Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Hum Mol Genet ; 32(8): 1276-1288, 2023 04 06.
Artículo en Inglés | MEDLINE | ID: mdl-36413117

RESUMEN

Charcot-Marie-Tooth disease is an inherited peripheral neuropathy that is clinically and genetically heterogenous. Mutations in IGHMBP2, a ubiquitously expressed DNA/RNA helicase, have been shown to cause the infantile motor neuron disease spinal muscular atrophy with respiratory distress type 1 (SMARD1), and, more recently, juvenile-onset Charcot-Marie-Tooth disease type 2S (CMT2S). Using CRISPR-cas9 mutagenesis, we developed the first mouse models of CMT2S [p.Glu365del (E365del) and p.Tyr918Cys (Y918C)]. E365del is the first CMT2S mouse model to be discovered and Y918C is the first human CMT2S allele knock-in model. Phenotypic characterization of the homozygous models found progressive peripheral motor and sensory axonal degeneration. Neuromuscular and locomotor assays indicate that both E365del and Y918C mice have motor deficits, while neurobehavioral characterization of sensory function found that E365del mutants have mechanical allodynia. Analysis of femoral motor and sensory nerves identified axonal degeneration, which does not impact nerve conduction velocities in E365del mice, but it does so in the Y918C model. Based on these results, the E365del mutant mouse, and the human allele knock-in, Y918C, represent mouse models with the hallmark phenotypes of CMT2S, which will be critical for understanding the pathogenic mechanisms of IGHMBP2. These mice will complement existing Ighmbp2 alleles modeling SMARD1 to help understand the complex phenotypic and genotypic heterogeneity that is observed in patients with IGHMBP2 variants.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth , Proteínas de Unión al ADN , Modelos Animales de Enfermedad , Factores de Transcripción , Animales , Humanos , Ratones , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/patología , Proteínas de Unión al ADN/genética , Técnicas de Sustitución del Gen , Ratones Endogámicos C57BL , Debilidad Muscular/patología , Atrofia Muscular/patología , Fenotipo , Factores de Transcripción/genética
2.
Ann Neurol ; 88(2): 297-308, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32418267

RESUMEN

OBJECTIVE: Myotonia is caused by involuntary firing of skeletal muscle action potentials and causes debilitating stiffness. Current treatments are insufficiently efficacious and associated with side effects. Myotonia can be triggered by voluntary movement (electrically induced myotonia) or percussion (mechanically induced myotonia). Whether distinct molecular mechanisms underlie these triggers is unknown. Our goal was to identify ion channels involved in mechanically induced myotonia and to evaluate block of the channels involved as a novel approach to therapy. METHODS: We developed a novel system to enable study of mechanically induced myotonia using both genetic and pharmacologic mouse models of myotonia congenita. We extended ex vivo studies of excitability to in vivo studies of muscle stiffness. RESULTS: As previous work suggests activation of transient receptor potential vanilloid 4 (TRPV4) channels by mechanical stimuli in muscle, we examined the role of this cation channel. Mechanically induced myotonia was markedly suppressed in TRPV4-null muscles and in muscles treated with TRPV4 small molecule antagonists. The suppression of mechanically induced myotonia occurred without altering intrinsic muscle excitability, such that myotonia triggered by firing of action potentials (electrically induced myotonia) was unaffected. When injected intraperitoneally, TRPV4 antagonists lessened the severity of myotonia in vivo by approximately 80%. INTERPRETATION: These data demonstrate that there are distinct molecular mechanisms triggering electrically induced and mechanically induced myotonia. Our data indicates that activation of TRPV4 during muscle contraction plays an important role in triggering myotonia in vivo. Elimination of mechanically induced myotonia by TRPV4 inhibition offers a new approach to treating myotonia. ANN NEUROL 2020;88:297-308.


Asunto(s)
Contracción Isométrica/fisiología , Morfolinas/farmacología , Miotonía Congénita/genética , Miotonía Congénita/metabolismo , Pirroles/farmacología , Canales Catiónicos TRPV/antagonistas & inhibidores , Canales Catiónicos TRPV/deficiencia , Animales , Antracenos/farmacología , Contracción Isométrica/efectos de los fármacos , Ratones , Ratones Noqueados , Morfolinas/uso terapéutico , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/fisiología , Miotonía Congénita/prevención & control , Pirroles/uso terapéutico
3.
Mol Cell Neurosci ; 105: 103484, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-32240725

RESUMEN

This study investigates changes with respect to increasing protein levels in dystrophic nerves of two mdx mouse models of Duchenne muscular dystrophy (DMD). We propose that these nerve changes result from progressive ongoing damage to neuromuscular junctions (NMJs) due to repeated intrinsic bouts of necrosis in dystrophic muscles. We compared sciatic nerves from classic mdx mice aged 13, 15 and 18 months (M), with D2.mdx mice (on DBA2 background) aged 9 and 13 M, using immunoblotting to quantify levels of 7 proteins. The neuronal proteins S100ß and Tau5 were increased by 13 M in mdx nerves (compared with WT), indicating ongoing myonecrosis in this strain. In striking contrast there was no difference in levels of these neuronal proteins for D2.mdx and D2.WT sciatic nerves at 13 M, indicating reduced myonecrosis over this time in D2.mdx mice compared with mdx. These novel changes in mdx sciatic nerves by 13 M, suggest early denervation or neurodegeneration of dystrophic nerves that is likely irreversible and progressive. This neuronal readout of persistent myonecrosis may provide a useful new long-term biomarker for preclinical studies that aim to reduce myonecrosis, plus such neuronal changes present potential new drug targets to help maintain the function of DMD muscles.


Asunto(s)
Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Subunidad beta de la Proteína de Unión al Calcio S100/metabolismo , Proteínas tau/metabolismo , Animales , Modelos Animales de Enfermedad , Ratones Endogámicos mdx , Unión Neuromuscular/metabolismo
4.
Hum Mol Genet ; 25(1): 130-45, 2016 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-26566673

RESUMEN

Genetic background significantly affects phenotype in multiple mouse models of human diseases, including muscular dystrophy. This phenotypic variability is partly attributed to genetic modifiers that regulate the disease process. Studies have demonstrated that introduction of the γ-sarcoglycan-null allele onto the DBA/2J background confers a more severe muscular dystrophy phenotype than the original strain, demonstrating the presence of genetic modifier loci in the DBA/2J background. To characterize the phenotype of dystrophin deficiency on the DBA/2J background, we created and phenotyped DBA/2J-congenic Dmdmdx mice (D2-mdx) and compared them with the original, C57BL/10ScSn-Dmdmdx (B10-mdx) model. These strains were compared with their respective control strains at multiple time points between 6 and 52 weeks of age. Skeletal and cardiac muscle function, inflammation, regeneration, histology and biochemistry were characterized. We found that D2-mdx mice showed significantly reduced skeletal muscle function as early as 7 weeks and reduced cardiac function by 28 weeks, suggesting that the disease phenotype is more severe than in B10-mdx mice. In addition, D2-mdx mice showed fewer central myonuclei and increased calcifications in the skeletal muscle, heart and diaphragm at 7 weeks, suggesting that their pathology is different from the B10-mdx mice. The new D2-mdx model with an earlier onset and more pronounced dystrophy phenotype may be useful for evaluating therapies that target cardiac and skeletal muscle function in dystrophin-deficient mice. Our data align the D2-mdx with Duchenne muscular dystrophy patients with the LTBP4 genetic modifier, making it one of the few instances of cross-species genetic modifiers of monogenic traits.


Asunto(s)
Modelos Animales de Enfermedad , Antecedentes Genéticos , Distrofia Muscular Animal/genética , Animales , Peso Corporal , Distrofina/genética , Ecocardiografía , Femenino , Fuerza de la Mano , Pruebas de Función Cardíaca , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos DBA , Ratones Endogámicos mdx , Contracción Muscular , Músculos/patología , Distrofia Muscular Animal/patología , Miofibrillas/patología , Miositis/genética , Miositis/patología , Tamaño de los Órganos , Fenotipo
5.
Genome Res ; 25(7): 948-57, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25917818

RESUMEN

Spontaneously arising mouse mutations have served as the foundation for understanding gene function for more than 100 years. We have used exome sequencing in an effort to identify the causative mutations for 172 distinct, spontaneously arising mouse models of Mendelian disorders, including a broad range of clinically relevant phenotypes. To analyze the resulting data, we developed an analytics pipeline that is optimized for mouse exome data and a variation database that allows for reproducible, user-defined data mining as well as nomination of mutation candidates through knowledge-based integration of sample and variant data. Using these new tools, putative pathogenic mutations were identified for 91 (53%) of the strains in our study. Despite the increased power offered by potentially unlimited pedigrees and controlled breeding, about half of our exome cases remained unsolved. Using a combination of manual analyses of exome alignments and whole-genome sequencing, we provide evidence that a large fraction of unsolved exome cases have underlying structural mutations. This result directly informs efforts to investigate the similar proportion of apparently Mendelian human phenotypes that are recalcitrant to exome sequencing.


Asunto(s)
Exoma , Mutación , Animales , Femenino , Enfermedades Genéticas Congénitas/genética , Ligamiento Genético , Variación Genética , Estudio de Asociación del Genoma Completo , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento , Masculino , Ratones , Fenotipo , Reproducibilidad de los Resultados
6.
Proc Natl Acad Sci U S A ; 112(43): E5863-72, 2015 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-26460027

RESUMEN

Clinical presentation of spinal muscular atrophy (SMA) ranges from a neonatal-onset, very severe disease to an adult-onset, milder form. SMA is caused by the mutation of the Survival Motor Neuron 1 (SMN1) gene, and prognosis inversely correlates with the number of copies of the SMN2 gene, a human-specific homolog of SMN1. Despite progress in identifying potential therapies for the treatment of SMA, many questions remain including how late after onset treatments can still be effective and what the target tissues should be. These questions can be addressed in part with preclinical animal models; however, modeling the array of SMA severities in the mouse, which lacks SMN2, has proven challenging. We created a new mouse model for the intermediate forms of SMA presenting with a delay in neuromuscular junction maturation and a decrease in the number of functional motor units, all relevant to the clinical presentation of the disease. Using this new model, in combination with clinical electrophysiology methods, we found that administering systemically SMN-restoring antisense oligonucleotides (ASOs) at the age of onset can extend survival and rescue the neurological phenotypes. Furthermore, these effects were also achieved by administration of the ASOs late after onset, independent of the restoration of SMN in the spinal cord. Thus, by adding to the limited repertoire of existing mouse models for type II/III SMA, we demonstrate that ASO therapy can be effective even when administered after onset of the neurological symptoms, in young adult mice, and without being delivered into the central nervous system.


Asunto(s)
Atrofia Muscular Espinal/fisiopatología , Oligonucleótidos Antisentido/farmacología , Animales , Modelos Animales de Enfermedad , Ratones , Fenotipo
7.
Hum Mol Genet ; 21(20): 4431-47, 2012 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-22802075

RESUMEN

A number of mouse models for spinal muscular atrophy (SMA) have been genetically engineered to recapitulate the severity of human SMA by using a targeted null mutation at the mouse Smn1 locus coupled with the transgenic addition of varying copy numbers of human SMN2 genes. Although this approach has been useful in modeling severe SMA and very mild SMA, a mouse model of the intermediate form of the disease would provide an additional research tool amenable for drug discovery. In addition, many of the previously engineered SMA strains are multi-allelic by design, containing a combination of transgenes and targeted mutations in the homozygous state, making further genetic manipulation difficult. A new genetic engineering approach was developed whereby variable numbers of SMN2 sequences were incorporated directly into the murine Smn1 locus. Using combinations of these alleles, we generated an allelic series of SMA mouse strains harboring no, one, two, three, four, five, six or eight copies of SMN2. We report here the characterization of SMA mutants in this series that displayed a range in disease severity from embryonic lethal to viable with mild neuromuscular deficits.


Asunto(s)
Atrofia Muscular Espinal/genética , Unión Neuromuscular/genética , Alelos , Animales , Conducta Animal , Modelos Animales de Enfermedad , Genotipo , Humanos , Ratones , Ratones Endogámicos , Unión Neuromuscular/metabolismo , Fenotipo , Proteína 1 para la Supervivencia de la Neurona Motora/genética , Proteína 1 para la Supervivencia de la Neurona Motora/metabolismo , Proteína 2 para la Supervivencia de la Neurona Motora/genética , Proteína 2 para la Supervivencia de la Neurona Motora/metabolismo
8.
Sci Transl Med ; 16(748): eadk1358, 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38776392

RESUMEN

Blood-CNS barrier disruption is a hallmark of numerous neurological disorders, yet whether barrier breakdown is sufficient to trigger neurodegenerative disease remains unresolved. Therapeutic strategies to mitigate barrier hyperpermeability are also limited. Dominant missense mutations of the cation channel transient receptor potential vanilloid 4 (TRPV4) cause forms of hereditary motor neuron disease. To gain insights into the cellular basis of these disorders, we generated knock-in mouse models of TRPV4 channelopathy by introducing two disease-causing mutations (R269C and R232C) into the endogenous mouse Trpv4 gene. TRPV4 mutant mice exhibited weakness, early lethality, and regional motor neuron loss. Genetic deletion of the mutant Trpv4 allele from endothelial cells (but not neurons, glia, or muscle) rescued these phenotypes. Symptomatic mutant mice exhibited focal disruptions of blood-spinal cord barrier (BSCB) integrity, associated with a gain of function of mutant TRPV4 channel activity in neural vascular endothelial cells (NVECs) and alterations of NVEC tight junction structure. Systemic administration of a TRPV4-specific antagonist abrogated channel-mediated BSCB impairments and provided a marked phenotypic rescue of symptomatic mutant mice. Together, our findings show that mutant TRPV4 channels can drive motor neuron degeneration in a non-cell autonomous manner by precipitating focal breakdown of the BSCB. Further, these data highlight the reversibility of TRPV4-mediated BSCB impairments and identify a potential therapeutic strategy for patients with TRPV4 mutations.


Asunto(s)
Barrera Hematoencefálica , Células Endoteliales , Mutación con Ganancia de Función , Neuronas Motoras , Canales Catiónicos TRPV , Animales , Canales Catiónicos TRPV/metabolismo , Canales Catiónicos TRPV/genética , Neuronas Motoras/patología , Neuronas Motoras/metabolismo , Células Endoteliales/metabolismo , Células Endoteliales/patología , Barrera Hematoencefálica/metabolismo , Barrera Hematoencefálica/patología , Ratones , Degeneración Nerviosa/patología , Degeneración Nerviosa/genética , Fenotipo , Médula Espinal/patología , Médula Espinal/metabolismo
9.
Hum Mol Genet ; 20(23): 4617-33, 2011 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-21890498

RESUMEN

Congenital myasthenic syndromes (CMS) are inherited diseases affecting the neuromuscular junction (NMJ). Mutations in AGRIN (AGRN) and other genes in the AGRIN signaling pathway cause CMS, and gene targeting studies in mice confirm the importance of this pathway for NMJ formation. However, these mouse mutations are complete loss-of-function alleles that result in an embryonic failure of NMJ formation, and homozygous mice do not survive postpartum. Therefore, mouse models of AGRIN-related CMS that would allow preclinical testing or studies of postnatal disease progression are lacking. Using chemical mutagenesis in mice, we identified a point mutation in Agrn that results in a partial loss-of-function allele, creating a valid model of CMS. The mutation changes phenylalanine 1061 to serine in the SEA domain of AGRIN, a poorly characterized motif shared by other extracellular proteoglycans. NMJs in homozygous mice progressively degrade postnataly. Severity differs with genetic background, in different muscles, and in different regions within a muscle in a pattern matching mouse models of motor neuron disease. Mutant NMJs have decreased acetylcholine receptor density and an increased subsynaptic reticulum, evident by electron microscopy. Synapses eventually denervate and the muscles atrophy. Molecularly, several factors contribute to the partial loss of AGRIN's function. The mutant protein is found at NMJs, but is processed differently than wild-type, with decreased glycosylation, changes in sensitivity to the protease neurotrypsin and other proteolysis, and less efficient externalization and secretion. Therefore, the Agrn point mutation is a model for CMS caused by Agrn mutations and potentially other related neuromuscular diseases.


Asunto(s)
Agrina/genética , Modelos Animales de Enfermedad , Predisposición Genética a la Enfermedad , Síndromes Miasténicos Congénitos/genética , Agrina/química , Agrina/metabolismo , Alelos , Secuencia de Aminoácidos , Animales , Animales Recién Nacidos , Secuencia de Bases , Membrana Celular/metabolismo , Glicosilación , Ratones , Mitocondrias/metabolismo , Mitocondrias/patología , Mitocondrias/ultraestructura , Datos de Secuencia Molecular , Enfermedad de la Neurona Motora/genética , Enfermedad de la Neurona Motora/patología , Fibras Musculares Esqueléticas/metabolismo , Fibras Musculares Esqueléticas/patología , Fibras Musculares Esqueléticas/ultraestructura , Proteínas Mutantes/metabolismo , Mutación/genética , Síndromes Miasténicos Congénitos/patología , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Unión Neuromuscular/ultraestructura , Fenotipo , Estabilidad Proteica , Transporte de Proteínas , Proteolisis , Reproducibilidad de los Resultados
10.
J Clin Invest ; 131(11)2021 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-33878035

RESUMEN

Charcot-Marie-Tooth disease type 4J (CMT4J) is caused by recessive, loss-of-function mutations in FIG4, encoding a phosphoinositol(3,5)P2-phosphatase. CMT4J patients have both neuron loss and demyelination in the peripheral nervous system, with vacuolization indicative of endosome/lysosome trafficking defects. Although the disease is highly variable, the onset is often in childhood and FIG4 mutations can dramatically shorten life span. There is currently no treatment for CMT4J. Here, we present the results of preclinical studies testing a gene-therapy approach to restoring FIG4 expression. A mouse model of CMT4J, the Fig4-pale tremor (plt) allele, was dosed with a single-stranded adeno-associated virus serotype 9 (AAV9) to deliver a codon-optimized human FIG4 sequence. Untreated, Fig4plt/plt mice have a median survival of approximately 5 weeks. When treated with the AAV9-FIG4 vector at P1 or P4, mice survived at least 1 year, with largely normal gross motor performance and little sign of neuropathy by neurophysiological or histopathological evaluation. When mice were treated at P7 or P11, life span was still significantly prolonged and peripheral nerve function was improved, but rescue was less complete. No unanticipated adverse effects were observed. Therefore, AAV9-mediated delivery of FIG4 is a well-tolerated and efficacious strategy in a mouse model of CMT4J.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/terapia , Dependovirus , Flavoproteínas/biosíntesis , Longevidad , Fosfoinosítido Fosfatasas/biosíntesis , Transducción Genética , Animales , Enfermedad de Charcot-Marie-Tooth/genética , Enfermedad de Charcot-Marie-Tooth/metabolismo , Enfermedad de Charcot-Marie-Tooth/patología , Modelos Animales de Enfermedad , Femenino , Flavoproteínas/genética , Masculino , Ratones , Ratones Noqueados , Fosfoinosítido Fosfatasas/genética
11.
J Neuromuscul Dis ; 5(4): 407-417, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30198876

RESUMEN

A new line of dystrophic mdx mice on the DBA/2J (D2) background has emerged as a candidate to study the efficacy of therapeutic approaches for Duchenne muscular dystrophy (DMD). These mice harbor genetic polymorphisms that appear to increase the severity of the dystropathology, with disease modifiers that also occur in DMD patients, making them attractive for efficacy studies and drug development. This workshop aimed at collecting and consolidating available data on the pathological features and the natural history of these new D2/mdx mice, for comparison with classic mdx mice and controls, and to identify gaps in information and their potential value. The overall aim is to establish guidance on how to best use the D2/mdx mouse model in preclinical studies.


Asunto(s)
Modelos Animales de Enfermedad , Distrofia Muscular Animal , Distrofia Muscular de Duchenne , Animales , Ratones , Ratones Endogámicos DBA , Ratones Endogámicos mdx
12.
J Neuromuscul Dis ; 4(2): 115-126, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28550268

RESUMEN

Laminin-α2 related Congenital Muscular Dystrophy (LAMA2-CMD) is a progressive muscle disease caused by partial or complete deficiency of laminin-211, a skeletal muscle extracellular matrix protein. In the last decade, basic science research has queried underlying disease mechanisms in existing LAMA2-CMD murine models and identified possible clinical targets and pharmacological interventions. Experimental rigor in preclinical studies is critical to efficiently and accurately quantify both negative and positive results, degree of efficiency of potential therapeutics and determine whether to move a compound forward for additional preclinical testing. In this review, we compare published available data measured to assess three common parameters in the widely used mouse model DyW, that mimics LAMA2-CMD, we quantify variability and analyse its possible sources. Finally, on the basis of this analysis, we suggest standard set of assessments and the use of available standardized protocols, to reduce variability of outcomes in the future and to improve the value of preclinical research.


Asunto(s)
Modelos Animales de Enfermedad , Laminina/deficiencia , Distrofias Musculares/diagnóstico , Animales , Laminina/genética , Ratones , Distrofias Musculares/metabolismo , Distrofias Musculares/terapia , Fenotipo , Reproducibilidad de los Resultados
13.
J Neurosci ; 24(29): 6573-7, 2004 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-15269269

RESUMEN

A protein-trap screen using the Drosophila neuromuscular junction (NMJ) as a model synapse was performed to identify genes that control synaptic structure or plasticity. We found that Shaggy (Sgg), the Drosophila homolog of the mammalian glycogen synthase kinases 3 alpha and beta, two serine-threonine kinases, was concentrated at this synapse. Using various combinations of mutant alleles of shaggy, we found that Shaggy negatively controlled the NMJ growth. Moreover, tissue-specific expression of a dominant-negative Sgg indicated that this kinase is required in the motoneuron, but not in the muscle, to control NMJ growth. Finally, we show that Sgg controlled the microtubule cytoskeleton dynamics in the motoneuron and that Futsch, a microtubule-associated protein, was required for Shaggy function on synaptic growth.


Asunto(s)
Proteínas de Drosophila/fisiología , Drosophila melanogaster/enzimología , Drosophila melanogaster/crecimiento & desarrollo , Glucógeno Sintasa Quinasa 3/fisiología , Unión Neuromuscular/enzimología , Unión Neuromuscular/crecimiento & desarrollo , Animales , Proteínas de Drosophila/análisis , Proteínas de Drosophila/genética , Drosophila melanogaster/ultraestructura , Glucógeno Sintasa Quinasa 3/análisis , Glucógeno Sintasa Quinasa 3/genética , Larva/enzimología , Proteínas Asociadas a Microtúbulos/genética , Microtúbulos/ultraestructura , Neuronas Motoras/enzimología , Mutación , Factores de Crecimiento Nervioso/genética , Plasticidad Neuronal , Terminales Presinápticos/enzimología , Terminales Presinápticos/ultraestructura
14.
J Neurosci ; 24(41): 9105-16, 2004 Oct 13.
Artículo en Inglés | MEDLINE | ID: mdl-15483129

RESUMEN

In vertebrates, several groups of metabotropic glutamate receptors (mGluRs) are known to modulate synaptic properties. In contrast, the Drosophila genome encodes a single functional mGluR (DmGluRA), an ortholog of vertebrate group II mGluRs, greatly expediting the functional characterization of mGluR-mediated signaling in the nervous system. We show here that DmGluRA is expressed at the glutamatergic neuromuscular junction (NMJ), localized in periactive zones of presynaptic boutons but excluded from active sites. Null DmGluRA mutants are completely viable, and all of the basal NMJ synaptic transmission properties are normal. In contrast, DmGluRA mutants display approximately a threefold increase in synaptic facilitation during short stimulus trains. Prolonged stimulus trains result in very strongly increased ( approximately 10-fold) augmentation, including the appearance of asynchronous, bursting excitatory currents never observed in wild type. Both defects are rescued by expression of DmGluRA only in the neurons, indicating a specific presynaptic requirement. These phenotypes are reminiscent of hyperexcitable mutants, suggesting a role of DmGluRA signaling in the regulation of presynaptic excitability properties. The mutant phenotypes could not be replicated by acute application of mGluR antagonists, suggesting that DmGluRA regulates the development of presynaptic properties rather than directly controlling short-term modulation. DmGluRA mutants also display mild defects in NMJ architecture: a decreased number of synaptic boutons accompanied by an increase in mean bouton size. These morphological changes bidirectionally correlate with DmGluRA levels in the presynaptic terminal. These data reveal the following two roles for DmGluRA in presynaptic mechanisms: (1) modulation of presynaptic excitability properties important for the control of activity-dependent neurotransmitter release and (2) modulation of synaptic architecture.


Asunto(s)
Proteínas de Drosophila/metabolismo , Receptores de Glutamato Metabotrópico/metabolismo , Receptores de Glutamato Metabotrópico/fisiología , Sinapsis/fisiología , Potenciales de Acción/fisiología , Animales , Animales Modificados Genéticamente , Proteínas de Drosophila/genética , Drosophila melanogaster , Estimulación Eléctrica , Retroalimentación Fisiológica/fisiología , Subunidades beta de la Proteína de Unión al GTP/metabolismo , Ácido Glutámico/metabolismo , Larva , Mutación , Unión Neuromuscular/metabolismo , Unión Neuromuscular/fisiología , Unión Neuromuscular/ultraestructura , Plasticidad Neuronal/genética , Plasticidad Neuronal/fisiología , Técnicas de Placa-Clamp , Terminales Presinápticos/metabolismo , Terminales Presinápticos/ultraestructura , Receptores de Glutamato Metabotrópico/genética , Sinapsis/metabolismo , Sinapsis/ultraestructura , Transmisión Sináptica/fisiología
15.
Neuron ; 88(5): 892-901, 2015 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-26637796

RESUMEN

Noncoding expansions of a hexanucleotide repeat (GGGGCC) in the C9orf72 gene are the most common cause of familial amyotrophic lateral sclerosis and frontotemporal dementia. Here we report transgenic mice carrying a bacterial artificial chromosome (BAC) containing the full human C9orf72 gene with either a normal allele (15 repeats) or disease-associated expansion (∼100-1,000 repeats; C9-BACexp). C9-BACexp mice displayed pathologic features seen in C9orf72 expansion patients, including widespread RNA foci and repeat-associated non-ATG (RAN) translated dipeptides, which were suppressed by antisense oligonucleotides targeting human C9orf72. Nucleolin distribution was altered, supporting that either C9orf72 transcripts or RAN dipeptides promote nucleolar dysfunction. Despite early and widespread production of RNA foci and RAN dipeptides in C9-BACexp mice, behavioral abnormalities and neurodegeneration were not observed even at advanced ages, supporting the hypothesis that RNA foci and RAN dipeptides occur presymptomatically and are not sufficient to drive neurodegeneration in mice at levels seen in patients.


Asunto(s)
Esclerosis Amiotrófica Lateral/patología , Encéfalo/patología , Expansión de las Repeticiones de ADN/genética , Demencia Frontotemporal/patología , Proteínas/genética , Médula Espinal/patología , Factores de Edad , Esclerosis Amiotrófica Lateral/genética , Esclerosis Amiotrófica Lateral/fisiopatología , Animales , Encéfalo/metabolismo , Proteína C9orf72 , Células Cultivadas , Cromosomas Artificiales Bacterianos/genética , Cromosomas Artificiales Bacterianos/metabolismo , Modelos Animales de Enfermedad , Demencia Frontotemporal/genética , Demencia Frontotemporal/fisiopatología , Ácido Glutámico/farmacología , Humanos , Ratones , Ratones Transgénicos , Actividad Motora/genética , Fuerza Muscular/genética , Unión Neuromuscular/genética , Unión Neuromuscular/patología , Neuronas/efectos de los fármacos , Desempeño Psicomotor/fisiología , Médula Espinal/metabolismo
16.
Brain Res ; 1584: 59-72, 2014 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24141148

RESUMEN

ALS therapy development has been hindered by the lack of rodent animal models. The discovery of TDP-43, a transcription factor that accumulates in the cytoplasm of motor neurons (MNs) in most cases of ALS, prompted attempts to develop TDP-43-based models of the disease. The current study sought to examine, in extensive detail, the emerging disease phenotype of a transgenic mouse model that overexpresses a mutant human TDP-43 (hTDP-43) gene under mouse prion promoter control. Careful attention was given to ALS-like characteristics to determine the appropriateness of this model for testing therapies for ALS. In light of previous reports that gastrointestinal (GI) dysfunction is responsible for early death in these mice, gut immunohistochemistry (IHC) and longitudinal gut motility assays were used to identify the onset and the progression of these defects. IHC studies revealed that site-specific overexpression of the hTDP-43 transgene in colonic myenteric plexes resulted in progressive neurodegeneration in this region. This change was associated with progressively reduced GI motility, culminating in frank stasis that was primarily responsible for decreasing longevity in these mice. The disease phenotype was gender- and genetic background-dependent, with congenic C57BL/6J male mice exhibiting the most aggressive form of the disease. Spinal cord IHC revealed ubiquitin-positive inclusions, but not TDP-43 aggregates, in the cytoplasm of MNs. Neither gender exhibited compelling ALS-like neuromuscular deficits, irrespective of age. While this model may be useful for studying GI tract neurodegeneration, in its present state it does not display a phenotype suitable for testing ALS therapeutics.


Asunto(s)
Esclerosis Amiotrófica Lateral/metabolismo , Esclerosis Amiotrófica Lateral/patología , Colon/patología , Proteínas de Unión al ADN/metabolismo , Plexo Mientérico/patología , Animales , Colon/inervación , Colon/metabolismo , Proteínas de Unión al ADN/genética , Femenino , Motilidad Gastrointestinal , Tracto Gastrointestinal/patología , Proteína Ácida Fibrilar de la Glía , Humanos , Cuerpos de Inclusión/metabolismo , Cuerpos de Inclusión/patología , Masculino , Ratones , Ratones Congénicos , Ratones Endogámicos C57BL , Ratones Transgénicos , Neuronas Motoras/metabolismo , Neuronas Motoras/patología , Plexo Mientérico/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Factores Sexuales , Médula Espinal/metabolismo , Médula Espinal/patología , Ubiquitina/metabolismo
17.
Dis Model Mech ; 6(3): 780-92, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23519028

RESUMEN

Charcot-Marie-Tooth disease (CMT) is a clinically and genetically heterogeneous condition characterized by peripheral axon degeneration with subsequent motor and sensory deficits. Several CMT gene products function in endosomal sorting and trafficking to the lysosome, suggesting that defects in this cellular pathway might present a common pathogenic mechanism for these conditions. LRSAM1 is an E3 ubiquitin ligase that is implicated in this process, and mutations in LRSAM1 have recently been shown to cause CMT. We have generated mouse mutations in Lrsam1 to create an animal model of this form of CMT (CMT2P). Mouse Lrsam1 is abundantly expressed in the motor and sensory neurons of the peripheral nervous system. Both homozygous and heterozygous mice have largely normal neuromuscular performance and only a very mild neuropathy phenotype with age. However, Lrsam1 mutant mice are more sensitive to challenge with acrylamide, a neurotoxic agent that causes axon degeneration, indicating that the axons in the mutant mice are indeed compromised. In transfected cells, LRSAM1 primarily localizes in a perinuclear compartment immediately beyond the Golgi and shows little colocalization with components of the endosome to lysosome trafficking pathway, suggesting that other cellular mechanisms also merit consideration.


Asunto(s)
Axones/metabolismo , Enfermedad de Charcot-Marie-Tooth/enzimología , Degeneración Nerviosa/patología , Sistema Nervioso Periférico/patología , Ubiquitina-Proteína Ligasas/metabolismo , Acrilamida/farmacología , Animales , Axones/efectos de los fármacos , Conducta Animal/efectos de los fármacos , Línea Celular , Enfermedad de Charcot-Marie-Tooth/complicaciones , Enfermedad de Charcot-Marie-Tooth/patología , Modelos Animales de Enfermedad , Endosomas/efectos de los fármacos , Endosomas/metabolismo , Humanos , Lisosomas/efectos de los fármacos , Lisosomas/metabolismo , Ratones , Ratones Mutantes , Mutagénesis/genética , Mutación/genética , Degeneración Nerviosa/complicaciones , Degeneración Nerviosa/enzimología , Unión Neuromuscular/efectos de los fármacos , Unión Neuromuscular/metabolismo , Unión Neuromuscular/patología , Sistema Nervioso Periférico/efectos de los fármacos , Sistema Nervioso Periférico/enzimología , Fenotipo , Transporte de Proteínas/efectos de los fármacos , Fracciones Subcelulares/efectos de los fármacos , Fracciones Subcelulares/enzimología , Transfección
18.
PLoS One ; 7(1): e30217, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22272310

RESUMEN

Glycine is the major inhibitory neurotransmitter in the spinal cord and some brain regions. The presynaptic glycine transporter, GlyT2, is required for sustained glycinergic transmission through presynaptic reuptake and recycling of glycine. Mutations in SLC6A5, encoding GlyT2, cause hereditary hyperekplexia in humans, and similar phenotypes in knock-out mice, and variants are associated with schizophrenia. We identified a spontaneous mutation in mouse Slc6a5, caused by a MusD retrotransposon insertion. The GlyT2 protein is undetectable in homozygous mutants, indicating a null allele. Homozygous mutant mice are normal at birth, but develop handling-induced spasms at five days of age, and only survive for two weeks, but allow the study of early activity-regulated developmental processes. At the neuromuscular junction, synapse elimination and the switch from embryonic to adult acetylcholine receptor subunits are hastened, consistent with a presumed increase in motor neuron activity, and transcription of acetylcholine receptors is elevated. Heterozygous mice, which show no reduction in lifespan but nonetheless have reduced levels of GlyT2, have a normal thermal sensitivity with the hot-plate test, but differences in repetitive grooming and decreased sleep time with home-cage monitoring. Open-field and elevated plus-maze tests did not detect anxiety-like behaviors; however, the latter showed a hyperactivity phenotype. Importantly, grooming and hyperactivity are observed in mouse schizophrenia models. Thus, mutations in Slc6a5 show changes in neuromuscular junction development as homozygotes, and behavioral phenotypes as heterozygotes, indicating their usefulness for studies related to glycinergic dysfunction.


Asunto(s)
Proteínas de Transporte de Glicina en la Membrana Plasmática/genética , Mutagénesis Insercional , Unión Neuromuscular/fisiología , Desempeño Psicomotor/fisiología , Retroelementos/genética , Animales , Ansiedad , Western Blotting , Mapeo Cromosómico , Cromosomas de los Mamíferos/genética , Femenino , Estudios de Asociación Genética , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Aseo Animal , Humanos , Masculino , Aprendizaje por Laberinto , Ratones , Ratones Endogámicos DBA , Ratones Endogámicos NOD , Ratones Noqueados , Ratones SCID , Actividad Motora , Mutación , Inhibición Neural/genética , Inhibición Neural/fisiología , Unión Neuromuscular/genética , Médula Espinal/metabolismo , Médula Espinal/fisiopatología
19.
PLoS One ; 3(4): e2084, 2008 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-18446215

RESUMEN

BACKGROUND: The Dystrophin-glycoprotein complex (DGC) comprises dystrophin, dystroglycan, sarcoglycan, dystrobrevin and syntrophin subunits. In muscle fibers, it is thought to provide an essential mechanical link between the intracellular cytoskeleton and the extracellular matrix and to protect the sarcolemma during muscle contraction. Mutations affecting the DGC cause muscular dystrophies. Most members of the DGC are also concentrated at the neuromuscular junction (NMJ), where their deficiency is often associated with NMJ structural defects. Hence, synaptic dysfunction may also intervene in the pathology of dystrophic muscles. Dystroglycan is a central component of the DGC because it establishes a link between the extracellular matrix and Dystrophin. In this study, we focused on the synaptic role of Dystroglycan (Dg) in Drosophila. METHODOLOGY/PRINCIPAL FINDINGS: We show that Dg was concentrated postsynaptically at the glutamatergic NMJ, where, like in vertebrates, it controls the concentration of synaptic Laminin and Dystrophin homologues. We also found that synaptic Dg controlled the amount of postsynaptic 4.1 protein Coracle and alpha-Spectrin, as well as the relative subunit composition of glutamate receptors. In addition, both Dystrophin and Coracle were required for normal Dg concentration at the synapse. In electrophysiological recordings, loss of postsynaptic Dg did not affect postsynaptic response, but, surprisingly, led to a decrease in glutamate release from the presynaptic site. CONCLUSION/SIGNIFICANCE: Altogether, our study illustrates a conservation of DGC composition and interactions between Drosophila and vertebrates at the synapse, highlights new proteins associated with this complex and suggests an unsuspected trans-synaptic function of Dg.


Asunto(s)
Drosophila melanogaster/metabolismo , Distroglicanos/metabolismo , Músculo Esquelético/metabolismo , Unión Neuromuscular/metabolismo , Neurotransmisores/metabolismo , Terminales Presinápticos/metabolismo , Animales , Citoesqueleto/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/citología , Distrofina/metabolismo , Espacio Intracelular/metabolismo , Laminina/metabolismo , Proteínas de la Membrana/metabolismo , Unión Neuromuscular/citología , Subunidades de Proteína/metabolismo , Transporte de Proteínas , Receptores de Glutamato/metabolismo , Espectrina/metabolismo
20.
Eur J Neurosci ; 24(1): 37-44, 2006 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16882006

RESUMEN

Barh1/h2 genes encode two related homeobox transcription factors (B-H1 and B-H2) previously shown to play essential roles in the formation and specification of the distal leg segments and in retinal neurogenesis. Here we describe the restricted expression pattern of the B-H1/-H2 homeoprotein within the embryonic ventral nerve cord of Drosophila. We show that B-H1/-H2 are specifically expressed in a subset of dopaminergic neurons, namely the unpaired ventral midline dopaminergic neuron, and in a subpopulation of laterally projecting motoneurons, i.e. the five motoneurons forming the segmental nerve a (SNa) branch. Using the GAL4-UAS system we show that B-H1/-H2(Gal4) in combination with a membrane-targeted enhanced green fluorescent protein reporter line provides a powerful genetic tool reproducibly to label SNa motoneuron projections and terminals at the periphery, and their dendritic tree in the ventral nerve cord. Thus, the highly restricted expression pattern of the B-H1/-H2 homeoproteins and notably the related Gal4 driver represent powerful genetic tools to identify and study genes that control axon guidance, synaptogenesis or dendritic arborization within a small subpopulation of motoneurons identifiable from embryogenesis to late larval stages.


Asunto(s)
Dopamina/metabolismo , Proteínas de Drosophila/biosíntesis , Drosophila/metabolismo , Proteínas del Ojo/biosíntesis , Neuronas Motoras/metabolismo , Factores de Transcripción/biosíntesis , Animales , Axones/metabolismo , Sistema Nervioso Central/embriología , Sistema Nervioso Central/crecimiento & desarrollo , Sistema Nervioso Central/metabolismo , Drosophila/embriología , Drosophila/crecimiento & desarrollo , Proteínas de Drosophila/genética , Embrión no Mamífero/metabolismo , Proteínas del Ojo/genética , Proteínas de Homeodominio , Inmunohistoquímica , Larva/metabolismo , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA