Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Int J Mol Sci ; 23(21)2022 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-36361824

RESUMEN

Cardiovascular diseases are the leading cause of global mortality. Over the past two decades, researchers have tried to provide novel solutions for end-stage heart failure to address cardiac transplantation hurdles such as donor organ shortage, chronic rejection, and life-long immunosuppression. Cardiac decellularized extracellular matrix (dECM) has been widely explored as a promising approach in tissue-regenerative medicine because of its remarkable similarity to the original tissue. Optimized decellularization protocols combining physical, chemical, and enzymatic agents have been developed to obtain the perfect balance between cell removal, ECM composition, and function maintenance. However, proper assessment of decellularized tissue composition is still needed before clinical translation. Recellularizing the acellular scaffold with organ-specific cells and evaluating the extent of cardiomyocyte repopulation is also challenging. This review aims to discuss the existing literature on decellularized cardiac scaffolds, especially on the advantages and methods of preparation, pointing out areas for improvement. Finally, an overview of the state of research regarding the application of cardiac dECM and future challenges in bioengineering a human heart suitable for transplantation is provided.


Asunto(s)
Ingeniería de Tejidos , Andamios del Tejido , Humanos , Ingeniería de Tejidos/métodos , Andamios del Tejido/química , Matriz Extracelular Descelularizada , Matriz Extracelular/química , Miocitos Cardíacos
2.
Micromachines (Basel) ; 13(1)2022 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-35056244

RESUMEN

Whole organ decellularization techniques have facilitated the fabrication of extracellular matrices (ECMs) for engineering new organs. Unfortunately, there is no objective gold standard evaluation of the scaffold without applying a destructive method such as histological analysis or DNA removal quantification of the dry tissue. Our proposal is a software application using deep convolutional neural networks (DCNN) to distinguish between different stages of decellularization, determining the exact moment of completion. Hearts from male Sprague Dawley rats (n = 10) were decellularized using 1% sodium dodecyl sulfate (SDS) in a modified Langendorff device in the presence of an alternating rectangular electric field. Spectrophotometric measurements of deoxyribonucleic acid (DNA) and total proteins concentration from the decellularization solution were taken every 30 min. A monitoring system supervised the sessions, collecting a large number of photos saved in corresponding folders. This system aimed to prove a strong correlation between the data gathered by spectrophotometry and the state of the heart that could be visualized with an OpenCV-based spectrometer. A decellularization completion metric was built using a DCNN based classifier model trained using an image set comprising thousands of photos. Optimizing the decellularization process using a machine learning approach launches exponential progress in tissue bioengineering research.

3.
Diagnostics (Basel) ; 12(8)2022 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-36010254

RESUMEN

Papillary renal cell carcinoma (PRCC) is defined by the WHO 2022 classification as a malignant tumor derived from the renal tubular epithelium. However, the WHO 2016 classification subdivided PRCC into two types, with type 1 PRCC showing papillae covered by a single layer of neoplastic cells, and type II PRCC, which can show multiple types of histologies and is more aggressive. The WHO 2022 classification eliminated the subcategorization of PRCC. Here, we present a histopathological case study with a 4-year follow-up diagnosed in 2018 as type I PRCC (WHO 2016) with intra-pyelocalyceal growth pattern in a 59-year-old male patient with a history of Type II diabetes mellitus, left-sided renal-ureteral lithiasis, and benign hypertrophy of the prostate. Microscopically the tumor was composed of small cuboidal cells with inconspicuous nucleoli, arranged on a single layer of tubulo-papillary cores, and scant, foamy macrophages. The tumor had a non-infiltrative, expansive pyelocalyceal growth pattern. Immunohistochemically (IHC), the tumor cells were CK7-intense and diffusely positive, and stained granular for AMACR. Next-generation sequencing (NGS) was performed for the tumor and the normal adjacent tissue for in-depth pathological characterization. To our knowledge, this is the first reported case where a PRCC displays this unique intra-pyelocalyceal growth pattern, mimicking a urothelial cell carcinoma of the renal pelvis system.

4.
J Nephrol ; 33(1): 91-100, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31222646

RESUMEN

A severe, chronic and irreversible kidney disease affecting discrete rural populations in the Balkan Peninsula countries, Balkan endemic nephropathy (BEN) has been a scientific puzzle for more than half a century. Many environmental and other factors have been suggested as the primary cause and recent significant findings have linked BEN to aristolochic acids, phytotoxins derived from the plant Aristolochia clematitis, found in high density in the endemic areas. However, given that the incidence of BEN is less than 10% in affected villages, and it tends to have a family aggregation, as yet unidentified genetic factors may also play a role. To further explore this possibility, a pilot study was initiated to investigate the DNA methylation of CYP1A1, CYP1A2, NAT1, NQO1 and GSTT1 in blood samples from a group of Romanian BEN patients, compared to healthy controls and non-BEN chronic kidney disease (CKD) subjects. Our study revealed a more pronounced hypomethylation pattern in BEN and non-BEN CKD groups, compared to the healthy control group at specific CpGs across all five genes interrogated. Average methylation across the five regions investigated indicated significant differences only at GSTT1, in both BEN patients (p = 0.028) and non-BEN disease subjects (p = 0.015), relative to healthy individuals. Since GSTT1 active genotype appears to be a common feature of Serbian and Romanian BEN patients, GSTT1 epigenetic variation and increased gene activity could act as a predisposing (co)factor in BEN populations from the affected countries. BEN and non-BEN CKD groups show similar methylation patterns with exception of GSTT1 CpG8 (p = 0.046).


Asunto(s)
Arilamina N-Acetiltransferasa/genética , Nefropatía de los Balcanes/genética , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A2/genética , Glutatión Transferasa/genética , Isoenzimas/genética , NAD(P)H Deshidrogenasa (Quinona)/genética , Anciano , Anciano de 80 o más Años , Estudios de Cohortes , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Metilación , Persona de Mediana Edad , Proyectos Piloto , Insuficiencia Renal Crónica/genética , Rumanía , Xenobióticos/metabolismo
5.
Rom J Morphol Embryol ; 55(4): 1415-22, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-25611275

RESUMEN

Adult mesenchymal stem cells (MSCs) were primary identified as bone marrow-derived cells, fibroblast-like morphology, and adherent to plastic surfaces of in vitro culture plate. Their identification criteria evolved in time to a well-established panel of markers (expression of CD73, CD90, and CD105) and functional characteristics (adipogenic, osteogenic, and chondrogenic trilineage differentiation ability), which can be applied to adult mesenchymal stem cells obtained from other tissue sources. We tried to assess the potential stemness of femoral head drilling-derived cells as a new source of mesenchymal stem cells (FH-MSCs). For this purpose, we used the morphological and ultrastructural characteristics defined by scanning and transmission electron microscopy and spindle-shape cellular body, fibroblast-like, with few thick elongations (lamellipodia) and numerous fine, thin cytoplasmic projections (filopodia) that extend beyond the edge of lamellipodia. Immunophenotypical analysis was performed by flow cytometry and immunocytochemical methods and we showed that FH-MSCs share the characteristic markers of MSCs, expressing CD73, CD90, CD105, and being positive for vimentin, and c-kit (CD117). Proliferation rate of these cells was moderate, as revealed by Ki67 immunostaining. Regarding the functional characteristics of FH-MSCs, after appropriate time of induction in specific culture media, the cells were able to prove their trilineage potential and differentiated towards adipocytic, osteogenic, and chondrogenic lineage, as revealed by immunofluorescent staining. We may conclude that femoral head drilling-derived cells can be used as a novel source of stem cells, and employed in diverse clinical settings.


Asunto(s)
Forma de la Célula , Cabeza Femoral/citología , Células Madre Mesenquimatosas/citología , Procedimientos Ortopédicos , Adulto , Células Madre Adultas/citología , Biomarcadores/metabolismo , Diferenciación Celular , Células Cultivadas , Humanos , Inmunofenotipificación , Células Madre Mesenquimatosas/ultraestructura
6.
Stem Cells Dev ; 21(4): 507-12, 2012 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-22023262

RESUMEN

Adult bone marrow mesenchymal stem cells (BMSCs) can be differentiated in vitro to become adipocyte-like cells with lipid vacuoles, similar to adipocytes derived from adult adipose tissue. Little is known regarding the composition of free fatty acids (FFAs) of the in vitro-differentiated adipocytes, or whether it resembles that of native adult adipocytes. We used gas chromatography-mass spectrometry to identify FFA species in BMSC-derived adipocytes and compared them with FFAs found in adipocytes derived from adult adipose tissue. We found that adult adipocytes contained significant percentages of saturated and monounsaturated FFAs, including palmitic acid (C16:0), stearic acid (C18:0), and oleic acid (C18:1); some polyunsaturated FFAs, such as linoleic acid (C18:2), a small percentage of arachidonic acid (C20:4), and very little linolenic acid (C18:3). In comparison, 80%-90% confluent BMSCs contained comparable percentages of palmitic and oleic acids, significantly more arachidonic and stearic acids, very little linoleic acid, and no linolenic acid. After differentiation, compared with adult adipocytes, BMSC-derived adipocytes contained a comparable percentage of palmitic acid, more stearic and arachidonic acids, less oleic acid, almost no linoleic acid, and no detectable linolenic acid. This composition was quite similar to that of undifferentiated BMSCs. The differentiation medium contained only palmitic and stearic acids, with traces of oleic acid; it did not contain the essential polyunsaturated fatty acids. Thus, the composition of FFAs in BMSC-derived adipocytes was altered compared with adult adipocytes. BMSC-derived adipocytes had an altered composition of saturated and monounsaturated FFAs and lacked essential FFAs that may directly affect signaling related to their lipolysis/lipogenesis functions.


Asunto(s)
Adipocitos/metabolismo , Células de la Médula Ósea/metabolismo , Diferenciación Celular/fisiología , Ácidos Grasos/metabolismo , Metabolismo de los Lípidos/fisiología , Células Madre Mesenquimatosas/metabolismo , Adipocitos/citología , Animales , Células de la Médula Ósea/citología , Células Cultivadas , Células Madre Mesenquimatosas/citología , Ratas , Ratas Sprague-Dawley , Vacuolas/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA