Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Medicina (Kaunas) ; 59(5)2023 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-37241224

RESUMEN

Background and Objectives: The development of liver fibrosis as a consequence of continuous inflammation represents a turning point in the evolution of chronic liver diseases. The recent developments of artificial intelligence (AI) applications show a high potential for improving the accuracy of diagnosis, involving large sets of clinical data. For this reason, the aim of this systematic review is to provide a comprehensive overview of current AI applications and analyze the accuracy of these systems to perform an automated diagnosis of liver fibrosis. Materials and Methods: We searched PubMed, Cochrane Library, EMBASE, and WILEY databases using predefined keywords. Articles were screened for relevant publications about AI applications capable of diagnosing liver fibrosis. Exclusion criteria were animal studies, case reports, abstracts, letters to the editor, conference presentations, pediatric studies, studies written in languages other than English, and editorials. Results: Our search identified a total of 24 articles analyzing the automated imagistic diagnosis of liver fibrosis, out of which six studies analyze liver ultrasound images, seven studies analyze computer tomography images, five studies analyze magnetic resonance images, and six studies analyze liver biopsies. The studies included in our systematic review showed that AI-assisted non-invasive techniques performed as accurately as human experts in detecting and staging liver fibrosis. Nevertheless, the findings of these studies need to be confirmed through clinical trials to be implemented into clinical practice. Conclusions: The current systematic review provides a comprehensive analysis of the performance of AI systems in diagnosing liver fibrosis. Automatic diagnosis, staging, and risk stratification for liver fibrosis is currently possible considering the accuracy of the AI systems, which can overcome the limitations of non-invasive diagnosis methods.


Asunto(s)
Inteligencia Artificial , Cirrosis Hepática , Animales , Humanos , Niño , Cirrosis Hepática/diagnóstico por imagen , Biopsia , Bases de Datos Factuales , Inflamación
2.
Diagnostics (Basel) ; 13(21)2023 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-37958280

RESUMEN

Entrapment neuropathies of the lower limb are a misunderstood and underdiagnosed group of disorders, characterized by pain and dysesthesia, muscular weakness, and specific provoking movements on physical examination. The most frequent of these syndromes encountered in clinical practice are fibular nerve entrapment, proximal tibial neuropathy, sural nerve neuropathy, deep gluteal syndrome or sciatic nerve entrapment, and lateral femoral cutaneous nerve entrapment, also known as meralgia paresthetica. These are commonly mistaken for lumbar plexopathies, radiculopathies, and musculotendinous diseases, which appear even more frequently and have overlapping clinical presentations. A comprehensive anamnesis, physical examination, and electrodiagnostic studies should help clarify the diagnosis. If the diagnosis is still unclear or a secondary cause of entrapment is suspected, magnetic resonance neurography, MRI, or ultrasonography should be conducted to clarify the etiology, rule out other diseases, and confirm the diagnosis. The aim of this narrative review was to help clinicians gain familiarity with this disease, with an increase in diagnostic confidence, leading to early diagnosis of nerve damage and prevention of muscle atrophy. We reviewed the epidemiology, anatomy, pathophysiology, etiology, clinical presentation, and EDX technique and interpretation of the entrapment neuropathies of the lower limb, using articles published from 1970 to 2022 included in the Pubmed, MEDLINE, Cochrane Library, Google Scholar, EMBASE, Web of Science, and Scopus databases.

3.
Biomedicines ; 11(11)2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-38001991

RESUMEN

BACKGROUND: Small bowel disorders present a diagnostic challenge due to the limited accessibility of the small intestine. Accurate diagnosis is made with the aid of specific procedures, like capsule endoscopy or double-ballon enteroscopy, but they are not usually solicited and not widely accessible. This study aims to assess and compare the diagnostic effectiveness of enteroscopy and video capsule endoscopy (VCE) when combined with artificial intelligence (AI) algorithms for the automatic detection of small bowel diseases. MATERIALS AND METHODS: We performed an extensive literature search for relevant studies about AI applications capable of identifying small bowel disorders using enteroscopy and VCE, published between 2012 and 2023, employing PubMed, Cochrane Library, Google Scholar, Embase, Scopus, and ClinicalTrials.gov databases. RESULTS: Our investigation discovered a total of 27 publications, out of which 21 studies assessed the application of VCE, while the remaining 6 articles analyzed the enteroscopy procedure. The included studies portrayed that both investigations, enhanced by AI, exhibited a high level of diagnostic accuracy. Enteroscopy demonstrated superior diagnostic capability, providing precise identification of small bowel pathologies with the added advantage of enabling immediate therapeutic intervention. The choice between these modalities should be guided by clinical context, patient preference, and resource availability. Studies with larger sample sizes and prospective designs are warranted to validate these results and optimize the integration of AI in small bowel diagnostics. CONCLUSIONS: The current analysis demonstrates that both enteroscopy and VCE with AI augmentation exhibit comparable diagnostic performance for the automatic detection of small bowel disorders.

4.
Antibiotics (Basel) ; 11(11)2022 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-36421316

RESUMEN

Antibiotic resistance (AR) is a naturally occurring phenomenon with the capacity to render useless all known antibiotics in the fight against bacterial infections. Although bacterial resistance appeared before any human life form, this process has accelerated in the past years. Important causes of AR in modern times could be the over-prescription of antibiotics, the presence of faulty infection-prevention strategies, pollution in overcrowded areas, or the use of antibiotics in agriculture and farming, together with a decreased interest from the pharmaceutical industry in researching and testing new antibiotics. The last cause is primarily due to the high costs of developing antibiotics. The aim of the present review is to highlight the techniques that are being developed for the identification of new antibiotics to assist this lengthy process, using artificial intelligence (AI). AI can shorten the preclinical phase by rapidly generating many substances based on algorithms created by machine learning (ML) through techniques such as neural networks (NN) or deep learning (DL). Recently, a text mining system that incorporates DL algorithms was used to help and speed up the data curation process. Moreover, new and old methods are being used to identify new antibiotics, such as the combination of quantitative structure-activity relationship (QSAR) methods with ML or Raman spectroscopy and MALDI-TOF MS combined with NN, offering faster and easier interpretation of results. Thus, AI techniques are important additional tools for researchers and clinicians in the race for new methods of overcoming bacterial resistance.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA