Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 150
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Small ; : e2403640, 2024 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-38963162

RESUMEN

Ensuring precise drug release at target sites is crucial for effective treatment. Here, pH-responsive nanoparticles for oral administration of mycophenolate mofetil, an alternative therapy for patients with inflammatory bowel disease unresponsive to conventional treatments is developed. However, its oral administration presents challenges due to its low solubility in the small intestine and high solubility and absorption in the stomach. Therefore, this aim is to design a drug delivery system capable of maintaining drug solubility compared to the free drug while delaying absorption from the stomach to the intestine. Successful synthesis and assembly of a block copolymer incorporating a pH-responsive functional group is achieved. Dynamic light scattering indicated a significant change in hydrodynamic size when the pH exceeded 6.5, confirming successful incorporation of the pH-responsive group. Encapsulation and controlled release of mycophenolate mofetil are efficiently demonstrated, with 90% release observed at intestinal pH. In vitro cell culture studies confirmed biocompatibility, showing no toxicity or adverse effects on Caco-2 cells. In vivo oral rat studies indicated reduced drug absorption in the stomach and enhanced absorption in the small intestine with the developed formulation. This research presents a promising drug delivery system with potential applications in the treatment of inflammatory bowel disease.

2.
Small ; 19(15): e2206330, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36670055

RESUMEN

In the case of macromolecules and poorly permeable drugs, oral drug delivery features low bioavailability and low absorption across the intestinal wall. Intestinal absorption can be improved if the drug formulation could be transported close to the epithelium. To achieve this, a cascade delivery device comprising Magnesium-based Janus micromotors (MMs) nesting inside a microscale containers (MCs) has been conceptualized. The device aims at facilitating targeted drug delivery mediated by MMs that can lodge inside the intestinal mucosa. Loading MMs into MCs can potentially enhance drug absorption through increased proximity and unidirectional release. The MMs will be provided with optimal conditions for ejection into any residual mucus layer that the MCs have not penetrated. MMS confined inside MCs propel faster in the mucus environment as compared to non-confined MMs. Upon contact with a suitable fuel, the MM-loaded MC itself can also move. An in vitro study shows fast release profiles and linear motion properties in porcine intestinal mucus compared to more complex motion in aqueous media. The concept of dual-acting cascade devices holds great potential in applications where proximity to epithelium and deep mucus penetration are needed.


Asunto(s)
Sistemas de Liberación de Medicamentos , Nanopartículas , Animales , Porcinos , Administración Oral , Intestinos , Mucosa Intestinal , Preparaciones Farmacéuticas , Moco , Portadores de Fármacos
3.
Analyst ; 148(19): 4787-4798, 2023 Sep 25.
Artículo en Inglés | MEDLINE | ID: mdl-37602485

RESUMEN

Rapidly and accurately detecting and quantifying the concentrations of nitroaromatic explosives is critical for public health and security. Among existing approaches, explosives' detection with Surface-Enhanced Raman Spectroscopy (SERS) has received considerable attention due to its high sensitivity. Typically, a preprocessed single spectrum that is the average of the entire or a selected subset of a SERS map is used to train various machine learning models for detection and quantification. Designing an appropriate averaging and preprocessing procedure for SERS maps across different concentrations is time-consuming and computationally costly, and the averaging of spectra may lead to the loss of crucial spectral information. We propose an attention-based vision transformer neural network for nitroaromatic explosives' detection and quantification that takes raw SERS maps as the input without any preprocessing. We produce two novel SERS datasets, 2,4-dinitrophenols (DNP) and picric acid (PA), and one benchmark SERS dataset, 4-nitrobenzenethiol (4-NBT), which have repeated measurements down to concentrations of 1 nM to illustrate the detection limit. We experimentally show that our approach outperforms or is on par with the existing methods in terms of detection and concentration prediction accuracy. With the produced attention maps, we can further identify the regions with a higher signal-to-noise ratio in the SERS maps. Based on our findings, the molecule of interest detection and concentration prediction using raw SERS maps is a promising alternative to existing approaches.

4.
Mikrochim Acta ; 190(12): 495, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-38036694

RESUMEN

Considering the need for a more time and cost-effective method for lamotrigine (LTG) detection in clinics we developed a fast and robust label-free assay based on surface-enhanced Raman scattering (SERS) for LTG quantification from human serum. The optimization and application of the developed assay is presented  showing the: (i) exploration of different methods for LTG separation from human serum; (ii) implementation of a molecular adsorption step on an ordered Au nanopillar SERS substrate; (iii) adaptation of a fast scanning of the SERS substrate, performed with a custom-built compact Raman spectrometer; and (iv) development of LTG quantification methods with univariate and multivariate spectral data analysis. Our results showed, for the first time, the SERS-based characterization of LTG and its label-free identification in human serum. We found that combining a miniaturized solid phase extraction, as sample pre-treatment with the SERS assay, and using a multivariate model is an optimal strategy for LTG quantification in human serum in a linear range from 9.5 to 75 µM, with LoD and LoQ of 3.2 µM and 9.5 µM, respectively, covering the suggested clinical therapeutic window. We also showed that the developed assay allowed for quantifying LTG from human serum in the presence of other drugs, thereby demonstrating the robustness of label-free SERS. The sensing approach and instrumentation can be further automated and integrated in devices that can advance the drug monitoring in real clinical settings.


Asunto(s)
Anticonvulsivantes , Espectrometría Raman , Humanos , Lamotrigina , Espectrometría Raman/métodos , Análisis de Datos
5.
Appl Environ Microbiol ; 88(14): e0073422, 2022 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-35758759

RESUMEN

Oral antibiotic treatment is often applied in animal studies in order to allow establishment of an introduced antibiotic-resistant bacterium in the gut. Here, we compared the application of streptomycin dosed orally in microcontainers to dosage through drinking water. The selective effect on a resistant bacterial strain, as well as the effects on fecal, luminal, and mucosal microbiota composition, were investigated. Three groups of rats (n = 10 per group) were orally dosed with microcontainers daily for 3 days. One of these groups (STR-M) received streptomycin-loaded microcontainers designed for release in the distal ileum, while the other two groups (controls [CTR] and STR-W) received empty microcontainers. The STR-W group was additionally dosed with streptomycin through the drinking water. A streptomycin-resistant Escherichia coli strain was orally inoculated into all animals. Three days after inoculation, the resistant E. coli was found only in the cecum and colon of animals receiving streptomycin in microcontainers but in all intestinal compartments of animals receiving streptomycin in the drinking water. 16S rRNA amplicon sequencing revealed significant changes in the fecal microbiota of both groups of streptomycin-treated animals. Investigation of the inner colonic mucus layer by confocal laser scanning microscopy and laser capture microdissection revealed no significant effect of streptomycin treatment on the mucus-inhabiting microbiota or on E. coli encroachment into the inner mucus. Streptomycin-loaded microcontainers thus enhanced proliferation of an introduced streptomycin-resistant E. coli in the cecum and colon without affecting the small intestine environment. While improvements of the drug delivery system are needed to facilitate optimal local concentration and release of streptomycin, the application of microcontainers provides new prospects for antibiotic treatment. IMPORTANCE Delivery of antibiotics in microcontainer devices designed for release at specific sites of the gut represents a novel approach which might reduce the amount of antibiotic needed to obtain a local selective effect. We propose that the application of microcontainers may have the potential to open novel opportunities for antibiotic treatment of humans and animals with fewer side effects on nontarget bacterial populations. In the current study, we therefore elucidated the effects of streptomycin, delivered in microcontainers coated with pH-sensitive lids, on the selective effect on a resistant bacterium, as well as on the surrounding intestinal microbiota in rats.


Asunto(s)
Agua Potable , Estreptomicina , Animales , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Bacterias/genética , Colon , Escherichia coli/genética , Humanos , Mucosa Intestinal/microbiología , ARN Ribosómico 16S , Ratas , Estreptomicina/farmacología
6.
Biomed Microdevices ; 23(3): 37, 2021 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-34269869

RESUMEN

Micro-reservoir based drug delivery systems have the potential to provide targeted drug release locally in the intestine, i.e. at the inflamed areas of the intestine of patients with inflammatory bowel disease (IBD). In this study, microcontainers with a diameter of 300 µm and a height of 100 µm, asymmetrical geometry and the possibility to provide unidirectional release, are fabricated in the biodegradable polymer poly-ɛ-caprolactone (PCL) using hot punching. As a first step towards local treatment of IBD, a novel method for loading of microcontainers with the corticosteroid budesonide is developed. For this purpose, a budesonide-Soluplus drug-polymer film is prepared by spin coating and loaded into the microcontainer reservoirs using hot punching. The processing parameters are optimized to achieve a complete loading of a large number of containers in a single step. A poly(lactic-co-glycolic acid) (PLGA) 50:50 lid is subsequently applied by spray coating. Solid-state characterization indicates that the drug is in an amorphous state in the drug-polymer films and the in vitro drug release profile showed a 68% release over 10 h. The results demonstrate that hot punching can be employed both as a production and loading method for PCL microcontainers with the perspective of local treatment of IBD.


Asunto(s)
Budesonida , Polietilenglicoles , Sistemas de Liberación de Medicamentos , Humanos , Polivinilos
7.
Anal Chem ; 92(20): 13871-13879, 2020 10 20.
Artículo en Inglés | MEDLINE | ID: mdl-32962340

RESUMEN

Pathogenic bacterial biofilms can be life-threatening, greatly decrease patient's quality of life, and are a substantial burden on the healthcare system. Current methods for evaluation of antibacterial treatments in clinics and in vitro systems used in drug development and screening either do not facilitate biofilm formation or are cumbersome to operate, need large reagent volumes, and are costly, limiting their usability. To address these issues, this work presents the development of a robust in vitro cell culture platform compatible with confocal microscopy. The platform shaped as a compact disc facilitates long-term bacterial culture without external pumps and tubing and can be operated for several days without additional liquid handling. As an example, Pseudomonas aeruginosa biofilm is grown from single cells, and it is shown that (1) the platform delivers reproducible and reliable results; (2) growth is dependent on flow rate and growth medium composition; and (3) efficacy of antibiotic treatment depends on the formed biofilm. This platform enables biofilm growth, quantification, and treatment as in a conventional flow setup while decreasing the application barrier of lab-on-chip systems. It provides an easy-to-use, affordable option for end users working with cell culturing in relation to, e.g., diagnostics and drug screening.


Asunto(s)
Antibacterianos/farmacología , Técnicas de Cultivo Celular por Lotes/métodos , Biopelículas/efectos de los fármacos , Dispositivos Laboratorio en un Chip , Microscopía Confocal/métodos , Pseudomonas aeruginosa , Técnicas de Cultivo Celular por Lotes/instrumentación , Biopelículas/crecimiento & desarrollo , Biomasa , Pseudomonas aeruginosa/fisiología
8.
Anal Chem ; 92(6): 4317-4325, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-31985206

RESUMEN

Reusability of sensors is relevant when aiming to decrease variation between measurements, as well as cost and time of analysis. We present an electrochemically assisted surface-enhanced Raman spectroscopy (SERS) platform with the capability to reverse the analyte-surface interaction, without damaging the SERS substrate, allowing for efficient sensor reuse. The platform was used in combination with a sample pretreatment step, when detecting melamine from milk. We found that the electrochemically enhanced analyte-surface interaction results in significant improvement in detection sensitivity, with detection limits (0.01 ppm in PBS and 0.3 ppm in milk) below the maximum allowed levels in food samples. The reversibility of interaction enabled continuous measurement in aqueous solution and a complete quantitative assay on a single SERS substrate.


Asunto(s)
Leche/química , Triazinas/análisis , Animales , Bovinos , Técnicas Electroquímicas , Espectrometría Raman
9.
Biomed Microdevices ; 22(2): 35, 2020 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-32419094

RESUMEN

With the growing popularity and application of microfabricated devices in oral drug delivery (ODD), masking technologies for drug loading and surface modification become highly relevant. Considering the speed of design and fabrication processes and the necessity for continuous alterations of e.g. the shape and sizes of the devices during the optimization process, there is a need for adaptable, precise and low-cost masking techniques. Here, a novel method is presented for masking ODD microdevices, namely microcontainers, using the physical characteristics of polydimethylsiloxane (PDMS). When compared to a rigid microfabricated shadow mask, used for filling drugs in microcontainers, the PDMS masking technique allows more facile and precise loading of higher quantities of an active compound, without the need of alignment. The method provides flexibility and is adjustable to devices fabricated from different materials with various geometries, topologies and dimensions. This user-friendly flexible masking method overcomes the limitations of other masking techniques and is certainly not limited to ODD and is recommended for a wide range of microdevices.


Asunto(s)
Dimetilpolisiloxanos/química , Sistemas de Liberación de Medicamentos/instrumentación , Dispositivos Laboratorio en un Chip , Fenómenos Mecánicos , Administración Oral , Diseño de Equipo
10.
J Mater Sci Mater Med ; 31(3): 25, 2020 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-32060634

RESUMEN

The intravaginal route of administration can be exploited to treat local diseases and for systemic delivery. In this work, we developed an alginate/chitosan membrane sufficiently stable in a simulated vaginal fluid and able to dissolve over time at a very slow and linear rate. The membrane demonstrated good mechanical properties both in its swollen and dry form. As a study case, we evaluated the viability of this potential drug delivery system for the treatment of bacterial vaginosis, a common disease affecting women in their reproductive age. Metronidazole was effectively included in the alginate/chitosan membrane and its bactericide effect was demonstrated against Staphylococcus aureus and Gardnerella vaginalis, simultaneously showing good biocompatibility with a cervix epithelial cell line. Since this alginate/chitosan membrane is stable in a simulated vaginal environment, is easy to fabricate and can be used for the controlled release of a model drug, it represents a promising drug delivery system for local intravaginal applications.


Asunto(s)
Administración Intravaginal , Alginatos/química , Antibacterianos/administración & dosificación , Quitosano/química , Sistemas de Liberación de Medicamentos , Metronidazol/administración & dosificación , Vaginosis Bacteriana/tratamiento farmacológico , Adhesividad , Materiales Biocompatibles , Cuello del Útero/efectos de los fármacos , Fuerza Compresiva , Células Epiteliales/efectos de los fármacos , Femenino , Gardnerella vaginalis/efectos de los fármacos , Humanos , Hidrogeles/química , Cinética , Membranas Artificiales , Microscopía Confocal , Staphylococcus aureus/efectos de los fármacos , Estrés Mecánico , Vagina/efectos de los fármacos
11.
Sensors (Basel) ; 20(4)2020 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-32070014

RESUMEN

Micromechanical Thermal Analysis utilizes microstring resonators to analyze a minimum amount of sample to obtain both the thermal and mechanical responses of the sample during a heating ramp. We introduce a modulated setup by superimposing a sinusoidal heating on the linear heating and implementing a post-measurement data deconvolution process. This setup is utilized to take a closer look at the glass transition as an important fundamental feature of amorphous matter with relations to the processing and physical stability of small molecule drugs. With an additionally developed image and qualitative mode shape analysis, we are able to separate distinct features of the glass transition process and explain a previously observed two-fold change in resonance frequency. The results from this setup indicate the detection of initial relaxation to viscous flow onset as well as differences in mode responsivity and possible changes in the primary resonance mode of the string resonators. The modulated setup is helpful to distinguish these processes during the glass transition with varying responses in the frequency and quality factor domain and offers a more robust way to detect the glass transition compared to previously developed methods. Furthermore, practical and theoretical considerations are discussed when performing measurements on string resonators (and comparable emerging analytical techniques) for physicochemical characterization.

12.
Anal Chem ; 91(18): 11620-11628, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31335122

RESUMEN

Interfacing electrochemical sensors in a lab-on-a-disc (LoD) system with a potentiostat is often tedious and challenging. We here present the first multichannel, modular, lightweight, and wirelessly powered, custom-built potentiostat-on-a-disc (PoD) for centrifugal microfluidic applications. The developed potentiostat is in the form factor of a typical digital video disc (DVD) and weighs only 127 g. The design of the potentiostat facilitates easy and robust interfacing with the electrodes in the LoD system, while enabling real-time electrochemical detection during rotation. The device can perform different electroanalytical techniques such as cyclic voltammetry, square wave voltammetry, and amperometry while being controlled by custom-made software. Measurements were conducted with and without rotation using both in-house fabricated and commercial electrodes. The performance of the PoD was in good agreement with the results obtained using a commercial potentiostat with a measured current resolution of 200 pA. As a proof of concept, we performed a real-time release study of an electrochemically active compound from microdevices used for drug delivery.

13.
Biopolymers ; 110(1): e23241, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30536858

RESUMEN

Cell or tissue stretching and strain are present in any in vivo environment, but is difficult to reproduce in vitro. Here, we describe a simple method for casting a thin (about 500 µm) and soft (about 0.3 kPa) hydrogel of gelatin and a method for characterizing the mechanical properties of the hydrogel simply by changing pressure with a water column. The gelatin is crosslinked with mTransglutaminase and the area of the resulting hydrogel can be increased up 13-fold by increasing the radial water pressure. This is far beyond physiological stretches observed in vivo. Actuating the hydrogel with a radial force achieves both information about stiffness, stretchability, and contractability, which are relevant properties for tissue engineering purposes. Cells could be stretched and contracted using the gelatin membrane. Gelatin is a commonly used polymer for hydrogels in tissue engineering, and the discovered reversible stretching is particularly interesting for organ modeling applications.


Asunto(s)
Gelatina/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Polímeros/química , Ingeniería de Tejidos , Gelatina/síntesis química , Hidrogel de Polietilenoglicol-Dimetacrilato/síntesis química , Fenómenos Mecánicos , Membranas/química , Polímeros/síntesis química , Transglutaminasas/química , Agua/química
14.
Analyst ; 144(5): 1600-1607, 2019 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-30629052

RESUMEN

Given the commercial importance of the compounds produced by genetically modified organisms, there is a need for screening methods which facilitate the evaluation of newly developed strains, especially during the phase of proof-of-concept development. We report a time-efficient analysis method for the screening of bacterial strains, which enables the detection of two structurally similar secondary bacterial metabolites. By combining liquid-liquid extraction and surface-enhanced Raman scattering we were able to quantify p-coumaric acid and cinnamic acid, produced by genetically modified E. coli from tyrosine and phenylalanine, respectively. With the simple sample pre-treatment method, and by applying a partial least squares data analysis method, we simultaneously detected the analytes from four E. coli strains cultured in the presence or absence of tyrosine and phenylalanine.


Asunto(s)
Cinamatos/análisis , Escherichia coli/clasificación , Escherichia coli/metabolismo , Extracción Líquido-Líquido/métodos , Propionatos/análisis , Espectrometría Raman/métodos , Amoníaco-Liasas/metabolismo , Ácidos Cumáricos , Escherichia coli/enzimología , Fenilalanina/metabolismo , Fenilanina Amoníaco-Liasa/metabolismo , Tirosina/metabolismo
15.
J Am Chem Soc ; 140(50): 17522-17531, 2018 12 19.
Artículo en Inglés | MEDLINE | ID: mdl-30468581

RESUMEN

Thermal analysis plays an important role in both industrial and fundamental research and is widely used to study thermal characteristics of a variety of materials. However, despite considerable effort using different techniques, research struggles to resolve the physicochemical nature of many thermal transitions such as amorphous relaxations or structural changes in proteins. To overcome the limitations in sensitivity of conventional techniques and to gain new insight into the thermal and mechanical properties of small- and large-molecule samples, we have developed an instrumental analysis technique using resonating low-stress silicon nitride microstrings. With a simple sample deposition method and postprocess data analysis, we are able to perform rapid thermal analysis of direct instrumental triplicate samples with only pico- to nanograms of material. Utilizing this method, we present the first measurement of amorphous alpha and beta relaxation, as well as liquid crystalline transitions and decomposition of small-molecule samples deposited onto a microstring resonator. Furthermore, sensitive measurements of the glass transition of polymers and yet unresolved thermal responses of proteins below their apparent denaturation temperature, which seem to include the true solid state glass transition of pure protein, are reported. Where applicable, thermal events detected with the setup were in good agreement with conventional techniques such as differential scanning calorimetry and dynamic mechanical analysis. The sensitive detection of even subtle thermal transitions highlights further possibilities and applications of resonating microstrings in instrumental physicochemical analysis.

16.
Bioconjug Chem ; 29(2): 371-381, 2018 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-29155563

RESUMEN

The cell-penetrating peptide (CPP) penetratin has demonstrated potential as a carrier for transepithelial delivery of cargo peptides, such as the therapeutically relevant part of parathyroid hormone, i.e., PTH(1-34). The purpose of the present study was to elucidate the relevance of pH for PTH(1-34)-penetratin conjugates and coadministered penetratin with PTH(1-34) regarding transepithelial permeation of PTH(1-34) and cellular effects. Transepithelial permeation was assessed using monolayers of the Caco-2 cell culture model, and effects on Caco-2 cellular viability kinetics were evaluated by using the Real-Time-GLO assay as well as by microscopy following Tryphan blue staining. Morphological Caco-2 cell changes were studied exploiting the impedance-based xCELLigence system as well as optically using the oCelloscope setup. Finally, the effect of pH on the folding propensity of the PTH(1-34)-penetratin conjugate and its ability to disrupt lipid membranes were assessed by circular dichroism (CD) spectroscopy and the calcein release assay, respectively. The transepithelial PTH(1-34) permeation was not pH-dependent when applying the coadministration approach. However, by applying the conjugation approach, the PTH(1-34) permeation was significantly enhanced by lowering the pH from 7.4 to 5 but also associated with a compromised barrier and a lowering of the cellular viability. The negative effects on the cellular viability following cellular incubation with the PTH(1-34)-penetratin conjugate were moreover confirmed during real-time monitoring of the Caco-2 cell viability as well as by enhanced Tryphan blue uptake. In addition, morphological changes were primarily observed for cells incubated with the PTH(1-34)-penetratin conjugate at pH 5, which was moreover demonstrated to have an enhanced membrane permeating effect following lowering of the pH from 7.4 to 5. The latter observation was, however, not a result of better secondary folding propensity at pH 5 when compared to pH 7.4.


Asunto(s)
Proteínas Portadoras/química , Nanoconjugados/química , Hormona Paratiroidea/química , Hormona Paratiroidea/farmacocinética , Secuencia de Aminoácidos , Células CACO-2 , Proteínas Portadoras/farmacocinética , Permeabilidad de la Membrana Celular , Supervivencia Celular , Péptidos de Penetración Celular , Epitelio/metabolismo , Humanos , Concentración de Iones de Hidrógeno , Permeabilidad
17.
Pharm Res ; 35(9): 171, 2018 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-29967941

RESUMEN

PURPOSE: This paper is based on the characterization of the rheological and Low Field NMR (LF-NMR) properties of an interpenetrated hydrogel made up by poly(N-vinyl-2-pyrrolidone) and sodium alginate. The final aim is to use the hydrogel as a delivery matrix for liposomes, widely used tools in the drug delivery field. METHODS: Rheology, LF-NMR, TEM, cryo-TEM, confocal laser scanning microscopy and release test were employed to characterize the interpenetrated hydrogel. Different theoretical approaches such as Flory, Chui, Scherer and Schurz theories were used to interpret the experimental results. RESULTS: We found that the crosslinking mechanisms of the two polymers produced an anti-synergistic effect on the final mechanical properties of the interpenetrated hydrogel. Instead of creating a continuous network, alginate formed isolated, cross-linked, clusters embedded in a continuous network of poly(N-vinyl-2-pyrrolidone). Additionally, gel structure significantly influenced liposome delivery. CONCLUSIONS: The rheological and LF-NMR characterization were confirmed and supported by the independent techniques TEM, cryo-TEM and release tests Thus, our findings reiterate the potentiality of both rheology and LF-NMR for the characterisation of soft materials such as interpenetrated polymeric networks.


Asunto(s)
Alginatos/química , Hidrogeles/química , Povidona/química , Sistemas de Liberación de Medicamentos/métodos , Liposomas/administración & dosificación , Espectroscopía de Resonancia Magnética/métodos , Reología/métodos
18.
AAPS PharmSciTech ; 19(8): 3770-3777, 2018 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-30280354

RESUMEN

Chitosan particles loaded with the antigen ovalbumin (OVA) and the adjuvant Quil-A were produced by electrospray, using mixtures of water/ethanol/acetic acid as a solvent. Three different chitosans designed as HMC+70, HMC+85, and HMC+90 (called as 705010, 855010, and 905010) were tested and its efficacy to be used in oral vaccine delivery applications was investigated. The morphology, size, and zeta potential of the produced particles were investigated, together with the encapsulation efficiency and release of OVA from the three chitosan formulations. Moreover, the mucoadhesion and cytotoxicity of the chitosan microparticles was examined. All the three formulations with OVA and Quil-A were in the micrometer size range and had a positive zeta potential between 46 and 75 mV. Furthermore, all the three formulations displayed encapsulation efficiencies above 80% and the release of OVA over a period of 80 h was observed to be between 38 and 47%. None of the developed formulations exhibited high mucoadhesive properties, either cytotoxicity. The formulation prepared with HMC+70, OVA, and Quil-A had the highest stability within 2 h in buffer solution, as measured by dynamic light scattering. The electrosprayed formulation consisting of HMC+70 with OVA and Quil-A showed to be the most promising as an oral vaccine system.


Asunto(s)
Química Farmacéutica/métodos , Quitosano/síntesis química , Sistemas de Liberación de Medicamentos/métodos , Microesferas , Tamaño de la Partícula , Vacunas/síntesis química , Administración Oral , Animales , Línea Celular , Pollos , Quitosano/administración & dosificación , Composición de Medicamentos , Humanos , Ovalbúmina/administración & dosificación , Ovalbúmina/síntesis química , Saponinas de Quillaja/administración & dosificación , Saponinas de Quillaja/síntesis química , Vacunas/administración & dosificación
19.
Anal Chem ; 89(21): 11484-11490, 2017 11 07.
Artículo en Inglés | MEDLINE | ID: mdl-28952718

RESUMEN

There is an increasing demand for rapid, sensitive, and low cost analytical methods to routinely screen antibiotic residues in food products. Conventional detection of antibiotics involves sample preparation by liquid-liquid or solid-phase extraction, followed by analysis using liquid chromatography-mass spectrometry (LC-MS), capillary electrophoresis (CE), or gas chromatography (GC). The process is labor-intensive, time-consuming, and expensive. In this study, we developed a new analytical method that combines magnetic molecularly imprinted polymer (MMIP)-based sample preparation with surface-enhanced Raman spectroscopy (SERS)-based detection for quantitative analysis of cloxacillin in pig serum. MMIP microspheres were synthesized using a core-shell technique. The large loading capacity and high selectivity of the MMIP microspheres enabled efficient extraction of cloxacillin, while the magnetically susceptible characteristics greatly simplified sample handling procedures. Low cost and robust SERS substrates consisting of vertical gold capped silicon nanopillars were fabricated and employed for the detection of cloxacillin. Quantitative SERS was achieved by normalizing signal intensities using an internal standard. By coherently combining MMIP extraction and silicon nanopillar-based SERS biosensor, good sensitivity toward cloxacillin was achieved. The detection limit was 7.8 pmol. Cloxacillin recoveries from spiked pig plasma samples were found to be more than 80%.


Asunto(s)
Cloxacilina/análisis , Cloxacilina/aislamiento & purificación , Análisis de los Alimentos/métodos , Límite de Detección , Imanes/química , Polímeros/síntesis química , Espectrometría Raman , Animales , Costos y Análisis de Costo , Residuos de Medicamentos/análisis , Análisis de los Alimentos/economía , Contaminación de Alimentos/análisis , Microesferas , Impresión Molecular , Polímeros/química , Porcinos , Factores de Tiempo
20.
Anal Chem ; 89(7): 3981-3987, 2017 04 04.
Artículo en Inglés | MEDLINE | ID: mdl-28256124

RESUMEN

The number of newly developed genetic variants of microbial cell factories for production of biochemicals has been rapidly growing in recent years, leading to an increased need for new screening techniques. We developed a method based on surface-enhanced Raman scattering (SERS) coupled with liquid-liquid extraction (LLE) for quantification of p-coumaric acid (pHCA) in the supernatant of genetically engineered Escherichia coli (E. coli) cultures. pHCA was measured in a dynamic range from 1 µM up to 50 µM on highly uniform SERS substrates based on leaning gold-capped nanopillars, which showed an in-wafer signal variation of only 11.7%. LLE using dichloromethane as organic phase was combined with the detection in order to increase selectivity and sensitivity by decreasing the effect of interfering compounds from the analytes of interest. The difference in pHCA production yield between three genetically engineered E. coli strains was successfully evaluated using SERS and confirmed with high-performance liquid chromatography. As this novel approach has potential to be automated and parallelized, it can be considered for high-throughput screening in metabolic engineering.


Asunto(s)
Escherichia coli/metabolismo , Propionatos/análisis , Ácidos Cumáricos , Escherichia coli/química , Oro/química , Nanopartículas del Metal/química , Estructura Molecular , Propionatos/metabolismo , Espectrometría Raman , Propiedades de Superficie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA