Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Bioorg Med Chem ; 68: 116880, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35714535

RESUMEN

l-Threonine aldolases (LTAs) employing pyridoxal phosphate (PLP) as cofactor can convert low-cost achiral substrates glycine and aldehyde directly into valuable ß-hydroxy-α-amino acids such as (2R,3S)-2-amino-3-hydroxy-3-(4-nitrophenyl) propanoic acid ((R,S)-AHNPA), which is utilized broadly as crucial chiral intermediates for bioactive compounds. However, LTAs' stereospecificity towards the ß carbon is rather moderate and their activity and stability at high substrate load is low, which limits their industrial application. Here, computer-aided directed evolution was applied to improve overall activity, selectivity and stability under desired process conditions of a l-threonine aldolase in the asymmetric synthesis of (R,S)-AHNPA. Selectivity and stability determining regions were computationally identified for structure-guided directed evolution of LTA-variants under efficient biocatalytic process conditions using 40% ethanol as cosolvent. We applied molecular modeling to rationalize selectivity improvement and design focused libraries targeting the substrate binding pocket, and we also used MD simulations in nonaqueous process environment as an effective and promising method to predict potential unstable loop regions near the tetramer interface which are hot-spots for cosolvent resistance. An excellent LTA variant EM-ALDO031 with 18 mutations was obtained, which showed âˆ¼ 30-fold stability improvement in 40% ethanol and diastereoselectivity (de) raised from 31.5% to 85% through a three-phase evolution campaign. Our fast and efficient data-driven methodology utilizing a combination of experimental and computational tools enabled us to evolve an aldolase variant to achieve the target of 90% conversion at up to 150 g/L substrate load in 40% ethanol, enabling the biocatalytic production of ß-hydroxy-α-amino acids from cheap achiral precursors at multi-ton scale.


Asunto(s)
Cloranfenicol , Glicina Hidroximetiltransferasa , Aminoácidos/química , Computadores , Etanol , Glicina Hidroximetiltransferasa/química , Glicina Hidroximetiltransferasa/genética , Glicina Hidroximetiltransferasa/metabolismo , Hidrolasas/metabolismo , Especificidad por Sustrato
2.
J Org Chem ; 83(14): 7453-7458, 2018 07 20.
Artículo en Inglés | MEDLINE | ID: mdl-29932340

RESUMEN

A wild-type Baeyer-Villiger monooxygenase was engineered to overcome numerous liabilities in order to mediate a commercial oxidation of pyrmetazole to esomeprazole, using air as the terminal oxidant in an almost exclusively aqueous reaction matrix. The developed enzyme and process compares favorably to the incumbent Kagan inspired chemocatalytic oxidation, as esomeprazole was isolated in 87% yield, in >99% purity, with an enantiomeric excess of >99%.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA