Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Diagnostics (Basel) ; 12(4)2022 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-35453846

RESUMEN

The purpose of this study was to determine the observer agreement in assessing the enhancement pattern of suspicious breast lesions with contrast-enhanced ultrasound (CEUS) using high and low frequency transducers. Methods: This prospective study included 70 patients with suspicious breast lesions detected at mammography and/or ultrasound and classified according to the American College of Radiology (ACR) Breast Imaging-Reporting and Data System (BI-RADS) in 4A, 4B, 4C, or 5, who underwent CEUS examinations between October 2020 and August 2021. Results: Participants' ages ranged from 28 to 83 years (48.5 + 6.36, mean age + SD). We obtained a substantial agreement for the first reader (kappa = 0.614, p < 0.001) and a perfect agreement for the second and third reader (kappa = 1, p < 0.001) between the two transducers for the uptake pattern. A moderate agreement for the second and third reader (kappa = 0.517 and 0.538, respectively, p < 0.001) and only a fair agreement (kappa = 0.320, p < 0.001) in the case of the first reader for the perilesional enhancement was observed. We obtained an excellent inter-observer agreement (Cronbach's Alpha coefficient = 0.960, p < 0.001) for the degree of enhancement, a good inter-observer agreement for the uptake pattern and perilesional enhancement (Cronbach's Alpha coefficient = 0.831 and 0.853, respectively, p < 0.001), and a good and acceptable inter-observer agreement for internal homogeneity, perfusion defects and margins of the lesions (Cronbach's Alpha coefficient = 0.703, 0.703 and 0.792, respectively, p < 0.001) concerning the evaluation of breast lesions with the linear-array transducer. Conclusions: The evaluation of suspicious breast lesions by three experts with high-frequency linear-array transducer and low-frequency convex-array transducer was comparable in terms of uptake pattern and perilesional enhancement. The agreement regarding the evaluation of the degree of enhancement, the internal homogeneity, and the perfusion defects varied between fair and substantial. For all CEUS characteristics, the inter-observer agreement was superior for linear-array transducer, which leads to more a homogeneous and reproducible interpretation.

2.
Diagnostics (Basel) ; 12(2)2022 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-35204550

RESUMEN

The purpose of the present study was to evaluate the value of full-field digital mammography (FFDM) and automated breast ultrasound (ABUS) in the diagnosis of breast cancer compared to FFDM associated with digital breast tomosynthesis (DBT). Methods: This retrospective study included 50 female patients with a denser framework of connective tissue fibers, characteristic of young women who underwent FFDM, DBT, handheld ultrasound (HHUS), and ABUS between January 2017 and October 2018. The sensitivity (Se), specificity (Sp), positive predictive value (PPV), negative predictive value (NPV), and accuracy of FFDM+ABUS were 81.82% (95% CI [48.22-97.72]), 89.74% (95% CI [75.78-97.13]), 69.23% (95% CI [46.05-85.57]), 94.59% (95% CI [83.26-98.40]), and 88% (95% CI [75.69-95.47]), while for FFDM+DBT, the values were as follows: 91.67% (95% CI [61.52-99.79]), 71.79% (95% CI [55.13-85.00]), 50% (95% CI [37.08-62.92]), 96.55% (95% CI [80.93-99.46]), 76.47% (95% CI [62.51-87.21]). We found an almost perfect agreement between the two readers regarding FFDM associated with ABUS, and substantial agreement regarding FFDM+DBT, with a kappa coefficient of 0.896 and 0.8, respectively; p < 0.001. Conclusions: ABUS and DBT are suitable as additional diagnostic imaging techniques to FFDM in women at an intermediate risk of developing breast cancer through the presence of dense breast tissue. In this study, DBT reduced the number of false negative results, while the use of ABUS resulted in an increase in specificity.

3.
J Pers Med ; 11(2)2021 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-33573122

RESUMEN

The aim of this paper is to highlight the role of contrast-enhanced ultrasound in breast cancer in terms of diagnosis, staging and follow-up of the post-treatment response. Contrast-enhanced ultrasound (CEUS) is successfully used to diagnose multiple pathologies and has also clinical relevance in breast cancer. CEUS has high accuracy in differentiating benign from malignant lesions by analyzing the enhancement characteristics and calculating the time-intensity curve's quantitative parameters. It also has a significant role in axillary staging, especially when the lymph nodes are not suspicious on clinical examination and have a normal appearance on gray-scale ultrasound. The most significant clinical impact consists of predicting the response to neoadjuvant chemotherapy, which offers the possibility of adjusting the therapy by dynamically evaluating the patient. CEUS is a high-performance, feasible, non-irradiating, accessible, easy-to-implement imaging method and has proven to be a valuable addition to breast ultrasound.

4.
J Pers Med ; 11(8)2021 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-34442347

RESUMEN

Automated breast ultrasound (ABUS) is an ultrasound technique that tends to be increasingly used as a supplementary technique in the evaluation of patients with dense glandular breasts. Patients with dense breasts have an increased risk of developing breast cancer compared to patients with fatty breasts. Furthermore, for this group of patients, mammography has a low sensitivity in detecting breast cancers, especially if it is not associated with architectural distortion or calcifications. ABUS is a standardized examination with many advantages in both screening and diagnostic settings: it increases the detection rate of breast cancer, improves the workflow, and reduces the examination time. On the other hand, like any imaging technique, ABUS has disadvantages and even some limitations. Many disadvantages can be diminished by additional attention and training. Disadvantages regarding image acquisition are the inability to assess the axilla, the vascularization, and the elasticity of a lesion, while concerning the interpretation, the disadvantages are the artifacts due to poor positioning, lack of contact, motion or lesion related. This article reviews and discusses the indications, the advantages, and disadvantages of the method and also the sources of error in the ABUS examination.

5.
Diagnostics (Basel) ; 11(7)2021 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-34359332

RESUMEN

BACKGROUND: The purpose of this study was to assess the effectiveness of the radiomic analysis of contrast-enhanced spectral mammography (CESM) in discriminating between breast cancers and background parenchymal enhancement (BPE). METHODS: This retrospective study included 38 patients that underwent CESM examinations for clinical purposes between January 2019-December 2020. A total of 57 malignant breast lesions and 23 CESM examinations with 31 regions of BPE were assessed through radiomic analysis using MaZda software. The parameters that demonstrated to be independent predictors for breast malignancy were exported into the B11 program and a k-nearest neighbor classifier (k-NN) was trained on the initial groups of patients and was tested using a validation group. Histopathology results obtained after surgery were considered the gold standard. RESULTS: Radiomic analysis found WavEnLL_s_2 parameter as an independent predictor for breast malignancies with a sensitivity of 68.42% and a specificity of 83.87%. The prediction model that included CH1D6SumAverg, CN4D6Correlat, Kurtosis, Perc01, Perc10, Skewness, and WavEnLL_s_2 parameters had a sensitivity of 73.68% and a specificity of 80.65%. Higher values were obtained of WavEnLL_s_2 and the prediction model for tumors than for BPEs. The comparison between the ROC curves provided by the WaveEnLL_s_2 and the entire prediction model did not show statistically significant results (p = 0.0943). The k-NN classifier based on the parameter WavEnLL_s_2 had a sensitivity and specificity on training and validating groups of 71.93% and 45.16% vs. 60% and 44.44%, respectively. CONCLUSION: Radiomic analysis has the potential to differentiate CESM between malignant lesions and BPE. Further quantitative insight into parenchymal enhancement patterns should be performed to facilitate the role of BPE in personalized clinical decision-making and risk assessment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA