2 cells. Integrative analyses using five assays identify RBP binding sites on RNA and chromatin in vivo, the in vitro binding preferences of RBPs, the function of RBP binding sites and the subcellular localization of RBPs, producing 1,223 replicated data sets for 356 RBPs. We describe the spectrum of RBP binding throughout the transcriptome and the connections between these interactions and various aspects of RNA biology, including RNA stability, splicing regulation and RNA localization. These data expand the catalogue of functional elements encoded in the human genome by the addition of a large set of elements that function at the RNA level by interacting with RBPs.


Asunto(s)
Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Transcriptoma/genética , Empalme Alternativo/genética , Secuencia de Bases , Sitios de Unión , Línea Celular , Cromatina/genética , Cromatina/metabolismo , Bases de Datos Genéticas , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Espacio Intracelular/genética , Masculino , Unión Proteica , ARN Mensajero/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/genética , Especificidad por Sustrato
6.
Nat Chem Biol ; 19(7): 825-836, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-36864190

RESUMEN

Much of the human proteome is involved in mRNA homeostasis, but most RNA-binding proteins lack chemical probes. Here we identify electrophilic small molecules that rapidly and stereoselectively decrease the expression of transcripts encoding the androgen receptor and its splice variants in prostate cancer cells. We show by chemical proteomics that the compounds engage C145 of the RNA-binding protein NONO. Broader profiling revealed that covalent NONO ligands suppress an array of cancer-relevant genes and impair cancer cell proliferation. Surprisingly, these effects were not observed in cells genetically disrupted for NONO, which were instead resistant to NONO ligands. Reintroduction of wild-type NONO, but not a C145S mutant, restored ligand sensitivity in NONO-disrupted cells. The ligands promoted NONO accumulation in nuclear foci and stabilized NONO-RNA interactions, supporting a trapping mechanism that may prevent compensatory action of paralog proteins PSPC1 and SFPQ. These findings show that NONO can be co-opted by covalent small molecules to suppress protumorigenic transcriptional networks.


Asunto(s)
Proteínas de Unión al ADN , Transcriptoma , Masculino , Humanos , Proteínas de Unión al ADN/metabolismo , Proteínas de Unión al ARN/química , ARN
7.
Nucleic Acids Res ; 51(D1): D1549-D1557, 2023 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-36321651

RESUMEN

RNA binding proteins (RBPs) are central regulators of gene expression implicated in all facets of RNA metabolism. As such, they play key roles in cellular physiology and disease etiology. Since different steps of post-transcriptional gene expression tend to occur in specific regions of the cell, including nuclear or cytoplasmic locations, defining the subcellular distribution properties of RBPs is an important step in assessing their potential functions. Here, we present the RBP Image Database, a resource that details the subcellular localization features of 301 RBPs in the human HepG2 and HeLa cell lines, based on the results of systematic immuno-fluorescence studies conducted using a highly validated collection of RBP antibodies and a panel of 12 markers for specific organelles and subcellular structures. The unique features of the RBP Image Database include: (i) hosting of comprehensive representative images for each RBP-marker pair, with ∼250,000 microscopy images; (ii) a manually curated controlled vocabulary of annotation terms detailing the localization features of each factor; and (iii) a user-friendly interface allowing the rapid querying of the data by target or annotation. The RBP Image Database is freely available at https://rnabiology.ircm.qc.ca/RBPImage/.


Asunto(s)
Bases de Datos Factuales , Imagen Óptica , Proteínas de Unión al ARN , Humanos , Anticuerpos/metabolismo , Células HeLa , ARN/química , Proteínas de Unión al ARN/metabolismo , Células Hep G2
8.
Biol Reprod ; 111(2): 463-471, 2024 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-38685627

RESUMEN

Immunoassays have been the preferred method for steroid hormone analysis for more than 50 years. Automated immunoassays (AIAs) offer high throughput, rapid data turnaround, and low cost for measuring steroid hormone concentrations. The application of liquid chromatography-tandem mass spectrometry (LC-MS/MS) for steroid quantification provides greater specificity and selectivity for individual steroids, the ability to simultaneously analyze multiple steroids, and high throughput and automation. We compared AIA and LC-MS/MS for analysis of 17beta-estradiol (E2) and progesterone (P4) over the course of several menstrual cycles in 12 rhesus macaques (Macaca mulatta). Serum samples were collected every 4 days across four menstrual cycles from each monkey. AIAs were performed on a Roche cobas e411 analyzer. LC-MS/MS analysis was performed on a Shimadzu-Nexera-LCMS-8060 instrument. Scatter plots with Passing-Bablok regression showed excellent agreement between AIA and LC-MS/MS for both E2 and P4. Bland-Altman plots revealed no bias for either method; however, AIA overestimated E2 at concentrations >140 pg/ml and underestimated P4 at concentrations >4 ng/ml compared to LC-MS/MS. A comparison of testosterone concentrations measured by AIA and LC-MS/MS in the same samples was also performed. In contrast to E2 and P4, AIA and LC-MS/MS yielded significantly different results for testosterone concentrations, with AIA consistently underestimating concentrations relative to those obtained by LC-MS/MS. Well-characterized automated immunoassays are an excellent tool for daily monitoring of monkey menstrual cycles or providing single data points requiring fast turnaround. In certain situations where AIAs may provide inaccurate estimations of E2 and P4 concentrations, LC-MS/MS assays are preferable.


Asunto(s)
Estradiol , Macaca mulatta , Ciclo Menstrual , Progesterona , Espectrometría de Masas en Tándem , Macaca mulatta/sangre , Animales , Femenino , Ciclo Menstrual/sangre , Espectrometría de Masas en Tándem/métodos , Progesterona/sangre , Estradiol/sangre , Inmunoensayo/métodos , Cromatografía Liquida/métodos , Hormonas Esteroides Gonadales/sangre
9.
Mol Cell ; 61(6): 903-13, 2016 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-26990993

RESUMEN

Transcriptome-wide maps of RNA binding protein (RBP)-RNA interactions by immunoprecipitation (IP)-based methods such as RNA IP (RIP) and crosslinking and IP (CLIP) are key starting points for evaluating the molecular roles of the thousands of human RBPs. A significant bottleneck to the application of these methods in diverse cell lines, tissues, and developmental stages is the availability of validated IP-quality antibodies. Using IP followed by immunoblot assays, we have developed a validated repository of 438 commercially available antibodies that interrogate 365 unique RBPs. In parallel, 362 short-hairpin RNA (shRNA) constructs against 276 unique RBPs were also used to confirm specificity of these antibodies. These antibodies can characterize subcellular RBP localization. With the burgeoning interest in the roles of RBPs in cancer, neurobiology, and development, these resources are invaluable to the broad scientific community. Detailed information about these resources is publicly available at the ENCODE portal (https://www.encodeproject.org/).


Asunto(s)
Bases de Datos Genéticas , Proteínas de Unión al ARN/genética , ARN/metabolismo , Transcriptoma/genética , Sitios de Unión , Humanos , Unión Proteica , ARN/genética , ARN Interferente Pequeño/clasificación , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/metabolismo
11.
Nat Methods ; 13(6): 508-14, 2016 06.
Artículo en Inglés | MEDLINE | ID: mdl-27018577

RESUMEN

As RNA-binding proteins (RBPs) play essential roles in cellular physiology by interacting with target RNA molecules, binding site identification by UV crosslinking and immunoprecipitation (CLIP) of ribonucleoprotein complexes is critical to understanding RBP function. However, current CLIP protocols are technically demanding and yield low-complexity libraries with high experimental failure rates. We have developed an enhanced CLIP (eCLIP) protocol that decreases requisite amplification by ∼1,000-fold, decreasing discarded PCR duplicate reads by ∼60% while maintaining single-nucleotide binding resolution. By simplifying the generation of paired IgG and size-matched input controls, eCLIP improves specificity in the discovery of authentic binding sites. We generated 102 eCLIP experiments for 73 diverse RBPs in HepG2 and K562 cells (available at https://www.encodeproject.org), demonstrating that eCLIP enables large-scale and robust profiling, with amplification and sample requirements similar to those of ChIP-seq. eCLIP enables integrative analysis of diverse RBPs to reveal factor-specific profiles, common artifacts for CLIP and RNA-centric perspectives on RBP activity.


Asunto(s)
Perfilación de la Expresión Génica/métodos , Inmunoprecipitación/métodos , Proteínas de Unión al ARN/genética , Transcriptoma , Sitios de Unión , Reactivos de Enlaces Cruzados/química , Células Hep G2 , Humanos , Células K562 , Procesos Fotoquímicos , Rayos Ultravioleta
13.
Methods ; 118-119: 50-59, 2017 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-28003131

RESUMEN

Identification of in vivo direct RNA targets for RNA binding proteins (RBPs) provides critical insight into their regulatory activities and mechanisms. Recently, we described a methodology for enhanced crosslinking and immunoprecipitation followed by high-throughput sequencing (eCLIP) using antibodies against endogenous RNA binding proteins. However, in many cases it is desirable to profile targets of an RNA binding protein for which an immunoprecipitation-grade antibody is lacking. Here we describe a scalable method for using CRISPR/Cas9-mediated homologous recombination to insert a peptide tag into the endogenous RNA binding protein locus. Further, we show that TAG-eCLIP performed using tag-specific antibodies can yield the same robust binding profiles after proper control normalization as eCLIP with antibodies against endogenous proteins. Finally, we note that antibodies against commonly used tags can immunoprecipitate significant amounts of antibody-specific RNA, emphasizing the need for paired controls alongside each experiment for normalization. TAG-eCLIP enables eCLIP profiling of new native proteins where no suitable antibody exists, expanding the RBP-RNA interaction landscape.


Asunto(s)
Sistemas CRISPR-Cas , Biblioteca de Genes , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Proteínas de Unión al ARN/genética , ARN/química , Coloración y Etiquetado/métodos , Anticuerpos/química , Secuencia de Bases , Sitios de Unión , Clonación Molecular , Endonucleasas/química , Células HEK293 , Recombinación Homóloga , Humanos , Células K562 , Péptidos/química , Reacción en Cadena de la Polimerasa , Unión Proteica , ARN/genética , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo , Análisis de Secuencia de ARN/métodos , Transcriptoma
14.
Biol Reprod ; 96(6): 1210-1220, 2017 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-28575196

RESUMEN

Our previous flow cytometry results demonstrated a significant increase in neutrophils, macrophages/monocytes, and natural killer (NK) cells in dispersed rhesus monkey corpora lutea (CL) after progesterone (P4) levels had fallen below 0.3 ng/ml for ≥3 days during the natural menstrual cycle. In this study, immunohistochemistry revealed the CD11b+ cells (neutrophils, macrophages/monocytes) present in the CL after luteal P4 synthesis ceased were distributed throughout the tissue. CD16+ cells (presumptive NK cells) were observed mainly near the vasculature in functional CL, until their numbers increased and they became widely distributed in regressing CL. To determine if the immune cells that enter luteal tissue during structural regression are functionally different from those that are present during peak function, CD11b+ or CD16+ populations were enriched from mid-late stage (functional) and regressing (days 1.8 ± 0.3 postmenses) CL using antibody-conjugated magnetic microbeads. Flow cytometry analyses revealed the majority of CD11b+ cells expressed CD14, a protein mainly produced by macrophages/monocytes. The antibody-enriched and depleted fractions were cultured for 24 h, and the media then analyzed for the production of 29 cytokines/chemokines. From the mid-late CL, the CD11b+-enriched fraction produced three cytokines/chemokines, whereas CD16+-enriched cells only produced the chemokine CCL2. However, CD11b +-enriched cells isolated from regressed CL produced eight cytokines/chemokines. The CD16+-enriched cells isolated from regressing CL produced significant levels of only three cytokines. Thus, the CD11b+ cells that appear in the rhesus macaque CL after functional regression produce several cytokines/chemokines that likely play a role in orchestrating structural regression.


Asunto(s)
Cuerpo Lúteo/citología , Cuerpo Lúteo/fisiología , Citocinas/metabolismo , Leucocitos Mononucleares/fisiología , Luteólisis/fisiología , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Femenino , Regulación de la Expresión Génica/fisiología , Macaca mulatta
15.
Artículo en Inglés | MEDLINE | ID: mdl-39004442

RESUMEN

OBJECTIVE: To determine whether increasing the dose of ulipristal acetate (UPA)-containing emergency contraception (EC) improves pharmacodynamic outcomes in individuals with obesity. STUDY DESIGN: We enrolled healthy, regularly-cycling, confirmed ovulatory, reproductive-age individuals with body mass index (BMI) >30 kg/m2 and weight >80 kg in a randomised crossover study. We monitored participants with transvaginal ultrasound and blood sampling for progesterone, luteinising hormone (LH), and estradiol every other day until a dominant follicle measuring >15 mm was visualised. At that point, participants received either oral UPA EC 30 mg or 60 mg and returned for daily monitoring up to 7 days. After a no treatment washout cycle, participants returned for a second monitored cycle and received the other UPA dose. Our primary outcome was the proportion of subjects with no follicle rupture 5 days post-dosing (yes/no). For reference, we also enrolled a control group with BMI <25 kg/m2 and weight <80 kg who received UPA EC 30 mg during a single cycle. We also obtained blood samples for pharmacokinetic parameters for UPA and its active metabolite, N-monodemethyl-UPA (NDM-UPA) as an optional substudy. RESULTS: We enrolled a total of 52 participants with BMI >30 kg/m2 and 12 controls, with the following cycles completed: 12 controls, 49 UPA 30 mg, and 46 UPA 60 mg. The entire cohort demographics were a mean (SD) age of 29.8 (3.4) years and BMI by group: controls 22.5 (1.4) kg/m2, group 1 37.9 (6.7) kg/m2, and group 2 39.3 (5.4) kg/m2. All 12 (100%) of controls had a delay of at least 5 days for follicle rupture. Among the high BMI group, dosing groups (UPA EC 30 mg vs 60 mg) were similar in the proportion of cycles without follicle rupture over 5 days post-UPA dosing (UPA 30 mg: 47/49 (96%), UPA 60 mg: 42/46 (91%), Fisher's exact test p=0.43). However, after excluding cycles where dosing occurred too late (after LH surge), a delay of at least 5 days occurred in all participants at both doses. The 60 mg UPA dose resulted in a twofold increase in maximum observed concentration and the area under the curve of both UPA and NDM-UPA levels compared with 30 mg. CONCLUSION: A standard 30 mg dose of UPA is sufficient to delay ovulation regardless of BMI or weight. Results of our study do not support dose adjustment for body size.

16.
Neuron ; 112(13): 2157-2176.e12, 2024 Jul 03.
Artículo en Inglés | MEDLINE | ID: mdl-38697111

RESUMEN

Mutations in human nonsense-mediated mRNA decay (NMD) factors are enriched in neurodevelopmental disorders. We show that deletion of key NMD factor Upf2 in mouse embryonic neural progenitor cells causes perinatal microcephaly but deletion in immature neurons does not, indicating NMD's critical roles in progenitors. Upf2 knockout (KO) prolongs the cell cycle of radial glia progenitor cells, promotes their transition into intermediate progenitors, and leads to reduced upper-layer neurons. CRISPRi screening identified Trp53 knockdown rescuing Upf2KO progenitors without globally reversing NMD inhibition, implying marginal contributions of most NMD targets to the cell cycle defect. Integrated functional genomics shows that NMD degrades selective TRP53 downstream targets, including Cdkn1a, which, without NMD suppression, slow the cell cycle. Trp53KO restores the progenitor cell pool and rescues the microcephaly of Upf2KO mice. Therefore, one physiological role of NMD in the developing brain is to degrade selective TRP53 targets to control progenitor cell cycle and brain size.


Asunto(s)
Encéfalo , Ratones Noqueados , Células-Madre Neurales , Degradación de ARNm Mediada por Codón sin Sentido , Proteína p53 Supresora de Tumor , Animales , Proteína p53 Supresora de Tumor/metabolismo , Proteína p53 Supresora de Tumor/genética , Ratones , Encéfalo/metabolismo , Células-Madre Neurales/metabolismo , Degradación de ARNm Mediada por Codón sin Sentido/genética , Epistasis Genética , Microcefalia/genética , Ciclo Celular/fisiología , Ciclo Celular/genética , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/metabolismo , Inhibidor p21 de las Quinasas Dependientes de la Ciclina/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/genética
17.
Nat Commun ; 15(1): 875, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38287010

RESUMEN

RNA binding proteins (RBPs) are key regulators of RNA processing and cellular function. Technologies to discover RNA targets of RBPs such as TRIBE (targets of RNA binding proteins identified by editing) and STAMP (surveying targets by APOBEC1 mediated profiling) utilize fusions of RNA base-editors (rBEs) to RBPs to circumvent the limitations of immunoprecipitation (CLIP)-based methods that require enzymatic digestion and large amounts of input material. To broaden the repertoire of rBEs suitable for editing-based RBP-RNA interaction studies, we have devised experimental and computational assays in a framework called PRINTER (protein-RNA interaction-based triaging of enzymes that edit RNA) to assess over thirty A-to-I and C-to-U rBEs, allowing us to identify rBEs that expand the characterization of binding patterns for both sequence-specific and broad-binding RBPs. We also propose specific rBEs suitable for dual-RBP applications. We show that the choice between single or multiple rBEs to fuse with a given RBP or pair of RBPs hinges on the editing biases of the rBEs and the binding preferences of the RBPs themselves. We believe our study streamlines and enhances the selection of rBEs for the next generation of RBP-RNA target discovery.


Asunto(s)
Proteínas de Unión al ARN , ARN , ARN/metabolismo , Sitios de Unión/genética , Proteínas de Unión al ARN/metabolismo , Procesamiento Postranscripcional del ARN
18.
Contraception ; 126: 110130, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37499736

RESUMEN

We developed and validated the use of ultra-high-performance liquid chromatography-heated electrospray ionization-tandem triple quadrupole mass spectrometry to simultaneously analyze serum concentrations of ethinylestradiol, dienogest, norelgestromin, norethindrone, gestodene, levonorgestrel, etonogestrel, segesterone acetate, medroxyprogesterone acetate, and drospirenone. The calibration range for all targets was 0.009-10 ng/mL, with lower limit of quantification of 0.009 ng/mL for all analytes except gestodene (0.019 ng/mL). We used our assay to check compliance among participants in a clinical trial, confirmed the use of drospirenone in 11 of 13 study participants, and evidence of noncompliant progestins in 2 (levonorgestrel = 1, norethindrone = 1). We conclude that this approach provides an accurate method to check protocol compliance in contraceptive clinical trials. IMPLICATIONS: The availability of a liquid chromatography-tandem triple quadrupole mass spectrometry multiprogestin analysis panel for simultaneous evaluation of the most common contraceptive steroids approved worldwide could improve monitoring of compliance and protocol adherence in clinical trials.


Asunto(s)
Anticonceptivos , Progestinas , Humanos , Cromatografía Liquida/métodos , Adhesión a Directriz , Levonorgestrel , Espectrometría de Masas , Noretindrona , Reproducibilidad de los Resultados , Ensayos Clínicos como Asunto
19.
bioRxiv ; 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37808757

RESUMEN

RNA binding proteins (RBPs) are key regulators of RNA processing and cellular function. Technologies to discover RNA targets of RBPs such as TRIBE (targets of RNA binding proteins identified by editing) and STAMP (surveying targets by APOBEC1 mediated profiling) utilize fusions of RNA base-editors (rBEs) to RBPs to circumvent the limitations of immunoprecipitation (CLIP)-based methods that require enzymatic digestion and large amounts of input material. To broaden the repertoire of rBEs suitable for editing-based RBP-RNA interaction studies, we have devised experimental and computational assays in a framework called PRINTER (protein-RNA interaction-based triaging of enzymes that edit RNA) to assess over thirty A-to-I and C-to-U rBEs, allowing us to identify rBEs that expand the characterization of binding patterns for both sequence-specific and broad-binding RBPs. We also propose specific rBEs suitable for dual-RBP applications. We show that the choice between single or multiple rBEs to fuse with a given RBP or pair of RBPs hinges on the editing biases of the rBEs and the binding preferences of the RBPs themselves. We believe our study streamlines and enhances the selection of rBEs for the next generation of RBP-RNA target discovery.

20.
Nat Commun ; 14(1): 551, 2023 02 09.
Artículo en Inglés | MEDLINE | ID: mdl-36759613

RESUMEN

Regulation of RNA processing contributes profoundly to tissue development and physiology. Here, we report that serine-arginine-rich splicing factor 1 (SRSF1) is essential for hepatocyte function and survival. Although SRSF1 is mainly known for its many roles in mRNA metabolism, it is also crucial for maintaining genome stability. We show that acute liver damage in the setting of targeted SRSF1 deletion in mice is associated with the excessive formation of deleterious RNA-DNA hybrids (R-loops), which induce DNA damage. Combining hepatocyte-specific transcriptome, proteome, and RNA binding analyses, we demonstrate that widespread genotoxic stress following SRSF1 depletion results in global inhibition of mRNA transcription and protein synthesis, leading to impaired metabolism and trafficking of lipids. Lipid accumulation in SRSF1-deficient hepatocytes is followed by necroptotic cell death, inflammation, and fibrosis, resulting in NASH-like liver pathology. Importantly, SRSF1-depleted human liver cancer cells recapitulate this pathogenesis, illustrating a conserved and fundamental role for SRSF1 in preserving genome integrity and tissue homeostasis. Thus, our study uncovers how the accumulation of detrimental R-loops impedes hepatocellular gene expression, triggering metabolic derangements and liver damage.


Asunto(s)
Enfermedad del Hígado Graso no Alcohólico , Humanos , Animales , Ratones , Factores de Empalme de ARN/metabolismo , Enfermedad del Hígado Graso no Alcohólico/genética , ARN/metabolismo , Factores de Empalme Serina-Arginina/genética , Factores de Empalme Serina-Arginina/metabolismo , ARN Mensajero/metabolismo , Empalme Alternativo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA