Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Neuroimage ; 286: 120513, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38191101

RESUMEN

Among functional imaging methods, metabolic connectivity (MC) is increasingly used for investigation of regional network changes to examine the pathophysiology of neurodegenerative diseases such as Alzheimer's disease (AD) or movement disorders. Hitherto, MC was mostly used in clinical studies, but only a few studies demonstrated the usefulness of MC in the rodent brain. The goal of the current work was to analyze and validate metabolic regional network alterations in three different mouse models of neurodegenerative diseases (ß-amyloid and tau) by use of 2-deoxy-2-[18F]fluoro-d-glucose positron emission tomography (FDG-PET) imaging. We compared the results of FDG-µPET MC with conventional VOI-based analysis and behavioral assessment in the Morris water maze (MWM). The impact of awake versus anesthesia conditions on MC read-outs was studied and the robustness of MC data deriving from different scanners was tested. MC proved to be an accurate and robust indicator of functional connectivity loss when sample sizes ≥12 were considered. MC readouts were robust across scanners and in awake/ anesthesia conditions. MC loss was observed throughout all brain regions in tauopathy mice, whereas ß-amyloid indicated MC loss mainly in spatial learning areas and subcortical networks. This study established a methodological basis for the utilization of MC in different ß-amyloid and tau mouse models. MC has the potential to serve as a read-out of pathological changes within neuronal networks in these models.


Asunto(s)
Enfermedad de Alzheimer , Enfermedades Neurodegenerativas , Tauopatías , Ratones , Animales , Fluorodesoxiglucosa F18/metabolismo , Péptidos beta-Amiloides/metabolismo , Enfermedad de Alzheimer/patología , Tauopatías/patología , Encéfalo/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Tomografía de Emisión de Positrones/métodos , Proteínas tau/metabolismo
2.
Eur J Nucl Med Mol Imaging ; 48(12): 3872-3885, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34021393

RESUMEN

PURPOSE: Dynamic 60-min positron emission tomography (PET) imaging with the novel tau radiotracer [18F]PI-2620 facilitated accurate discrimination between patients with progressive supranuclear palsy (PSP) and healthy controls (HCs). This study investigated if truncated acquisition and static time windows can be used for [18F]PI-2620 tau-PET imaging of PSP. METHODS: Thirty-seven patients with PSP Richardson syndrome (PSP-RS) were evaluated together with ten HCs. [18F]PI-2620 PET was performed by a dynamic 60-min scan. Distribution volume ratios (DVRs) were calculated using full and truncated scan durations (0-60, 0-50, 0-40, 0-30, and 0-20 min p.i.). Standardized uptake value ratios (SUVrs) were obtained 20-40, 30-50, and 40-60 min p.i.. All DVR and SUVr data were compared with regard to their potential to discriminate patients with PSP-RS from HCs in predefined subcortical and cortical target regions (effect size, area under the curve (AUC), multi-region classifier). RESULTS: 0-50 and 0-40 DVR showed equivalent effect sizes as 0-60 DVR (averaged Cohen's d: 1.22 and 1.16 vs. 1.26), whereas the performance dropped for 0-30 or 0-20 DVR. The 20-40 SUVr indicated the best performance of all static acquisition windows (averaged Cohen's d: 0.99). The globus pallidus internus discriminated patients with PSP-RS and HCs at a similarly high level for 0-60 DVR (AUC: 0.96), 0-40 DVR (AUC: 0.96), and 20-40 SUVr (AUC: 0.94). The multi-region classifier sensitivity of these time windows was consistently 86%. CONCLUSION: Truncated and static imaging windows can be used for [18F]PI-2620 PET imaging of PSP. 0-40 min dynamic scanning offers the best balance between accuracy and economic scanning.


Asunto(s)
Enfermedad de Alzheimer , Parálisis Supranuclear Progresiva , Estudios de Factibilidad , Humanos , Tomografía de Emisión de Positrones , Parálisis Supranuclear Progresiva/diagnóstico por imagen , Proteínas tau
3.
J Neuroinflammation ; 17(1): 208, 2020 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-32660586

RESUMEN

BACKGROUND: P301S tau transgenic mice show age-dependent accumulation of neurofibrillary tangles in the brainstem, hippocampus, and neocortex, leading to neuronal loss and cognitive deterioration. However, there is hitherto only sparse documentation of the role of neuroinflammation in tau mouse models. Thus, we analyzed longitudinal microglial activation by small animal 18 kDa translocator protein positron-emission-tomography (TSPO µPET) imaging in vivo, in conjunction with terminal assessment of tau pathology, spatial learning, and cerebral glucose metabolism. METHODS: Transgenic P301S (n = 33) and wild-type (n = 18) female mice were imaged by 18F-GE-180 TSPO µPET at the ages of 1.9, 3.9, and 6.4 months. We conducted behavioral testing in the Morris water maze, 18F-fluordesoxyglucose (18F-FDG) µPET, and AT8 tau immunohistochemistry at 6.3-6.7 months. Terminal microglial immunohistochemistry served for validation of TSPO µPET results in vivo, applying target regions in the brainstem, cortex, cerebellum, and hippocampus. We compared the results with our historical data in amyloid-ß mouse models. RESULTS: TSPO expression in all target regions of P301S mice increased exponentially from 1.9 to 6.4 months, leading to significant differences in the contrasts with wild-type mice at 6.4 months (+ 11-23%, all p < 0.001), but the apparent microgliosis proceeded more slowly than in our experience in amyloid-ß mouse models. Spatial learning and glucose metabolism of AT8-positive P301S mice were significantly impaired at 6.3-6.5 months compared to the wild-type group. Longitudinal increases in TSPO expression predicted greater tau accumulation and lesser spatial learning performance at 6.3-6.7 months. CONCLUSIONS: Monitoring of TSPO expression as a surrogate of microglial activation in P301S tau transgenic mice by µPET indicates a delayed time course when compared to amyloid-ß mouse models. Detrimental associations of microglial activation with outcome parameters are opposite to earlier data in amyloid-ß mouse models. The contribution of microglial response to pathology accompanying amyloid-ß and tau over-expression merits further investigation.


Asunto(s)
Encéfalo/metabolismo , Receptores de GABA/biosíntesis , Aprendizaje Espacial/fisiología , Proteínas tau/metabolismo , Animales , Encéfalo/patología , Femenino , Predicción , Expresión Génica , Ratones , Ratones Transgénicos , Ovillos Neurofibrilares/metabolismo , Ovillos Neurofibrilares/patología , Receptores de GABA/genética , Proteínas tau/genética
4.
Eur J Nucl Med Mol Imaging ; 41(12): 2325-36, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25063040

RESUMEN

PURPOSE: Various strategies have been applied to increase the engraftment of an intramyocardial cell transplant (Tx) to treat ischemic myocardium. Thereby, co-transplanted fibroblasts (FB) improve the long-term survival of stem cell derivatives (SCD) in a murine model of myocardial infarction. For therapeutic use, the time frame in which FB exert putative supportive effects needs to be identified. Therefore, we tracked the biodistribution and retention of SCD and FB in vivo using highly sensitive positron emission tomography (PET) imaging. METHODS: Murine [(18)F]-fluorodeoxyglucose (FDG) labeled SCD and FB were transplanted after left anterior descending artery (LAD) ligation into the border zone of the ischemic area in female C57BL/6 mice. Cardiac retention and biodistribution during the initial 2 h after injection were measured via PET imaging. RESULTS: Massive initial cell loss occurred independently of the cell type. Thereby, FB were retained slightly, yet significantly better than SCD until 60 min post-injection (7.5 ± 1.7 vs. 5.2 ± 0.7% ID at 25 min and 7.0 ± 1.5 vs. 4.8 ± 0.8% ID at 60 min). Thereafter, a fraction of ∼ 5% that withstood the massive initial washout remained at the site of injection independently of the applied cell type (120 min, SCD vs. FB P = 0.64). Most of the lost cells were detected in the lungs (∼ 30 % ID). CONCLUSIONS: We were able to quantitatively define the retention and biodistribution of different cell types via PET imaging in a mouse model after intramyocardial Tx. The utmost accuracy was achieved through this cell- and organ-specific approach by correcting PET data for cellular FDG efflux. Thereby, we observed a massive initial cell loss of ∼ 95%, causing low rates of long-term engraftment for both SCD and FB. We conclude that FB are not privileged compared to SCD regarding their acute retention kinetics, and therefore exert their beneficial effects at a later time point.


Asunto(s)
Células Madre Embrionarias/trasplante , Fibroblastos/trasplante , Fluorodesoxiglucosa F18/farmacocinética , Infarto del Miocardio/terapia , Animales , Supervivencia Celular , Células Madre Embrionarias/diagnóstico por imagen , Femenino , Fibroblastos/diagnóstico por imagen , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/diagnóstico por imagen , Tomografía de Emisión de Positrones , Distribución Tisular
5.
Eur J Nucl Med Mol Imaging ; 40(11): 1730-8, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23860738

RESUMEN

PURPOSE: To establish PET as a tool for in-vivo quantification and monitoring of intramyocardially transplanted stem cells after labelling with FDG in mice with induced myocardial infarction. METHODS: After inducing myocardial infarction in C57BL/6 mice, murine embryonic stem cells were labelled with FDG and transplanted into the border zone of the infarction. Dynamic PET scans were acquired from 25 to 120 min after transplantation, followed by a scan with 20 MBq FDG administered intravenously for anatomical landmarking. All images were reconstructed using the OSEM 3D and MAP reconstruction algorithms. FDG data were corrected for cellular tracer efflux and used as marker for cellular retention. FACS analysis of transplanted cells expressing enhanced green fluorescent protein was performed to validate the PET data. RESULTS: We observed a rapid loss of cells from the site of transplantation, followed by stable retention over 120 min. Amounts of retention were 5.3 ± 1.1 % at 25 min, 5.0 ± 0.9 % at 60 min and 5.7 ± 1.2 % at 120 min. FACS analysis showed a high correlation without significant differences between the groups (P > 0.05). FDG labelling did not have any adverse effects on cell proliferation or differentiation. CONCLUSION: Up-to-date imaging is a powerful method for tracking and quantifying intramyocardially transplanted stem cells in vivo in the mouse model. This revealed a massive cell loss within minutes, and thereafter a relatively stable amount of about 5 % remaining cells was observed. Our method may become crucial for further optimization of cardiac cell therapy in the widely used mouse model of infarction.


Asunto(s)
Células Madre Embrionarias/trasplante , Infarto del Miocardio/diagnóstico por imagen , Tomografía de Emisión de Positrones , Animales , Células Madre Embrionarias/diagnóstico por imagen , Células Madre Embrionarias/efectos de los fármacos , Fluorodesoxiglucosa F18/efectos adversos , Fluorodesoxiglucosa F18/farmacocinética , Ratones , Ratones Endogámicos C57BL , Infarto del Miocardio/cirugía , Radiofármacos/efectos adversos , Radiofármacos/farmacocinética
6.
EJNMMI Res ; 13(1): 75, 2023 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-37572238

RESUMEN

BACKGROUND: Several software tools have been developed for gated PET imaging that use distinct algorithms to analyze tracer uptake, myocardial perfusion, and left ventricle volumes and function. Studies suggest that different software tools cannot be used interchangeably in humans. In this study, we sought to compare the left ventricular parameters in gated 18F-FDG PET/CT imaging in mice by three commercially available software tools: PMOD, MIM, and QGS. METHODS AND RESULTS: Healthy mice underwent ECG-gated 18F-FDG imaging using a small-animal nanoPET/CT (Mediso) under isoflurane narcosis. Reconstructed gates PET images were subsequently analyzed in three different software tools, and cardiac volume and function (end-diastolic (EDV), end-systolic volumes (ESV), stroke volume (SV), and ejection fraction (EF)) were evaluated. While cardiac volumes correlated well between PMOD, MIM, and QGS, the left ventricular parameters and cardiac function differed in agreement using Bland-Altman analysis. EDV in PMOD vs. QGS: r = 0.85; p < 0.001, MIM vs. QGS: r = 0.92; p < 0.001, and MIM vs. PMOD: r = 0.88; p < 0.001, showed good correlations. Correlation was also found in ESV: PMOD vs. QGS: r = 0.48; p = 0.07, MIM vs QGS: r = 0.79; p < 0.001, and MIM vs. PMOD: r = 0.69; p < 0.01. SV showed good correlations in: PMOD vs. QGS: r = 0.73; p < 0.01, MIM vs. QGS: r = 0.86; p < 0.001, and MIM vs. PMOD: r = 0.92; p < 0.001. However, EF among correlated poorly: PMOD vs. QGS: r = -0.31; p = 0.26, MIM vs. QGS: r = 0.48; p = 0.07, and MIM vs. PMOD: r = 0.23; p = 0.41. Inter-class and intra-class correlation coefficient were > 0.9 underlining repeatability in using PMOD, MIM, and QGS for cardiac volume and function assessment. CONCLUSIONS: All three commercially available software tools are feasible in small animal cardiac volume assessment in gated 18F-FDG PET/CT imaging. However, due to software-related differences in agreement analysis for cardiac volumes and function, PMOD, MIM, and QGS cannot be used interchangeably in murine research.

7.
Z Med Phys ; 33(1): 91-102, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36710156

RESUMEN

INTRODUCTION: Large datasets are required to ensure reliable non-invasive glioma assessment with radiomics-based machine learning methods. This can often only be achieved by pooling images from different centers. Moreover, trained models should perform with high accuracy when applied to data from different centers. In this study, the impact of reconstruction settings and segmentation methods on radiomic features derived from amino acid and TSPO PET images of glioma patients was examined. Additionally, the ability to model and thus reduce feature differences was investigated. METHODS: [18F]FET and [18F]GE-180 PET data were acquired from 19 glioma patients. For each acquisition, 10 reconstruction settings and 9 segmentation methods were included to emulate multicentric data. Statistical robustness measures were calculated before and after ComBat harmonization. Differences between features due to setting variations were assessed using Friedman test, coefficient of variation (CV) and inter-rater reliability measures, including intraclass and Spearman's rank correlation coefficients and Fleiss' Kappa. RESULTS: According to Friedman analyses, most features (>60%) showed significant differences. Yet, CV and inter-rater reliability measures indicated higher robustness. ComBat resulted in almost complete harmonization (>87%) according to Friedman test and little to no improvement according to CV and inter-rater reliability measures. [18F]GE-180 features were more sensitive to reconstruction settings than [18F]FET features. CONCLUSIONS: According to Friedman test, feature distributions could be successfully aligned using ComBat. However, depending on settings, changes in patient ranks were observed for some features and could not be eliminated by harmonization. Thus, for clinical utilization it is recommended to exclude affected features.


Asunto(s)
Glioma , Tomografía de Emisión de Positrones , Humanos , Tomografía de Emisión de Positrones/métodos , Reproducibilidad de los Resultados , Estudios de Factibilidad , Glioma/diagnóstico por imagen , Receptores de GABA
8.
Ann Nucl Med ; 37(1): 34-43, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36306025

RESUMEN

OBJECTIVE: Myocardial infarction leads to ischemic heart disease and cell death, which is still a major obstacle in western society. In vivo imaging of apoptosis, a defined cascade of cell death, could identify myocardial tissue at risk. METHODS: Using 2-(5-[18F]fluoropentyl)-2-methyl-malonic acid ([18F]ML-10) in autoradiography and positron emission tomography (PET) visualized apoptosis in a mouse model of transient ligation of the left anterior descending (LAD) artery. 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) PET imaging indicated the defect area. Terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) histology stain indicated cardiac apoptosis. RESULTS: [18F]ML-10 uptake was evident in the ischemic area after transient LAD ligation in ex vivo autoradiography and in vivo PET imaging. Detection of [18F]ML-10 is in line with the defect visualized by [18F]FDG and the histological approach of TUNEL staining. CONCLUSION: The tracer [18F]ML-10 is suitable for detecting apoptosis after transient LAD ligation in mice.


Asunto(s)
Fluorodesoxiglucosa F18 , Daño por Reperfusión , Ratas , Ratones , Animales , Fluorodesoxiglucosa F18/metabolismo , Ratas Sprague-Dawley , Corazón , Tomografía de Emisión de Positrones/métodos , Apoptosis
9.
Neuroimage Clin ; 39: 103484, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37541098

RESUMEN

OBJECTIVE: In preclinical research, the use of [18F]Fluorodesoxyglucose (FDG) as a biomarker for neurodegeneration may induce bias due to enhanced glucose uptake by immune cells. In this study, we sought to investigate synaptic vesicle glycoprotein 2A (SV2A) PET with [18F]UCB-H as an alternative preclinical biomarker for neurodegenerative processes in two mouse models representing the pathological hallmarks of Alzheimer's disease (AD). METHODS: A total of 29 PS2APP, 20 P301S and 12 wild-type mice aged 4.4 to 19.8 months received a dynamic [18F]UCB-H SV2A-PET scan (14.7 ± 1.5 MBq) 0-60 min post injection. Quantification of tracer uptake in cortical, cerebellar and brainstem target regions was implemented by calculating relative volumes of distribution (VT) from an image-derived-input-function (IDIF). [18F]UCB-H binding was compared across all target regions between transgenic and wild-type mice. Additional static scans were performed in a subset of mice to compare [18F]FDG and [18F]GE180 (18 kDa translocator protein tracer as a surrogate for microglial activation) standardized uptake values (SUV) with [18F]UCB-H binding at different ages. Following the final scan, a subset of mouse brains was immunohistochemically stained with synaptic markers for gold standard validation of the PET results. RESULTS: [18F]UCB-H binding in all target regions was significantly reduced in 8-months old P301S transgenic mice when compared to wild-type controls (temporal lobe: p = 0.014; cerebellum: p = 0.0018; brainstem: p = 0.0014). Significantly lower SV2A tracer uptake was also observed in 13-months (temporal lobe: p = 0.0080; cerebellum: p = 0.006) and 19-months old (temporal lobe: p = 0.0042; cerebellum: p = 0.011) PS2APP transgenic versus wild-type mice, whereas the brainstem revealed no significantly altered [18F]UCB-H binding. Immunohistochemical analyses of post-mortem mouse brain tissue confirmed the SV2A PET findings. Correlational analyses of [18F]UCB-H and [18F]FDG using Pearson's correlation coefficient revealed a significant negative association in the PS2APP mouse model (R = -0.26, p = 0.018). Exploratory analyses further stressed microglial activation as a potential reason for this inverse relationship, since [18F]FDG and [18F]GE180 quantification were positively correlated in this cohort (R = 0.36, p = 0.0076). CONCLUSION: [18F]UCB-H reliably depicts progressive synaptic loss in PS2APP and P301S transgenic mice, potentially qualifying as a more reliable alternative to [18F]FDG as a biomarker for assessment of neurodegeneration in preclinical research.


Asunto(s)
Péptidos beta-Amiloides , Fluorodesoxiglucosa F18 , Ratones , Animales , Péptidos beta-Amiloides/metabolismo , Fluorodesoxiglucosa F18/metabolismo , Tomografía de Emisión de Positrones/métodos , Ratones Transgénicos , Cintigrafía , Modelos Animales de Enfermedad , Encéfalo/diagnóstico por imagen , Encéfalo/metabolismo
10.
Ann Nucl Med ; 36(6): 533-543, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35355159

RESUMEN

OBJECTIVE: Animal models for myocardial injuries represent important cornerstones in cardiovascular research to monitor the pathological processes and therapeutic approaches. We investigated the association of 18F-FDG derived left ventricular metabolic volume (LVMV), defect area and cardiac function in mice after permanent or transient ligation of the left anterior descending artery (LAD). METHODS: Serial non-invasive ECG-gated 2-deoxy-2-[18F]fluoro-D-glucose positron emission tomography (18F-FDG PET) after permanent or transient LAD ligation enabled a longitudinal in vivo correlation of 18F-FDG derived left ventricular metabolic volume to functional parameters and myocardial defect. RESULTS: The LVMV shows a more prominent drop after permanent than transient LAD ligation and recovers after 30 days. The loss of LVMV correlates with the defect area assessed by QPS software. Cardiac function parameters (e.g., EDV, ESV, SV) by the QGS software positively correlate with LVMV after permanent and transient LAD ligation. CONCLUSIONS: This study provides novel insight into 18F-FDG derived LVMV after permanent and transient LAD ligation by longitudinal in 18F-FDG PET imaging and underlines the associations of the FDG derived parameter and cardiac function.


Asunto(s)
Fluorodesoxiglucosa F18 , Tomografía de Emisión de Positrones , Animales , Corazón , Ventrículos Cardíacos , Humanos , Ratones , Tomografía de Emisión de Positrones/métodos , Volumen Sistólico
11.
Mol Imaging Biol ; 24(4): 666-674, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35352214

RESUMEN

PURPOSE: The loss of viable cardiac cells and cell death by myocardial infarction (MI) is still a significant obstacle in preventing deteriorating heart failure. Imaging of apoptosis, a defined cascade to cell death, could identify areas at risk. PROCEDURES: Using 2-(5-[18F]fluoropentyl)-2-methyl-malonic acid ([18F]ML-10) in autoradiography and positron emission tomography (PET) visualized apoptosis in murine hearts after permanent ligation of the left anterior descending artery (LAD) inducing myocardial infarction (MI). 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) PET imaging localized the infarct area after MI. Histology by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) staining validated apoptosis in the heart. RESULTS: Accumulation of [18F]ML-10 was evident in the infarct area after permanent ligation of the LAD in autoradiography and PET imaging. Detection of apoptosis by [18F]ML-10 is in line with the defect visualized by [18F]FDG and the histological approach. CONCLUSION: [18F]ML-10 could be a suitable tracer for apoptosis imaging in a mouse model of permanent LAD ligation.


Asunto(s)
Fluorodesoxiglucosa F18 , Infarto del Miocardio , Animales , Apoptosis , Modelos Animales de Enfermedad , Fluorodesoxiglucosa F18/metabolismo , Corazón/diagnóstico por imagen , Ratones , Infarto del Miocardio/diagnóstico por imagen , Infarto del Miocardio/patología , Tomografía de Emisión de Positrones/métodos
12.
J Cereb Blood Flow Metab ; 41(11): 2957-2972, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34044665

RESUMEN

The novel tau-PET tracer [18F]PI-2620 detects the 3/4-repeat-(R)-tauopathy Alzheimer's disease (AD) and the 4R-tauopathies corticobasal syndrome (CBS) and progressive supranuclear palsy (PSP). We determined whether [18F]PI-2620 binding characteristics deriving from non-invasive reference tissue modelling differentiate 3/4R- and 4R-tauopathies. Ten patients with a 3/4R tauopathy (AD continuum) and 29 patients with a 4R tauopathy (CBS, PSP) were evaluated. [18F]PI-2620 PET scans were acquired 0-60 min p.i. and the distribution volume ratio (DVR) was calculated. [18F]PI-2620-positive clusters (DVR ≥ 2.5 SD vs. 11 healthy controls) were evaluated by non-invasive kinetic modelling. R1 (delivery), k2 & k2a (efflux), DVR, 30-60 min standardized-uptake-value-ratios (SUVR30-60) and the linear slope of post-perfusion phase SUVR (9-60 min p.i.) were compared between 3/4R- and 4R-tauopathies. Cortical clusters of 4R-tau cases indicated higher delivery (R1SRTM: 0.92 ± 0.21 vs. 0.83 ± 0.10, p = 0.0007), higher efflux (k2SRTM: 0.17/min ±0.21/min vs. 0.06/min ± 0.07/min, p < 0.0001), lower DVR (1.1 ± 0.1 vs. 1.4 ± 0.2, p < 0.0001), lower SUVR30-60 (1.3 ± 0.2 vs. 1.8 ± 0.3, p < 0.0001) and flatter slopes of the post-perfusion phase (slope9-60: 0.006/min ± 0.007/min vs. 0.016/min ± 0.008/min, p < 0.0001) when compared to 3/4R-tau cases. [18F]PI-2620 binding characteristics in cortical regions differentiate 3/4R- and 4R-tauopathies. Higher tracer clearance indicates less stable binding in 4R tauopathies when compared to 3/4R-tauopathies.


Asunto(s)
Neuroimagen/métodos , Tomografía de Emisión de Positrones/métodos , Radiofármacos , Tauopatías/diagnóstico por imagen , Proteínas tau/análisis , Radioisótopos de Flúor , Humanos , Interpretación de Imagen Asistida por Computador/métodos , Isoformas de Proteínas/análisis
13.
Chembiochem ; 10(8): 1321-4, 2009 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-19422010

RESUMEN

A highly efficient (18)F-labeling synthon for universal protein labeling is reported. Diverse (18)F-labeled proteins of 66-144 kDa were prepared with [(18)F]SiFA-isothiocyanate synthesized by an isotopic (19)F for (18)F exchange at the silicon atom. Overall preparative radiochemical yields were 20-40 % after 40-50 min. No bone uptake of (18)F radioactivity was detected until 90 min post-injection of (18)F-SiFA-RSA; this demonstrates the metabolic stability of the [(18)F]SiFA moiety.


Asunto(s)
Isotiocianatos/química , Lisina/química , Proteínas/química , Radiofármacos/química , Animales , Apoproteínas/química , Bovinos , Fluoruros/química , Inmunoglobulina G/química , Isotiocianatos/farmacocinética , Marcaje Isotópico , Masculino , Compuestos de Organosilicio/química , Radiofármacos/farmacocinética , Ratas , Ratas Sprague-Dawley , Albúmina Sérica/química , Transferrina/química
14.
Bioconjug Chem ; 20(2): 317-21, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19132825

RESUMEN

Radiosyntheses of 18F-radiopharmaceuticals for positron emission tomography (PET) normally require an extraordinarily high effort of technical equipment and specially trained personnel. We recently reported a novel method for the introduction of fluorine-18 into peptides for PET-imaging based on silicon-18F-chemistry (SiFA technique). We herewith introduce the first SiFA-based Kit-like radio-fluorination of a protein (rat serum albumin,RSA) and demonstrate its usefulness for in vivo imaging with microPET in normal rats as well as in a rat heterotropic transplanted heart model. As a labeling agent, we prepared 4-(di-tert-butyl[18F]fluorosilyl)benzenethiol (Si[18F]FASH)by simple isotopic exchange in 40-60% radiochemical yield (RCY) and coupled it directly to a Sulfo-SMCC derivatized RSA in an overall RCY of 12% within 20-30 min. The technically simple labeling procedure does not require any elaborated purification procedures and is a straightforward example of a successful application of Si-18F chemistry for in vivo imaging with PET.


Asunto(s)
Radioisótopos de Flúor/química , Compuestos de Organosilicio/síntesis química , Compuestos de Organosilicio/metabolismo , Juego de Reactivos para Diagnóstico , Albúmina Sérica/química , Coloración y Etiquetado/métodos , Animales , Estudios de Factibilidad , Imagen de Acumulación Sanguínea de Compuerta , Corazón/diagnóstico por imagen , Compuestos de Organosilicio/química , Tomografía de Emisión de Positrones , Ratas , Albúmina Sérica/metabolismo , Albúmina Sérica/farmacocinética , Distribución Tisular
15.
Chemistry ; 15(9): 2140-7, 2009.
Artículo en Inglés | MEDLINE | ID: mdl-19156812

RESUMEN

Broad spectrum: Novel para-functionalized aryl-di-tert-butylfluorosilanes, p-(tBu(2)FSi)C(6)H(4)X (X=functional group), have been made available and broaden the spectrum of silicon-based (18)F acceptors (SiFAs) for potential PET applications. For example, the [(18)F]maleimido derivative 1 has been employed for the synthesis of [(18)F]1- labeled rat serum albumin (RSA), the applicability of which for PET has been verified by in vivo experiments.The syntheses of the functionalized triorganofluorosilanes tBu(2)(p-XC(6)H(4))SiF (3 a, X=SH; 4 a, X=NCS; 4 b, X=NCO; 5, X=NC(4)H(2)O(2); 7, X=COOH; 8 a, X=COONC(4)H(4)O(2); 8 b, X=COOC(6)F(5)) are reported. These compounds display potential as silicon-based fluoride acceptors (SiFAs). The molecular structures of compounds 5, 7, and 8 a have been determined by single-crystal X-ray diffraction studies. With the exception of compounds 8 a and 8 b, all of the compounds could be (18)F-labeled by isotopic exchange in good to high radiochemical yields (RCY) with good to excellent specific activities. As proof of applicability, the maleimido-functionalized SiFA derivative 5, which is specific for thiol groups, has been used for the labeling of rat serum albumin (RSA) that had been derivatized with 2-iminothiolane. The incorporation of [(18)F]5 into the derivatized RSA reached a maximum yield after 30 min at ambient temperature. After purification, the [(18)F]RSA was evaluated in a healthy rat by means of muPET and displayed an expedient in vivo stability over 180 min.


Asunto(s)
Radioisótopos de Flúor , Hidrocarburos Fluorados/síntesis química , Radiofármacos/síntesis química , Silanos/síntesis química , Animales , Cristalografía por Rayos X , Hidrocarburos Fluorados/sangre , Hidrocarburos Fluorados/química , Masculino , Conformación Molecular , Estructura Molecular , Tomografía de Emisión de Positrones , Radiofármacos/sangre , Radiofármacos/química , Ratas , Silanos/química , Estereoisomerismo
16.
Alzheimers Res Ther ; 11(1): 67, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31370885

RESUMEN

BACKGROUND: Augmenting the brain clearance of toxic oligomers with small molecule modulators constitutes a promising therapeutic concept against tau deposition. However, there has been no test of this concept in animal models of Alzheimer's disease (AD) with initiation at a late disease stage. Thus, we aimed to investigate the effects of interventional late-stage Anle138b treatment, which previously indicated great potential to inhibit oligomer accumulation by binding of pathological aggregates, on the metabolic decline in transgenic mice with established tauopathy in a longitudinal 18F-fluorodeoxyglucose positron emission tomography (FDG-PET) study. METHODS: Twelve transgenic mice expressing all six human tau isoforms (hTau) and ten controls were imaged by FDG-PET at baseline (14.5 months), followed by randomization into Anle138b treatment and vehicle groups for 3 months. FDG-PET was repeated after treatment for 3 months, and brains were analyzed by tau immunohistochemistry. Longitudinal changes of glucose metabolism were compared between study groups, and the end point tau load was correlated with individual FDG-PET findings. RESULTS: Tau pathology was significantly ameliorated by late-stage Anle138b treatment when compared to vehicle (frontal cortex - 53%, p < 0.001; hippocampus - 59%, p < 0.005). FDG-PET revealed a reversal of metabolic decline during Anle138b treatment, whereas the vehicle group showed ongoing deterioration. End point glucose metabolism in the brain of hTau mice had a strong correlation with tau deposition measured by immunohistochemistry (R = 0.92, p < 0.001). CONCLUSION: Late-stage oligomer modulation effectively ameliorated tau pathology in hTau mice and rescued metabolic function. Molecular imaging by FDG-PET can serve for monitoring effects of Anle138b treatment.


Asunto(s)
Enfermedad de Alzheimer , Benzodioxoles , Ovillos Neurofibrilares , Pirazoles , Proteínas tau , Animales , Femenino , Humanos , Ratones , Enfermedad de Alzheimer/diagnóstico por imagen , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Benzodioxoles/administración & dosificación , Benzodioxoles/farmacología , Modelos Animales de Enfermedad , Progresión de la Enfermedad , Ratones Transgénicos , Ovillos Neurofibrilares/efectos de los fármacos , Ovillos Neurofibrilares/metabolismo , Tomografía de Emisión de Positrones , Pirazoles/administración & dosificación , Pirazoles/farmacología , Proteínas tau/metabolismo
17.
IEEE Trans Nucl Sci ; 54(1): 130-139, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19081763

RESUMEN

Patient motion during cardiac SPECT imaging can cause diagnostic imaging artifacts. We have implemented a Neural Network (NN) approach to decompose monitored patient motion data, gathered during cardiac SPECT imaging, using the Polaris stereo-IR real-time motion-tracking system. Herein, we show the successful decomposition of Polaris motion data into rigid body motion (RBM) and respiratory motion (RM). The motivation for separating RM from RBM is that each is corrected using different methods. The NN requires the input of a RBM threshold sensitivity limit, as well as the median filter window width. A two step approach can be used in setting the median filter width. In the 1(st) NN run the median filter window width is initially set to a "fixed" width typical of the respiration period. This 1(st) NN run does an initial decomposition of the data into RM and RBM. The RM is then fed into an FFT algorithm to produce a respiratory period output file for use during a 2(nd) NN run, where the median filter width can "adapt" to the patient respiratory rate at each time point. Implementation of the NN was in the UNIX environment with Interactive Data Language (IDL). Decomposition of simulated "signals known exactly" RBM and RM resulted in average value errors less than 0.11 mm for RBM steps, and an overall root mean square error of only 0.3 mm for RM or RBM. Volunteer RBM and RM Polaris data were successfully decomposed by the NN with RBM steps resolved with an average difference of only 0.8 mm as compared to values displayed on the SPECT gantry console which are only to the nearest mm. A plot of the NN RM trace and the synchronized trace from a pneumatic bellows shows virtually identical characteristics. Anthropomorphic phantom RBM and RM were decomposed and used to correct motion in SPECT images during reconstruction. The motion corrected slices looked visually identical to slices acquired without motion, and comparison of slice count profiles further confirmed the correction.

18.
IEEE Trans Med Imaging ; 25(7): 838-44, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16827485

RESUMEN

Due to the extended imaging times employed in single photon emission computed tomography (SPECT) and positron emission tomography (PET), patient motion during imaging is a common clinical occurrence. The fast and accurate correction of the three-dimensional (3-D) translational and rotational patient motion in iterative reconstruction is thus necessary to address this important cause of artifacts. We propose a method of incorporating 3-D Gaussian interpolation in the projector/backprojector pair to facilitate compensation for rigid-body motion in addition to attenuation and distance-dependent blurring. The method works as the interpolation step for moving the current emission voxel estimates and attenuation maps in the global coordinate system to the new patient location in the rotating coordinate system when calculating the expected projection. It also is employed for moving back the backprojection of the ratio of the measured projection to the expected projection and backprojection of the unit value (sensitivity factor) to the original location. MCAT simulations with known six-degree-of-freedom (6DOF) motion were employed to evaluate the accuracy of our method of motion compensation. We also tested the method with acquisitions of the data spectrum anthropomorphic phantom where motion during SPECT acquisition was measured using the Polaris IR motion tracking system. No motion artifacts were seen on the reconstructions with the motion compensation.


Asunto(s)
Algoritmos , Artefactos , Aumento de la Imagen/métodos , Interpretación de Imagen Asistida por Computador/métodos , Imagenología Tridimensional/métodos , Movimiento , Tomografía Computarizada de Emisión de Fotón Único/métodos , Simulación por Computador , Modelos Biológicos , Modelos Estadísticos , Distribución Normal , Análisis Numérico Asistido por Computador , Fantasmas de Imagen , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Tomografía Computarizada de Emisión de Fotón Único/instrumentación
19.
Mol Imaging Biol ; 17(6): 874-83, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25896817

RESUMEN

PURPOSE: Pluripotent stem cell (PSC)-based therapies possess great potential to restore the function of irreversibly damaged organs. PSCs can be differentiated in vitro into any cell type. However, pluripotent potential bears the risk of teratoma formation. In vivo monitoring of teratoma formation is indispensable, as 100 % purity of the cell preparation cannot be achieved. We aimed at establishing the human sodium iodide symporter (hNIS) as reporter gene for PET monitoring of teratoma formation. PROCEDURES: Murine PSC stably expressing hNIS were injected into the hind limbs of SCID mice to induce teratoma formation. Positron emission tomography (PET) scans were acquired weekly between days 14 and 42 after transplantation. Two teratomas were excised at each time point for histology and size measurement. Tracer uptake was correlated with teratoma weight. Specificity of tumoural iodine uptake was assessed by blocking hNIS in vivo with perchlorate. RESULTS: Neither hNIS expression nor I-124 exposure adversely impacted viability or differentiation potential of PSCs. Iodine uptake was highly specific in teratomas, as in vivo blocking of hNIS with perchlorate led to uptake rates comparable to tracer uptake in non-transgene tumours. Tumour mass and tracer uptake showed a positive correlation. CONCLUSIONS: This is the first study to generate stably hNIS-expressing murine PSCs. Since the differentiation potential was preserved, hNIS-expressing cells are suitable for PSC-based forward programming approaches. Teratoma formation from undifferentiated cells can be monitored in vivo by PET with high specificity on a quantitative level. Due to its anticipated lack of immunogenicity in humans, hNIS is a promising reporter gene for clinical translation.


Asunto(s)
Genes Reporteros , Radioisótopos de Yodo/administración & dosificación , Tomografía de Emisión de Positrones/métodos , Simportadores/genética , Teratoma/diagnóstico por imagen , Animales , Diferenciación Celular , Humanos , Ratones , Teratoma/patología
20.
IEEE Trans Nucl Sci ; 51(5 II): 2693-2698, 2004 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19081781

RESUMEN

Patient motion during cardiac SPECT imaging can cause diagnostic imaging artifacts. We investigated the feasibility of monitoring patient motion using the Polaris motion-tracking system. This system uses passive infrared reflection from small spheres to provide real-time position data with vendor stated 0.35 mm accuracy and 0.2 mm repeatability. In our configuration, the Polaris system views through the SPECT gantry toward the patient's head. List-mode event data was temporally synchronized with motion-tracking data utilizing a modified LabVIEW virtual instrument that we have employed in previous optical motion-tracking investigations. Calibration of SPECT to Polaris coordinates was achieved by determining the transformation matrix necessary to align the position of four reflecting spheres as seen by Polaris, with the location of Tc-99m activity placed inside the sphere mounts as determined in SPECT reconstructions. We have successfully tracked targets placed on volunteers in simulated imaging positions on the table of our SPECT system. We obtained excellent correlation (R(2) > 0.998) between the change in location of the targets as measured by our SPECT system and the Polaris. We have also obtained excellent agreement between the recordings of the respiratory motion of four targets attached to an elastic band wrapped around the abdomen of volunteers and from a pneumatic bellows. We used the axial motion of point sources as determined by the Polaris to correct the motion in SPECT image acquisitions yielding virtually identical point source FWHM and FWTM values, and profiled maximum heart wall counts of cardiac phantom images, compared to the reconstructions with no motion.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA