Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Cell ; 134(4): 624-33, 2008 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-18724935

RESUMEN

Gene expression requires proper messenger RNA (mRNA) export and translation. However, the functional links between these consecutive steps have not been fully defined. Gle1 is an essential, conserved mRNA export factor whose export function is dependent on the small molecule inositol hexakisphosphate (IP(6)). Here, we show that both Gle1 and IP(6) are required for efficient translation termination in Saccharomyces cerevisiae and that Gle1 interacts with termination factors. In addition, Gle1 has a conserved physical association with the initiation factor eIF3, and gle1 mutants display genetic interactions with the eIF3 mutant nip1-1. Strikingly, gle1 mutants have defects in initiation, whereas strains lacking IP(6) do not. We propose that Gle1 functions together with IP(6) and the DEAD-box protein Dbp5 to regulate termination. However, Gle1 also independently mediates initiation. Thus, Gle1 is uniquely positioned to coordinate the mRNA export and translation mechanisms. These results directly impact models for perturbation of Gle1 function in pathophysiology.


Asunto(s)
Proteínas Portadoras/metabolismo , Ácido Fítico/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , ARN Helicasas DEAD-box/metabolismo , Factor 3 de Iniciación Eucariótica/metabolismo , Proteínas de Complejo Poro Nuclear , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Factores de Terminación de Péptidos/metabolismo , Isoformas de Proteínas/metabolismo , Saccharomyces cerevisiae/genética
2.
J Biol Chem ; 296: 100296, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33460649

RESUMEN

Medulloblastoma is the most common pediatric brain cancer, and sequencing studies identified frequent mutations in DDX3X, a DEAD-box RNA helicase primarily implicated in translation. Forty-two different sites were identified, suggesting that the functional effects of the mutations are complex. To investigate how these mutations are affecting DDX3X cellular function, we constructed a full set of equivalent mutant alleles in DED1, the Saccharomyces cerevisiae ortholog of DDX3X, and characterized their effects in vivo and in vitro. Most of the medulloblastoma-associated mutants in DDX3X/DED1 (ded1-mam) showed substantial growth defects, indicating that functional effects are conserved in yeast. Further, while translation was affected in some mutants, translation defects affecting bulk mRNA were neither consistent nor correlated with the growth phenotypes. Likewise, increased formation of stress granules in ded1-mam mutants was common but did not correspond to the severity of the mutants' growth defects. In contrast, defects in translating mRNAs containing secondary structure in their 5' untranslated regions (UTRs) were found in almost all ded1-mam mutants and correlated well with growth phenotypes. We thus conclude that these specific translation defects, rather than generalized effects on translation, are responsible for the observed cellular phenotypes and likely contribute to DDX3X-mutant medulloblastoma. Examination of ATPase activity and RNA binding of recombinant mutant proteins also did not reveal a consistent defect, indicating that the translation defects are derived from multiple enzymatic deficiencies. This work suggests that future studies into medulloblastoma pathology should focus on this specific translation defect, while taking into account the wide spectrum of DDX3X mutations.


Asunto(s)
Neoplasias Cerebelosas/genética , ARN Helicasas DEAD-box/genética , Meduloblastoma/genética , Biosíntesis de Proteínas , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Regiones no Traducidas 5' , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Sustitución de Aminoácidos , Neoplasias Cerebelosas/metabolismo , Neoplasias Cerebelosas/patología , Secuencia Conservada , ARN Helicasas DEAD-box/metabolismo , Genes Reporteros , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas Luminiscentes/genética , Proteínas Luminiscentes/metabolismo , Meduloblastoma/metabolismo , Meduloblastoma/patología , Mutagénesis Sitio-Dirigida , Mutación , Fenotipo , Unión Proteica , ARN/genética , ARN/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteína Fluorescente Roja
3.
Biomolecules ; 14(7)2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-39062517

RESUMEN

Medulloblastoma is the most common pediatric brain cancer, with about five cases per million in the pediatric population. Current treatment strategies have a 5-year survival rate of 70% or more but frequently lead to long-term neurocognitive defects, and recurrence is relatively high. Genomic sequencing of medulloblastoma patients has shown that DDX3X, which encodes an RNA helicase involved in the process of translation initiation, is among the most commonly mutated genes in medulloblastoma. The identified mutations are 42 single-point amino acid substitutions and are mostly not complete loss-of-function mutations. The pathological mechanism of DDX3X mutations in the causation of medulloblastoma is poorly understood, but several studies have examined their role in promoting cancer progression. This review first discusses the known roles of DDX3X and its yeast ortholog Ded1 in translation initiation, cellular stress responses, viral replication, innate immunity, inflammatory programmed cell death, Wnt signaling, and brain development. It then examines our current understanding of the oncogenic mechanism of the DDX3X mutations in medulloblastoma, including the effect of these DDX3X mutations on growth, biochemical functions, translation, and stress responses. Further research on DDX3X's mechanism and targets is required to therapeutically target DDX3X and/or its downstream effects in medulloblastoma progression.


Asunto(s)
ARN Helicasas DEAD-box , Progresión de la Enfermedad , Meduloblastoma , Mutación , Humanos , Meduloblastoma/genética , Meduloblastoma/patología , Meduloblastoma/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Neoplasias Cerebelosas/genética , Neoplasias Cerebelosas/patología , Neoplasias Cerebelosas/metabolismo , Animales , Proteínas de Saccharomyces cerevisiae
4.
Wiley Interdiscip Rev RNA ; : e1814, 2023 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-37671427

RESUMEN

The budding yeast, Saccharomyces cerevisiae, has been used for decades as a powerful genetic tool to study a broad spectrum of biological topics. With its ease of use, economic utility, well-studied genome, and a highly conserved proteome across eukaryotes, it has become one of the most used model organisms. Due to these advantages, it has been used to study an array of complex human diseases. From broad, complex pathological conditions such as aging and neurodegenerative disease to newer uses such as SARS-CoV-2, yeast continues to offer new insights into how cellular processes are affected by disease and how affected pathways might be targeted in therapeutic settings. At the same time, the roles of RNA and RNA-based processes have become increasingly prominent in the pathology of many of these same human diseases, and yeast has been utilized to investigate these mechanisms, from aberrant RNA-binding proteins in amyotrophic lateral sclerosis to translation regulation in cancer. Here we review some of the important insights that yeast models have yielded into the molecular pathology of complex, RNA-based human diseases. This article is categorized under: RNA in Disease and Development > RNA in Disease.

5.
G3 (Bethesda) ; 13(1)2023 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-36409020

RESUMEN

During cellular stress it is essential for cells to alter their gene expression to adapt and survive. Gene expression is regulated at multiple levels, but translation regulation is both a method for rapid changes to the proteome and, as one of the most energy-intensive cellular processes, a way to efficiently redirect cellular resources during stress conditions. Despite this ideal positioning, many of the specifics of how translation is regulated, positively or negatively, during various types of cellular stress remain poorly understood. To further assess this regulation, we examined the essential translation factor Ded1, an RNA helicase that has been previously shown to play important roles in the translational response to cellular stress. In particular, ded1 mutants display an increased resistance to growth inhibition and translation repression induced by the TOR pathway inhibitor, rapamycin, suggesting that normal stress responses are partially defective in these mutants. To gain further insight into Ded1 translational regulation during stress, synthetic genetic array analysis was conducted in the presence of rapamycin with a ded1 mutant and a library of nonessential genes in Saccharomyces cerevisiae to identify positive and negative genetic interactions in an unbiased manner. Here, we report the results of this screen and subsequent network mapping and Gene Ontology-term analysis. Hundreds of candidate interactions were identified, which fell into expected categories, such as ribosomal proteins and amino acid biosynthesis, as well as unexpected ones, including membrane trafficking, sporulation, and protein glycosylation. Therefore, these results provide several specific directions for further comprehensive studies.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Saccharomycetales/genética , Biosíntesis de Proteínas , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
6.
J Biol Chem ; 286(46): 39750-9, 2011 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-21949122

RESUMEN

DEAD-box protein (Dbp) family members are essential for gene expression; however, their precise roles and regulation are not fully defined. During messenger (m)RNA export, Gle1 bound to inositol hexakisphosphate (IP(6)) acts via Dbp5 to facilitate remodeling of mRNA-protein complexes. In contrast, here we define a novel Gle1 role in translation initiation through regulation of a different DEAD-box protein, the initiation factor Ded1. We find that Gle1 physically and genetically interacts with Ded1. Surprisingly, whereas Gle1 stimulates Dbp5, it inhibits Ded1 ATPase activity in vitro, and IP(6) does not affect this inhibition. Functionally, a gle1-4 mutant specifically suppresses initiation defects in a ded1-120 mutant, and ded1 and gle1 mutants have complementary perturbations in AUG start site recognition. Consistent with this role in initiation, Gle1 inhibits translation in vitro in competent extracts. These results indicate that Gle1 has a direct role in initiation and negatively regulates Ded1. Together, the differential regulation of two distinct DEAD-box proteins by a common factor (Gle1) establishes a new paradigm for controlling gene expression and coupling translation with mRNA export.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Regulación Fúngica de la Expresión Génica/fisiología , Proteínas de Complejo Poro Nuclear/metabolismo , Iniciación de la Cadena Peptídica Traduccional/fisiología , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transporte Biológico Activo/fisiología , ARN Helicasas DEAD-box/genética , Mutación , Proteínas de Complejo Poro Nuclear/genética , Proteínas de Transporte Nucleocitoplasmático/genética , Proteínas de Transporte Nucleocitoplasmático/metabolismo , ARN de Hongos/genética , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
7.
Mol Cell Biol ; 42(1): e0024421, 2022 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-34723653

RESUMEN

Ded1 is a conserved RNA helicase that promotes translation initiation in steady-state conditions. Ded1 has also been shown to regulate translation during cellular stress and affect the dynamics of stress granules (SGs), accumulations of RNA and protein linked to translation repression. To better understand its role in stress responses, we examined Ded1 function in two different models: DED1 overexpression and oxidative stress. DED1 overexpression inhibits growth and promotes the formation of SGs. A ded1 mutant lacking the low-complexity C-terminal region (ded1-ΔCT), which mediates Ded1 oligomerization and interaction with the translation factor eIF4G1, suppressed these phenotypes, consistent with other stresses. During oxidative stress, a ded1-ΔCT mutant was defective in growth and in SG formation compared to wild-type cells, although SGs were increased rather than decreased in these conditions. Unlike stress induced by direct TOR inhibition, the phenotypes in both models were only partially dependent on eIF4G1 interaction, suggesting an additional contribution from Ded1 oligomerization. Furthermore, examination of the growth defects and translational changes during oxidative stress suggested that Ded1 plays a role during recovery from stress. Integrating these disparate results, we propose that Ded1 controls multiple aspects of translation and RNP dynamics in both initial stress responses and during recovery.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , ARN Helicasas/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Gránulos Citoplasmáticos/metabolismo , ARN Helicasas DEAD-box/genética , Regulación Fúngica de la Expresión Génica/genética , Biosíntesis de Proteínas/fisiología , ARN Mensajero/genética , Saccharomyces cerevisiae/metabolismo , Estrés Fisiológico/fisiología
8.
Methods Enzymol ; 673: 103-140, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35965004

RESUMEN

Stress is inevitable, so all organisms have developed response mechanisms to allow for their survival during times of stress. Regulation of gene expression is a critical part of these responses, which allows for the appropriate cohort of proteins to be produced to counter the stress while downregulating others in order to conserve resources. Translation is both highly energy intensive and able to rapidly shift the proteome, thus making it a key target for regulation during stress. Numerous stress pathways converge on translation, and examining the regulatory mechanisms that underlie these pathways is essential for understanding the initial and long-term effects of stress on cells. A number of RNA helicases, including eIF4A, Ded1/DDX3X, and Dhh1/DDX6, have been previously linked to translation, and given their ability to dramatically alter RNA-protein interactions, they are well-positioned to play critical roles in translation regulation during stress. Therefore, assessing the role of helicases in these conditions is vital to the overall understanding of stress. Outlined below are key assays focusing on two areas: assessing cellular phenotypes in growth and survival during stress conditions, and analyzing cellular translation in the presence and absence of stress. The combination of these two approaches will begin to establish the function(s) of a given helicase in the overall stress response.


Asunto(s)
ADN Helicasas , ARN Helicasas , Ciclo Celular , ADN Helicasas/genética , ADN Helicasas/metabolismo , Humanos , Procesamiento Proteico-Postraduccional , Estrés Fisiológico
9.
J Biol Chem ; 285(22): 16683-92, 2010 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-20371601

RESUMEN

The unidirectional translocation of messenger RNA (mRNA) through the aqueous channel of the nuclear pore complex (NPC) is mediated by interactions between soluble mRNA export factors and distinct binding sites on the NPC. At the cytoplasmic side of the NPC, the conserved mRNA export factors Gle1 and inositol hexakisphosphate (IP(6)) play an essential role in mRNA export by activating the ATPase activity of the DEAD-box protein Dbp5, promoting localized messenger ribonucleoprotein complex remodeling, and ensuring the directionality of the export process. In addition, Dbp5, Gle1, and IP(6) are also required for proper translation termination. However, the specificity of the IP(6)-Gle1 interaction in vivo is unknown. Here, we characterize the biochemical interaction between Gle1 and IP(6) and the relationship to Dbp5 binding and stimulation. We identify Gle1 residues required for IP(6) binding and show that these residues are needed for IP(6)-dependent Dbp5 stimulation in vitro. Furthermore, we demonstrate that Gle1 is the primary target of IP(6) for both mRNA export and translation termination in vivo. In Saccharomyces cerevisiae cells, the IP(6)-binding mutants recapitulate all of the mRNA export and translation termination defects found in mutants depleted of IP(6). We conclude that Gle1 specifically binds IP(6) and that this interaction is required for the full potentiation of Dbp5 ATPase activity during both mRNA export and translation termination.


Asunto(s)
Proteínas de Complejo Poro Nuclear/química , Ácido Fítico/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Secuencia de Aminoácidos , Transporte Biológico , ARN Helicasas DEAD-box/metabolismo , Glutatión Transferasa/metabolismo , Inositol/metabolismo , Cinética , Modelos Biológicos , Datos de Secuencia Molecular , Poro Nuclear/metabolismo , Proteínas de Transporte Nucleocitoplasmático/metabolismo , Unión Proteica , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
11.
Biomolecules ; 10(10)2020 09 25.
Artículo en Inglés | MEDLINE | ID: mdl-32992901

RESUMEN

Stress granules (SGs) are hypothesized to facilitate TAR DNA-binding protein 43 (TDP-43) cytoplasmic mislocalization and aggregation, which may underly amyotrophic lateral sclerosis pathology. However, much data for this hypothesis is indirect. Additionally, whether P-bodies (PBs; related mRNA-protein granules) affect TDP-43 phenotypes is unclear. Here, we determine that induction of TDP-43 expression in yeast results in the accumulation of SG-like foci that in >90% of cases become the sites where TDP-43 cytoplasmic foci first appear. Later, TDP-43 foci associate less with SGs and more with PBs, though independent TDP-43 foci also accumulate. However, depleting or over-expressing yeast SG and PB proteins reveals no consistent trend between SG or PB assembly and TDP-43 foci formation, toxicity or protein abundance. In human cells, immunostaining endogenous TDP-43 with different TDP-43 antibodies reveals distinct localization and aggregation behaviors. Following acute arsenite stress, all phospho-TDP-43 foci colocalize with SGs. Finally, formation of TDP-43 cytoplasmic foci following low-dose chronic arsenite stress is impaired, but not completely blocked, in G3BP1/2ΔΔ cells. Collectively, our data suggest that SG and PB assembly may facilitate TDP-43 cytoplasmic localization and aggregation but are likely not essential for these events.


Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Gránulos Citoplasmáticos/genética , Proteínas de Unión al ADN/genética , Estrés Fisiológico/genética , Esclerosis Amiotrófica Lateral/patología , Citoplasma/genética , Humanos , Agregado de Proteínas/genética , ARN Mensajero/genética
12.
Mol Biol Cell ; 30(17): 2171-2184, 2019 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-31141444

RESUMEN

Ded1 is a DEAD-box RNA helicase with essential roles in translation initiation. It binds to the eukaryotic initiation factor 4F (eIF4F) complex and promotes 48S preinitiation complex assembly and start-site scanning of 5' untranslated regions of mRNAs. Most prior studies of Ded1 cellular function were conducted in steady-state conditions during nutrient-rich growth. In this work, however, we examine its role in the translational response during target of rapamycin (TOR)C1 inhibition and identify a novel function of Ded1 as a translation repressor. We show that C-terminal mutants of DED1 are defective in down-regulating translation following TORC1 inhibition using rapamycin. Furthermore, following TORC1 inhibition, eIF4G1 normally dissociates from translation complexes and is degraded, and this process is attenuated in mutant cells. Mapping of the functional requirements for Ded1 in this translational response indicates that Ded1 enzymatic activity and interaction with eIF4G1 are required, while homo-oligomerization may be dispensable. Our results are consistent with a model wherein Ded1 stalls translation and specifically removes eIF4G1 from translation preinitiation complexes, thus removing eIF4G1 from the translating mRNA pool and leading to the codegradation of both proteins. Shared features among DED1 orthologues suggest that this role is conserved and may be implicated in pathologies such as oncogenesis.


Asunto(s)
ARN Helicasas DEAD-box/metabolismo , Proteínas de Saccharomyces cerevisiae/antagonistas & inhibidores , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Transcripción/antagonistas & inhibidores , Factores de Transcripción/metabolismo , Regiones no Traducidas 5' , Citoplasma/metabolismo , ARN Helicasas DEAD-box/genética , Factor 4F Eucariótico de Iniciación/metabolismo , Conformación de Ácido Nucleico , Extensión de la Cadena Peptídica de Translación , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Factores de Transcripción/genética
13.
Mol Cell Biol ; 25(19): 8456-64, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16166628

RESUMEN

The class II deacetylase histone deacetylase 4 (HDAC4) negatively regulates the transcription factor MEF2. HDAC4 is believed to repress MEF2 transcriptional activity by binding to MEF2 and catalyzing local histone deacetylation. Here we report that HDAC4 also controls MEF2 by a novel SUMO E3 ligase activity. We show that HDAC4 interacts with the SUMO E2 conjugating enzyme Ubc9 and is itself sumoylated. The overexpression of HDAC4 leads to prominent MEF2 sumoylation in vivo, whereas recombinant HDAC4 stimulates MEF2 sumoylation in a reconstituted system in vitro. Importantly, HDAC4 promotes sumoylation on a lysine residue that is also subject to acetylation by a MEF2 coactivator, the acetyltransferase CBP, suggesting a possible interplay between acetylation and sumoylation in regulating MEF2 activity. Indeed, MEF2 acetylation is correlated with MEF2 activation and dynamically induced upon muscle cell differentiation, while sumoylation inhibits MEF2 transcriptional activity. Unexpectedly, we found that HDAC4 does not function as a MEF2 deacetylase. Instead, the NAD+-dependent deacetylase SIRT1 can potently induce MEF2 deacetylation. Our studies reveal a novel regulation of MEF2 transcriptional activity by two distinct classes of deacetylases that affect MEF2 sumoylation and acetylation.


Asunto(s)
Regulación de la Expresión Génica , Histona Desacetilasas/metabolismo , Lisina/química , Factores Reguladores Miogénicos/biosíntesis , Factores Reguladores Miogénicos/genética , Proteínas Represoras/metabolismo , Sirtuinas/metabolismo , Acetilación , Secuencia de Aminoácidos , Animales , Western Blotting , Diferenciación Celular , Línea Celular , ADN/química , Fibroblastos/metabolismo , Vectores Genéticos , Humanos , Inmunoprecipitación , Luciferasas/metabolismo , Factores de Transcripción MEF2 , Ratones , Modelos Biológicos , Datos de Secuencia Molecular , Mutación , Factores Reguladores Miogénicos/química , Plásmidos/metabolismo , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Sirtuina 1 , Proteínas Modificadoras Pequeñas Relacionadas con Ubiquitina/metabolismo , Transcripción Genética , Transfección , Ubiquitina-Proteína Ligasas/metabolismo
14.
Mol Cell Biol ; 37(21)2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28784717

RESUMEN

DEAD-box proteins (DBPs) are required in gene expression to facilitate changes to ribonucleoprotein complexes, but the cellular mechanisms and regulation of DBPs are not fully defined. Gle1 is a multifunctional regulator of DBPs with roles in mRNA export and translation. In translation, Gle1 modulates Ded1, a DBP required for initiation. However, DED1 overexpression causes defects, suggesting that Ded1 can promote or repress translation in different contexts. Here we show that GLE1 expression suppresses the repressive effects of DED1 in vivo and Gle1 counteracts Ded1 in translation assays in vitro Furthermore, both Ded1 and Gle1 affect the assembly of preinitiation complexes. Through mutation analysis and binding assays, we show that Gle1 inhibits Ded1 by reducing its affinity for RNA. Our results are consistent with a model wherein active Ded1 promotes translation but inactive or excess Ded1 leads to translation repression. Gle1 can inhibit either role of Ded1, positioning it as a gatekeeper to optimize Ded1 activity to the appropriate level for translation. This study suggests a paradigm for finely controlling the activity of DEAD-box proteins to optimize their function in RNA-based processes. It also positions the versatile regulator Gle1 as a potential node for the coordination of different steps of gene expression.

15.
J Neurosci ; 25(41): 9544-53, 2005 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-16221865

RESUMEN

Histone deacetylase 4 (HDAC4) undergoes signal-dependent shuttling between the cytoplasm and nucleus, which is regulated in part by calcium/calmodulin-dependent kinase (CaMK)-mediated phosphorylation. Here, we report that HDAC4 intracellular trafficking is important in regulating neuronal cell death. HDAC4 is normally localized to the cytoplasm in brain tissue and cultured cerebellar granule neurons (CGNs). However, in response to low-potassium or excitotoxic glutamate conditions that induce neuronal cell death, HDAC4 rapidly translocates into the nucleus of cultured CGNs. Treatment with the neuronal survival factor BDNF suppresses HDAC4 nuclear translocation, whereas a proapoptotic CaMK inhibitor stimulates HDAC4 nuclear accumulation. Moreover, ectopic expression of nuclear-localized HDAC4 promotes neuronal apoptosis and represses the transcriptional activities of myocyte enhancer factor 2 and cAMP response element-binding protein, survival factors in neurons. In contrast, inactivation of HDAC4 by small interfering RNA or HDAC inhibitors suppresses neuronal cell death. Finally, an increase of nuclear HDAC4 in granule neurons is also observed in weaver mice, which harbor a mutation that promotes CGN apoptosis. Our data identify HDAC4 and its intracellular trafficking as key effectors of multiple pathways that regulate neuronal cell death.


Asunto(s)
Histona Desacetilasas/biosíntesis , Líquido Intracelular/enzimología , Neuronas/enzimología , Animales , Muerte Celular/efectos de los fármacos , Muerte Celular/fisiología , Células Cultivadas , Inhibidores Enzimáticos/farmacología , Inhibidores de Histona Desacetilasas , Histona Desacetilasas/genética , Líquido Intracelular/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes Neurológicos , Neuronas/citología , Neuronas/efectos de los fármacos , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/fisiología
16.
J Biol Chem ; 282(40): 29186-92, 2007 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-17646162

RESUMEN

Ataxin-1 is a neurodegenerative disorder protein whose mutant form causes spinocerebellar ataxia type-1 (SCA1). Evidence suggests that ataxin-1 may function as a transcription repressor. However, neither the importance of this putative transcriptional repression activity in neural cytotoxicity nor the transcriptional targets of ataxin-1 are known. Here we identify the MEF2-HDAC4 transcriptional complex involved in neuron survival as a target of ataxin-1. We show that ataxin-1 binds specifically to histone deacetylase-4 (HDAC4) and MEF2 and colocalizes with them in nuclear inclusion bodies. Significantly, these interactions are greatly reduced by the S776A mutation, which largely abrogates the cytotoxicity of ataxin-1. Supporting the importance of these interactions, we show that wild type ataxin-1 represses MEF2-dependent transcription, whereas the S776A mutant is less potent. Furthermore, overexpression of MEF2 can partially reverse cytotoxicity caused by ataxin-1. Our results identify the MEF2-HDAC4 complex as a target for ataxin-1 transcriptional repression activity and suggest a novel pathogenic mechanism whereby ataxin-1 sequesters and inhibits the neuronal survival factor MEF2.


Asunto(s)
Factores Reguladores Miogénicos/metabolismo , Proteínas del Tejido Nervioso/fisiología , Enfermedades Neurodegenerativas/metabolismo , Neuronas/metabolismo , Proteínas Nucleares/fisiología , Animales , Ataxina-1 , Ataxinas , Células COS , Cerebelo/citología , Chlorocebus aethiops , Histona Desacetilasas/metabolismo , Factores de Transcripción MEF2 , Ratones , Microscopía Fluorescente , Mutación , Proteínas del Tejido Nervioso/metabolismo , Proteínas Nucleares/metabolismo , Unión Proteica , Transporte de Proteínas , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA