Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Biol Reprod ; 96(2): 288-301, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28203704

RESUMEN

Connexins (Cxs) are required for normal embryo development and implantation. They form gap junctions (GJs) connecting the cytoplasm of adjacent cells and hemichannels (HCs), which are normally closed but open in response to stress conditions. Excessive HC opening is detrimental for cell function and may lead to cell death. We found that hatching of in vitro-produced bovine embryos, matured in serum-containing conditions, was significantly improved when vitrification/warming was done in the presence of Gap26 that targets GJA1 (Cx43) and GJA4 (Cx37). Further work showed that HCs from blastocysts produced after oocyte maturation in the presence of serum were open shortly after vitrification/warming, and this was prevented by Gap26. Gap26, applied for the exposure times used, inhibited Cx43 and Cx37 HCs while it did not have an effect on GJs. Interestingly, Gap26 had no effect on blastocyst degeneration or cell death. We conclude that blocking HCs protects embryos during vitrification and warming by a functional effect not linked to cell death.


Asunto(s)
Blastocisto/fisiología , Bovinos/embriología , Conexinas/antagonistas & inhibidores , Técnicas de Cultivo de Embriones/veterinaria , Vitrificación , Animales , Bovinos/fisiología , Criopreservación , Desarrollo Embrionario , Células HeLa , Humanos
2.
Biochim Biophys Acta ; 1843(10): 2211-32, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24768716

RESUMEN

For decades, studies have been focusing on the neuronal abnormalities that accompany neurodegenerative disorders. Yet, glial cells are emerging as important players in numerous neurological diseases. Astrocytes, the main type of glia in the central nervous system , form extensive networks that physically and functionally connect neuronal synapses with cerebral blood vessels. Normal brain functioning strictly depends on highly specialized cellular cross-talk between these different partners to which Ca(2+), as a signaling ion, largely contributes. Altered intracellular Ca(2+) levels are associated with neurodegenerative disorders and play a crucial role in the glial responses to injury. Intracellular Ca(2+) increases in single astrocytes can be propagated toward neighboring cells as intercellular Ca(2+) waves, thereby recruiting a larger group of cells. Intercellular Ca(2+) wave propagation depends on two, parallel, connexin (Cx) channel-based mechanisms: i) the diffusion of inositol 1,4,5-trisphosphate through gap junction channels that directly connect the cytoplasm of neighboring cells, and ii) the release of paracrine messengers such as glutamate and ATP through hemichannels ('half of a gap junction channel'). This review gives an overview of the current knowledge on Cx-mediated Ca(2+) communication among astrocytes as well as between astrocytes and other brain cell types in physiology and pathology, with a focus on the processes of neurodegeneration and reactive gliosis. Research on Cx-mediated astroglial Ca(2+) communication may ultimately shed light on the development of targeted therapies for neurodegenerative disorders in which astrocytes participate. This article is part of a Special Issue entitled: Calcium signaling in health and disease. Guest Editors: Geert Bultynck, Jacques Haiech, Claus W. Heizmann, Joachim Krebs, and Marc Moreau.


Asunto(s)
Astrocitos/metabolismo , Encéfalo/metabolismo , Señalización del Calcio , Calcio/metabolismo , Conexinas/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Adenosina Trifosfato/metabolismo , Astrocitos/patología , Encéfalo/patología , Comunicación Celular , Conexinas/genética , Uniones Comunicantes/metabolismo , Regulación de la Expresión Génica , Ácido Glutámico/metabolismo , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Terapia Molecular Dirigida , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/patología , Enfermedades Neurodegenerativas/terapia , Neuronas/metabolismo , Neuronas/patología , Sinapsis/metabolismo , Sinapsis/patología
3.
Biochim Biophys Acta ; 1828(1): 35-50, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22796188

RESUMEN

Plasma membrane hemichannels composed of connexin (Cx) proteins are essential components of gap junction channels but accumulating evidence suggests functions of hemichannels beyond the communication provided by junctional channels. Hemichannels not incorporated into gap junctions, called unapposed hemichannels, can open in response to a variety of signals, electrical and chemical, thereby forming a conduit between the cell's interior and the extracellular milieu. Open hemichannels allow the bidirectional passage of ions and small metabolic or signaling molecules of below 1-2kDa molecular weight. In addition to connexins, hemichannels can also be formed by pannexin (Panx) proteins and current evidence suggests that Cx26, Cx32, Cx36, Cx43 and Panx1, form hemichannels that allow the diffusive release of paracrine messengers. In particular, the case is strong for ATP but substantial evidence is also available for other messengers like glutamate and prostaglandins or metabolic substances like NAD(+) or glutathione. While this field is clearly in expansion, evidence is still lacking at essential points of the paracrine signaling cascade that includes not only messenger release, but also downstream receptor signaling and consequent functional effects. The data available at this moment largely derives from in vitro experiments and still suffers from the difficulty of separating the functions of connexin-based hemichannels from gap junctions and from pannexin hemichannels. However, messengers like ATP or glutamate have universal roles in the body and further defining the contribution of hemichannels as a possible release pathway is expected to open novel avenues for better understanding their contribution to a variety of physiological and pathological processes. This article is part of a Special Issue entitled: The Communicating junctions, roles and dysfunctions.


Asunto(s)
Membrana Celular/metabolismo , Conexinas/metabolismo , Comunicación Paracrina , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/fisiología , Animales , Membrana Celular/fisiología , Conexina 26 , Conexinas/fisiología , Dinoprostona/fisiología , Ácido Glutámico/fisiología , Glutatión/fisiología , Humanos , Potenciales de la Membrana , NAD/fisiología , Procesamiento Proteico-Postraduccional
4.
Biochim Biophys Acta ; 1833(7): 1772-86, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23291251

RESUMEN

Research conducted over the past two decades has provided convincing evidence that cell death, and more specifically apoptosis, can exceed single cell boundaries and can be strongly influenced by intercellular communication networks. We recently reported that gap junctions (i.e. channels directly connecting the cytoplasm of neighboring cells) composed of connexin43 or connexin26 provide a direct pathway to promote and expand cell death, and that inositol 1,4,5-trisphosphate (IP3) diffusion via these channels is crucial to provoke apoptosis in adjacent healthy cells. However, IP3 itself is not sufficient to induce cell death and additional factors appear to be necessary to create conditions in which IP3 will exert proapoptotic effects. Although IP3-evoked Ca(2+) signaling is known to be required for normal cell survival, it is also actively involved in apoptosis induction and progression. As such, it is evident that an accurate fine-tuning of this signaling mechanism is crucial for normal cell physiology, while a malfunction can lead to cell death. Here, we review the role of IP3 as an intracellular and intercellular cell death messenger, focusing on the endoplasmic reticulum-mitochondrial synapse, followed by a discussion of plausible elements that can convert IP3 from a physiological molecule to a killer substance. Finally, we highlight several pathological conditions in which anomalous intercellular IP3/Ca(2+) signaling might play a role. This article is part of a Special Issue entitled:12th European Symposium on Calcium.


Asunto(s)
Señalización del Calcio/fisiología , Comunicación Celular , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Animales , Conexina 26 , Conexinas , Humanos , Transducción de Señal
5.
J Biol Chem ; 287(15): 12250-66, 2012 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-22351781

RESUMEN

Many cellular functions are driven by changes in the intracellular Ca(2+) concentration ([Ca(2+)](i)) that are highly organized in time and space. Ca(2+) oscillations are particularly important in this respect and are based on positive and negative [Ca(2+)](i) feedback on inositol 1,4,5-trisphosphate receptors (InsP(3)Rs). Connexin hemichannels are Ca(2+)-permeable plasma membrane channels that are also controlled by [Ca(2+)](i). We aimed to investigate how hemichannels may contribute to Ca(2+) oscillations. Madin-Darby canine kidney cells expressing connexin-32 (Cx32) and Cx43 were exposed to bradykinin (BK) or ATP to induce Ca(2+) oscillations. BK-induced oscillations were rapidly (minutes) and reversibly inhibited by the connexin-mimetic peptides (32)Gap27/(43)Gap26, whereas ATP-induced oscillations were unaffected. Furthermore, these peptides inhibited the BK-triggered release of calcein, a hemichannel-permeable dye. BK-induced oscillations, but not those induced by ATP, were dependent on extracellular Ca(2+). Alleviating the negative feedback of [Ca(2+)](i) on InsP(3)Rs using cytochrome c inhibited BK- and ATP-induced oscillations. Cx32 and Cx43 hemichannels are activated by <500 nm [Ca(2+)](i) but inhibited by higher concentrations and CT9 peptide (last 9 amino acids of the Cx43 C terminus) removes this high [Ca(2+)](i) inhibition. Unlike interfering with the bell-shaped dependence of InsP(3)Rs to [Ca(2+)](i), CT9 peptide prevented BK-induced oscillations but not those triggered by ATP. Collectively, these data indicate that connexin hemichannels contribute to BK-induced oscillations by allowing Ca(2+) entry during the rising phase of the Ca(2+) spikes and by providing an OFF mechanism during the falling phase of the spikes. Hemichannels were not sufficient to ignite oscillations by themselves; however, their contribution was crucial as hemichannel inhibition stopped the oscillations.


Asunto(s)
Señalización del Calcio , Conexina 43/metabolismo , Citoplasma/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Animales , Bradiquinina/farmacología , Calcio/metabolismo , Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/metabolismo , Carbenoxolona/farmacología , Línea Celular , Conexina 43/genética , Conexinas/metabolismo , Citocromos c/metabolismo , Citocromos c/fisiología , Perros , Fluoresceínas/metabolismo , Técnicas de Silenciamiento del Gen , Humanos , Inositol 1,4,5-Trifosfato/metabolismo , Oligopéptidos/farmacología , Péptidos/farmacología , Interferencia de ARN , Ratas , Proteínas Recombinantes/metabolismo , Proteína beta1 de Unión Comunicante
6.
Basic Res Cardiol ; 108(1): 309, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23184389

RESUMEN

Connexin-43 (Cx43), a predominant cardiac connexin, forms gap junctions (GJs) that facilitate electrical cell-cell coupling and unapposed/nonjunctional hemichannels that provide a pathway for the exchange of ions and metabolites between cytoplasm and extracellular milieu. Uncontrolled opening of hemichannels in the plasma membrane may be deleterious for the myocardium and blocking hemichannels may confer cardioprotection by preventing ionic imbalance, cell swelling and loss of critical metabolites. Currently, all known hemichannel inhibitors also block GJ channels, thereby disturbing electrical cell-cell communication. Here we aimed to characterize a nonapeptide, called Gap19, derived from the cytoplasmic loop (CL) of Cx43 as a hemichannel blocker and examined its effect on hemichannel currents in cardiomyocytes and its influence in cardiac outcome after ischemia/reperfusion. We report that Gap 19 inhibits Cx43 hemichannels without blocking GJ channels or Cx40/pannexin-1 hemichannels. Hemichannel inhibition is due to the binding of Gap19 to the C-terminus (CT) thereby preventing intramolecular CT-CL interactions. The peptide inhibited Cx43 hemichannel unitary currents in both HeLa cells exogenously expressing Cx43 and acutely isolated pig ventricular cardiomyocytes. Treatment with Gap19 prevented metabolic inhibition-enhanced hemichannel openings, protected cardiomyocytes against volume overload and cell death following ischemia/reperfusion in vitro and modestly decreased the infarct size after myocardial ischemia/reperfusion in mice in vivo. We conclude that preventing Cx43 hemichannel opening with Gap19 confers limited protective effects against myocardial ischemia/reperfusion injury.


Asunto(s)
Conexina 43/antagonistas & inhibidores , Canales Iónicos/efectos de los fármacos , Daño por Reperfusión Miocárdica/prevención & control , Fragmentos de Péptidos/farmacología , Adenosina Trifosfato/metabolismo , Animales , Uniones Comunicantes/efectos de los fármacos , Células HeLa , Humanos , Ratones , Ratones Endogámicos C57BL , Porcinos
7.
Pflugers Arch ; 463(5): 669-77, 2012 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-22415212

RESUMEN

Cannabinoids have potent vasodilatory actions in a variety of vascular preparations. Their mechanism of action, however, is complex. Apart from acting on vascular smooth muscle or endothelial cannabinoid receptors, several studies point to the activation of type 1 vanilloid (TRPV1) receptors on primary afferent perivascular nerves, stimulating the release of calcitonin gene-related peptide (CGRP). In the present study, the direct influence of the cannabinoid methanandamide and the neuropeptide CGRP on the membrane potassium ion (K(+)) currents of rat mesenteric myocytes was explored. Methanandamide (10 µM) decreased outward K(+) currents, an effect similar to that observed in smooth muscle cells from the rat aorta. Conversely, CGRP (10 nM) significantly increased whole-cell K(+) currents and this effect was abolished by preexposure to tetraethylammonium chloride (1 mM) or iberiotoxin (100 nM), inhibitors of large-conductance calcium-dependent K (BK(Ca)) channels but not by glibenclamide (10 µM), an inhibitor of ATP-dependent K channels. In the presence of the CGRP receptor antagonist CGRP(8-37) (100 nM), the adenylyl cyclase inhibitor SQ22536 (100 µM), or the protein kinase A inhibitor Rp-cAMPS (10 µM), CGRP had no effect. These findings show that methanandamide does not increase membrane K(+) currents in smooth muscle cells of small mesenteric arteries, supporting an indirect mechanism for the reported hyperpolarizing influence in this vessel. Moreover, CGRP acts directly on these smooth muscle cells by increasing BK(Ca) channel activity in a CGRP receptor and cyclic adenosine monophosphate-dependent way. Collectively, these data indicate that methanandamide relaxes and hyperpolarizes intact mesenteric vessels by releasing CGRP from perivascular nerves.


Asunto(s)
Ácidos Araquidónicos/farmacología , Péptido Relacionado con Gen de Calcitonina/metabolismo , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Miocitos del Músculo Liso/metabolismo , Potasio/metabolismo , Inhibidores de Adenilato Ciclasa , Adenilil Ciclasas/metabolismo , Animales , Aorta/efectos de los fármacos , Aorta/metabolismo , Aorta/fisiología , Antagonistas del Receptor Peptídico Relacionado con el Gen de la Calcitonina , AMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Femenino , Canales de Potasio de Gran Conductancia Activados por el Calcio/antagonistas & inhibidores , Canales de Potasio de Gran Conductancia Activados por el Calcio/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Células Musculares/efectos de los fármacos , Células Musculares/metabolismo , Músculo Liso Vascular/efectos de los fármacos , Músculo Liso Vascular/metabolismo , Ratas , Ratas Wistar , Receptores de Péptido Relacionado con el Gen de Calcitonina/metabolismo
8.
Basic Res Cardiol ; 107(6): 304, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23095853

RESUMEN

Connexin mimetic peptides (CxMPs), such as Gap26 and Gap27, are known as inhibitors of gap junction channels but evidence is accruing that these peptides also inhibit unapposed/non-junctional hemichannels (HCs) residing in the plasma membrane. We used voltage clamp studies to investigate the effect of Gap26/27 at the single channel level. Such an approach allows unequivocal identification of HC currents by their single channel conductance that is typically ~220 pS for Cx43. In HeLa cells stably transfected with Cx43 (HeLa-Cx43), Gap26/27 peptides inhibited Cx43 HC unitary currents over minutes and increased the voltage threshold for HC opening. By contrast, an elevation of intracellular calcium ([Ca(2+)](i)) to 200-500 nM potentiated the unitary HC current activity and lowered the voltage threshold for HC opening. Interestingly, Gap26/27 inhibited the Ca(2+)-potentiated HC currents and prevented lowering of the voltage threshold for HC opening. Experiments on isolated pig ventricular cardiomyocytes, which display strong endogenous Cx43 expression, demonstrated voltage-activated unitary currents with biophysical properties of Cx43 HCs that were inhibited by small interfering RNA targeting Cx43. As observed in HeLa-Cx43 cells, HC current activity in ventricular cardiomyocytes was potentiated by [Ca(2+)](i) elevation to 500 nM and was inhibited by Gap26/27. Our results indicate that under pathological conditions, when [Ca(2+)](i) is elevated, Cx43 HC opening is promoted in cardiomyocytes and CxMPs counteract this effect.


Asunto(s)
Calcio/metabolismo , Conexina 43/metabolismo , Canales Iónicos/metabolismo , Miocitos Cardíacos/metabolismo , Animales , Células HeLa , Humanos , Potenciales de la Membrana , Técnicas de Placa-Clamp , Péptidos , Porcinos
9.
PLoS One ; 15(12): e0243663, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33301511

RESUMEN

Uterus transplantation is an experimental infertility treatment for women with uterine factor infertility. During donor uterus retrieval and subsequent storage, ischemia and other stressors are likely to occur, resulting in the delayed restoration of organ function and increased graft rejection. The uterus expresses connexin-based hemichannels, the opening of which can promote ischemic cell death, as well as gap junctions that may expand cell death by bystander signaling. We investigated if connexin channel inhibition with connexin channel inhibitor Gap27 could protect the uterus against cell death during the storage period. The study involved 9 female patients undergoing gender-change surgery. Before uterus removal, it was exposed to in situ warm ischemia with or without reperfusion. Uterus biopsies were taken before, during, and after ischemia, with or without reperfusion, and were subsequently stored under cold (4ᵒC) or warm (37ᵒC) conditions. TUNEL cell death assay was done at various time points along the combined in vivo/ex vivo experimental timeline. We found that Gap27 protected against storage-related cell death under cold but not warm conditions when the uterus had experienced in situ ischemia/reperfusion. For in situ brief ischemia without reperfusion, Gap27 reduction of cell death was delayed and significantly less, suggesting that protection critically depends on processes initiated when the organ was still in the donor. Thus, the inclusion of the connexin channel inhibitor Gap27 during cold storage protects the uterus against cell death, and the degree of protection depends on the history of exposure to warm ischemia. Gap27 protection may be indicated for uteri from deceased donors, in which ischemia is likely because life-saving organs have retrieval priority.


Asunto(s)
Conexinas/antagonistas & inhibidores , Oligopéptidos/farmacología , Preservación de Órganos/métodos , Sustancias Protectoras/farmacología , Útero/fisiología , Adolescente , Adulto , Muerte Celular/efectos de los fármacos , Conexinas/metabolismo , Conexinas/farmacología , Femenino , Humanos , Donantes de Tejidos , Personas Transgénero , Útero/citología , Útero/efectos de los fármacos , Útero/trasplante , Adulto Joven
10.
Cardiovasc Res ; 113(2): 195-206, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27677282

RESUMEN

AIMS: Connexins form gap-junctions (GJs) that directly connect cells, thereby coordinating vascular cell function and controlling vessel diameter and blood flow. GJs are composed of two hemichannels contributed by each of the connecting cells. Hemichannels also exist as non-junctional channels that, when open, lead to the entry/loss of ions and the escape of ATP. Here we investigated cross-talk between hemichannels and Ca2+/purinergic signalling in controlling blood vessel contraction. We hypothesized that hemichannel Ca2+ entry and ATP release contributes to smooth muscle cell (SMC) Ca2+ dynamics, thereby influencing vessel contractility. We applied several peptide modulators of hemichannel function and inhibitors of Ca2+ and ATP signalling to investigate their influence on SMC Ca2+ dynamics and vessel contractility. METHODS AND RESULTS: Confocal Ca2+ imaging studies on small mesenteric arteries (SMAs) from rat demonstrated that norepinephrine-induced SMC Ca2+ oscillations were inhibited by blocking IP3 receptors with xestospongin-C and by interfering with hemichannel function, most notably by the specific Cx43 hemichannel blocking peptide TAT-L2 and by TAT-CT9 that promotes Cx43 hemichannel opening. Evidence for hemichannel involvement in SMC function was supported by the fact that TAT-CT9 significantly increased SMC resting cytoplasmic Ca2+ concentration, indicating it facilitated Ca2+ entry, and by the observation that norepinephrine-triggered vessel ATP release was blocked by TAT-L2. Myograph tension measurements on isolated SMAs showed significant inhibition of norepinephrine-triggered contractility by the ATP receptor antagonist suramin, but the strongest effect was observed with TAT-L2 that gave ∼80% inhibition at 37 °C. TAT-L2 inhibition of vessel contraction was significantly reduced in conditional Cx43 knockout animals, indicating the effect was Cx43 hemichannel-dependent. Computational modelling suggested these results could be explained by the opening of a single hemichannel per SMC. CONCLUSIONS: These results indicate that Cx43 hemichannels contribute to SMC Ca2+ dynamics and contractility, by facilitating Ca2+ entry, ATP release, and purinergic signalling.


Asunto(s)
Adenosina Trifosfato/metabolismo , Señalización del Calcio/efectos de los fármacos , Calcio/metabolismo , Comunicación Celular/efectos de los fármacos , Conexina 43/antagonistas & inhibidores , Uniones Comunicantes/efectos de los fármacos , Músculo Liso Vascular/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Péptidos/farmacología , Vasoconstricción/efectos de los fármacos , Vasodilatadores/farmacología , Animales , Simulación por Computador , Conexina 43/deficiencia , Conexina 43/genética , Conexina 43/metabolismo , Conexinas/antagonistas & inhibidores , Conexinas/metabolismo , Femenino , Uniones Comunicantes/metabolismo , Genotipo , Técnicas In Vitro , Receptores de Inositol 1,4,5-Trifosfato/agonistas , Receptores de Inositol 1,4,5-Trifosfato/metabolismo , Arterias Mesentéricas/efectos de los fármacos , Arterias Mesentéricas/metabolismo , Ratones Noqueados , Microscopía Confocal , Modelos Cardiovasculares , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , Norepinefrina/farmacología , Fenotipo , Antagonistas Purinérgicos/farmacología , Ratas Wistar , Factores de Tiempo , Vasoconstrictores/farmacología , Proteína alfa-4 de Unión Comunicante
11.
Cold Spring Harb Protoc ; 2015(3): 284-8, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25734060

RESUMEN

Electroporation is a technique that temporarily induces pores in the plasma membranes of cells, thereby allowing plasma membrane-impermeable substances to enter the cells. This loading method requires an electrical drive circuit providing an electroporation signal, an electrode to apply the signal to a localized zone in a cell monolayer, and a special solution that has a low electrical conductivity. To avoid impairment of cell function and cell death from the electroporation procedure itself, the applied electrical signal should ideally be a high-frequency oscillating signal (50 kHz) without any direct current (DC) component. Here, we describe the detailed procedure of electroporation loading.


Asunto(s)
Señalización del Calcio , Fenómenos Fisiológicos Celulares , Electroporación/métodos , Animales , Línea Celular , Humanos
12.
Cold Spring Harb Protoc ; 2015(3): 289-92, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25734061

RESUMEN

Caged IP3 is an inactive form of the second messenger IP3, consisting of the biologically active molecule linked to a cage group through a photolabile bond. This bond is cleaved by exposure to brief "flashes" of ultraviolet (UV) light, thereby releasing the active IP3 molecule. The protection of caged IP3 against metabolic transformation in combination with a defined time point of fast photoliberation of IP3 provides an efficient way to temporally and spatially control the cytosolic release of IP3 and subsequent increase of cytoplasmic Ca(2+). These properties make it an ideal method for kinetic studies and also a well-suited procedure to initiate intercellular Ca(2+) waves from a point source of IP3. This protocol describes cell loading with membrane impermeable caged IP3 and the UV flash illumination procedure.


Asunto(s)
Inositol 1,4,5-Trifosfato/análogos & derivados , Fotólisis , Rayos Ultravioleta , Animales , Calcio/metabolismo , Línea Celular , Citosol/química , Humanos , Inositol 1,4,5-Trifosfato/efectos de la radiación
13.
Cold Spring Harb Protoc ; 2015(3): 239-49, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25734071

RESUMEN

Many cellular functions are driven by variations in the intracellular Ca(2+) concentration ([Ca(2+)]i), which may appear as a single-event transient [Ca(2+)]i elevation, repetitive [Ca(2+)]i increases known as Ca(2+) oscillations, or [Ca(2+)]i increases propagating in the cytoplasm as Ca(2+) waves. Additionally, [Ca(2+)]i changes can be communicated between cells as intercellular Ca(2+) waves (ICWs). ICWs are mediated by two possible mechanisms acting in parallel: one involving gap junctions that form channels directly linking the cytoplasm of adjacent cells and one involving a paracrine messenger, in most cases ATP, that is released into the extracellular space, leading to [Ca(2+)]i changes in neighboring cells. The intracellular messenger inositol 1,4,5-trisphosphate (IP3) that triggers Ca(2+) release from Ca(2+) stores is crucial in these two ICW propagation scenarios, and is also a potent trigger to initiate ICWs. Loading inactive, "caged" IP3 into cells followed by photolytic "uncaging" with UV light, thereby liberating IP3, is a well-established method to trigger [Ca(2+)]i changes in single cells that is also effective in initiating ICWs. We here describe a method to load cells with caged IP3 by local electroporation of monolayer cell cultures and to apply flash photolysis to increase intracellular IP3 and induce [Ca(2+)]i changes, or initiate ICWs. Moreover, the electroporation method allows loading of membrane-impermeable agents that interfere with IP3 and Ca(2+) signaling.


Asunto(s)
Señalización del Calcio , Electroporación/métodos , Inositol 1,4,5-Trifosfato/análogos & derivados , Fotólisis/efectos de la radiación , Adenosina Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/metabolismo , Inositol 1,4,5-Trifosfato/efectos de la radiación
14.
Neuropharmacology ; 75: 506-16, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24007825

RESUMEN

Connexins form gap junctions that function as intercellular channels and hemichannels that form a conduit between the cytoplasm and extracellular fluid when open. Peptide inhibitors of connexin channels, especially those identical to defined connexin sequences, are interesting experimental, and possibly also therapeutic tools because they may have better selectivity than general inhibitors like carbenoxolone. Over the past ten years, several peptides have been demonstrated to block hemichannels, including Gap26, Gap27, peptide5, L2 and Gap19; some of these specifically block hemichannels but not gap junctions. Most of these peptides have only recently been investigated towards their actions at the single hemichannel level, bringing up interesting information on how they interact with the connexin protein and how they affect hemichannel gating. Hemichannels can be opened by electrical, mechanical and chemical stimuli. We here review the effect of the prototypic peptides Gap26/27 and L2/Gap19 with specific focus on their inhibition of Cx43 hemichannel opening triggered by positive membrane potentials and changes in intracellular Ca2+ concentration. Both Gap26/27 and L2/Gap19 peptide families block Cx43 hemichannel opening triggered by voltage as well as intracellular Ca2+ stimulation. Interestingly, these peptides as well as intracellular Ca2+ elevation modulate the voltage activation threshold for hemichannel opening, pointing to a common target. Moreover, L2 and Gap19 peptides are part of a sequence on the cytoplasmic loop that acts as a Ca2+/calmodulin interaction site. We here review the interesting network of interactions between Cx43 targeting peptides, voltage gating and intracellular Ca2+ as major modulators of hemichannel function. This article is part of the Special Issue Section entitled 'Current Pharmacology of Gap Junction Channels and Hemichannels'.


Asunto(s)
Conexina 43/metabolismo , Canales Iónicos/fisiología , Potenciales de la Membrana/fisiología , Péptidos/farmacología , Animales , Humanos , Canales Iónicos/efectos de los fármacos , Potenciales de la Membrana/efectos de los fármacos
15.
Prog Neurobiol ; 108: 1-20, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23851106

RESUMEN

Situated between the circulation and the brain, the blood-brain barrier (BBB) protects the brain from circulating toxins while securing a specialized environment for neuro-glial signaling. BBB capillary endothelial cells exhibit low transcytotic activity and a tight, junctional network that, aided by the cytoskeleton, restricts paracellular permeability. The latter is subject of extensive research as it relates to neuropathology, edema and inflammation. A key determinant in regulating paracellular permeability is the endothelial cytoplasmic Ca(2+) concentration ([Ca(2+)]i) that affects junctional and cytoskeletal proteins. Ca(2+) signals are not one-time events restricted to a single cell but often appear as oscillatory [Ca(2+)]i changes that may propagate between cells as intercellular Ca(2+) waves. The effect of Ca(2+) oscillations/waves on BBB function is largely unknown and we here review current evidence on how [Ca(2+)]i dynamics influence BBB permeability.


Asunto(s)
Barrera Hematoencefálica/fisiología , Calcio/metabolismo , Calcio/fisiología , Conexinas/metabolismo , Endotelio/metabolismo , Adenosina Trifosfato/fisiología , Animales , Señalización del Calcio/fisiología , Proteínas del Citoesqueleto/metabolismo , Humanos , Neuroglía/fisiología , Uniones Estrechas/fisiología
16.
Brain Res ; 1487: 78-87, 2012 Dec 03.
Artículo en Inglés | MEDLINE | ID: mdl-22789903

RESUMEN

The intracellular calcium concentration ([Ca(2+)](i)) is an important factor determining the permeability of endothelial barriers including the blood-brain barrier (BBB). However, nothing is known concerning the effect of spatially propagated intercellular Ca(2+) waves (ICWs). The propagation of ICWs relies in large part on channels formed by connexins that are present in endothelia. We hypothesized that ICWs may result in a strong disturbance of endothelial function, because the [Ca(2+)](i) changes are coordinated and involve multiple cells. Thus, we aimed to investigate the effect of ICWs on endothelial permeability. ICW activity was triggered in immortalized and primary brain endothelial cells by lowering the extracellular Ca(2+) concentration. Low extracellular Ca(2+) increased the endothelial permeability and this was significantly suppressed by buffering [Ca(2+)](i) with BAPTA-AM, indicating a central role of [Ca(2+)](i) changes. The endothelial permeability increase was furthermore inhibited by the connexin channel blocking peptide Gap27, which also blocked the ICWs, and by inhibiting protein kinase C (PKC), Ca(2+)/calmodulin-dependent kinase II (CaMKII) and actomyosin contraction. We compared these observations with the [Ca(2+)](i) changes and permeability alterations provoked by the inflammatory agent bradykinin (BK), which triggers oscillatory [Ca(2+)](i) changes without wave activity. BK-associated [Ca(2+)](i) changes and the endothelial permeability increase were significantly smaller than those associated with ICWs, and the permeability increase was not influenced by inhibition of PKC, CaMKII or actomyosin contraction. We conclude that ICWs significantly increase endothelial permeability and therefore, the connexins that underlie wave propagation form an interesting target to limit BBB alterations. This article is part of a Special Issue entitled Electrical Synapses.


Asunto(s)
Encéfalo/fisiología , Señalización del Calcio/fisiología , Calcio/fisiología , Endotelio Vascular/fisiología , Actomiosina/fisiología , Animales , Transporte Biológico Activo/fisiología , Western Blotting , Bradiquinina/farmacología , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/fisiología , Células Cultivadas , Conexinas/farmacología , Citoesqueleto/fisiología , Ácido Egtácico/análogos & derivados , Ácido Egtácico/farmacología , Electroforesis en Gel de Poliacrilamida , Espacio Extracelular/efectos de los fármacos , Espacio Extracelular/fisiología , Uniones Comunicantes/efectos de los fármacos , Neuroimagen , Oligopéptidos , Permeabilidad , Proteína Quinasa C/fisiología , Ratas
17.
Cell Calcium ; 50(3): 310-21, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21621840

RESUMEN

Ca(2+) is known as a universal messenger mediating a wide variety of cellular processes, including cell death. In fact, this ion has been proposed as the 'cell death master', not only at the intracellular but also at the intercellular level. The most direct form of intercellular spread of cell death is mediated by gap junction channels. These channels have been shown to propagate cell death as well as cell survival signals between the cytoplasm of neighbouring cells, reflecting the dual role of Ca(2+) signals, i.e. cell death versus survival. Its precursor, the unopposed hemichannel (half of a gap junction channel), has recently joined in as a toxic pore connecting the intracellular with the extracellular environment and allowing the passage of a range of substances. The biochemical nature of the so-called intercellular cell death molecule, transferred through gap junctions or released/taken up via hemichannels, remains elusive but several studies pinpoint Ca(2+) itself or its messenger inositol trisphosphate as the responsible masters in crime. Although direct evidence is still lacking, indirect data including Ca(2+) involvement in intercellular communication and cell death, and effects of intercellular communication on intracellular Ca(2+) homeostasis, support this hypothesis. In addition, hemichannels and their molecular building blocks, connexin or pannexin proteins, may exert their effects on Ca(2+)-dependent cell death at the intracellular level, independently from their channel functions. This review provides a cutting edge overview of the current knowledge and underscores the intimate connection between intercellular communication, Ca(2+) signalling and cell death.


Asunto(s)
Calcio/metabolismo , Comunicación Celular/fisiología , Conexinas/metabolismo , Animales , Apoptosis/fisiología , Señalización del Calcio , Muerte Celular , Uniones Comunicantes/metabolismo , Humanos
18.
J Cereb Blood Flow Metab ; 31(9): 1942-57, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21654699

RESUMEN

The cytoplasmic Ca(2+) concentration ([Ca(2+)](i)) is an important factor determining the functional state of blood-brain barrier (BBB) endothelial cells but little is known on the effect of dynamic [Ca(2+)](i) changes on BBB function. We applied different agonists that trigger [Ca(2+)](i) oscillations and determined the involvement of connexin channels and subsequent effects on endothelial permeability in immortalized and primary brain endothelial cells. The inflammatory peptide bradykinin (BK) triggered [Ca(2+)](i) oscillations and increased endothelial permeability. The latter was prevented by buffering [Ca(2+)](i) with BAPTA, indicating that [Ca(2+)](i) oscillations are crucial in the permeability changes. Bradykinin-triggered [Ca(2+)](i) oscillations were inhibited by interfering with connexin channels, making use of carbenoxolone, Gap27, a peptide blocker of connexin channels, and Cx37/43 knockdown. Gap27 inhibition of the oscillations was rapid (within minutes) and work with connexin hemichannel-permeable dyes indicated hemichannel opening and purinergic signaling in response to stimulation with BK. Moreover, Gap27 inhibited the BK-triggered endothelial permeability increase in in vitro and in vivo experiments. By contrast, [Ca(2+)](i) oscillations provoked by exposure to adenosine 5' triphosphate (ATP) were not affected by carbenoxolone or Gap27 and ATP did not disturb endothelial permeability. We conclude that interfering with endothelial connexin hemichannels is a novel approach to limiting BBB-permeability alterations.


Asunto(s)
Barrera Hematoencefálica/metabolismo , Calcio/metabolismo , Conexinas/metabolismo , Células Endoteliales/metabolismo , Adenosina Trifosfato/farmacología , Animales , Barrera Hematoencefálica/efectos de los fármacos , Bradiquinina/farmacología , Señalización del Calcio/efectos de los fármacos , Carbenoxolona/farmacología , Bovinos , Línea Celular , Células Cultivadas , Proteínas del Citoesqueleto/metabolismo , Células Endoteliales/efectos de los fármacos , Uniones Comunicantes/efectos de los fármacos , Uniones Comunicantes/metabolismo , Humanos , Permeabilidad/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Vasodilatadores/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA