Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
Plant Cell ; 36(5): 1655-1672, 2024 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-38242840

RESUMEN

SUPPRESSOR OF MAX2 (SMAX)1-LIKE (SMXL) proteins are a plant-specific clade of type I HSP100/Clp-ATPases. SMXL genes are present in virtually all land plant genomes. However, they have mainly been studied in angiosperms. In Arabidopsis (Arabidopsis thaliana), 3 functional SMXL subclades have been identified: SMAX1/SMXL2, SMXL345, and SMXL678. Of these, 2 subclades ensure endogenous phytohormone signal transduction. SMAX1/SMXL2 proteins are involved in KAI2 ligand (KL) signaling, while SMXL678 proteins are involved in strigolactone (SL) signaling. Many questions remain regarding the mode of action of these proteins, as well as their ancestral roles. We addressed these questions by investigating the functions of the 4 SMXL genes in the moss Physcomitrium patens. We demonstrate that PpSMXL proteins are involved in the conserved ancestral MAX2-dependent KL signaling pathway and negatively regulate growth. However, PpSMXL proteins expressed in Arabidopsis cannot replace SMAX1 or SMXL2 function in KL signaling, whereas they can functionally replace SMXL4 and SMXL5 and restore root growth. Therefore, the molecular functions of SMXL proteins are conserved, but their interaction networks are not. Moreover, the PpSMXLC/D clade positively regulates SL signal transduction in P. patens. Overall, our data reveal that SMXL proteins in moss mediate crosstalk between the SL and KL signaling pathways.


Asunto(s)
Proteínas de Arabidopsis , Bryopsida , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas , Bryopsida/genética , Bryopsida/crecimiento & desarrollo , Bryopsida/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , Transducción de Señal , Filogenia , Lactonas/metabolismo
2.
Plant Cell ; 33(11): 3487-3512, 2021 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-34459915

RESUMEN

In angiosperms, the α/ß hydrolase DWARF14 (D14), along with the F-box protein MORE AXILLARY GROWTH2 (MAX2), perceives strigolactones (SL) to regulate developmental processes. The key SL biosynthetic enzyme CAROTENOID CLEAVAGE DIOXYGENASE8 (CCD8) is present in the moss Physcomitrium patens, and PpCCD8-derived compounds regulate moss extension. The PpMAX2 homolog is not involved in the SL response, but 13 PpKAI2LIKE (PpKAI2L) genes homologous to the D14 ancestral paralog KARRIKIN INSENSITIVE2 (KAI2) encode candidate SL receptors. In Arabidopsis thaliana, AtKAI2 perceives karrikins and the elusive endogenous KAI2-Ligand (KL). Here, germination assays of the parasitic plant Phelipanche ramosa suggested that PpCCD8-derived compounds are likely noncanonical SLs. (+)-GR24 SL analog is a good mimic for PpCCD8-derived compounds in P. patens, while the effects of its enantiomer (-)-GR24, a KL mimic in angiosperms, are minimal. Interaction and binding assays of seven PpKAI2L proteins pointed to the stereoselectivity toward (-)-GR24 for a single clade of PpKAI2L (eu-KAI2). Enzyme assays highlighted the peculiar behavior of PpKAI2L-H. Phenotypic characterization of Ppkai2l mutants showed that eu-KAI2 genes are not involved in the perception of PpCCD8-derived compounds but act in a PpMAX2-dependent pathway. In contrast, mutations in PpKAI2L-G, and -J genes abolished the response to the (+)-GR24 enantiomer, suggesting that PpKAI2L-G, and -J proteins are receptors for moss SLs.


Asunto(s)
Bryopsida/genética , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Lactonas/metabolismo , Orobanchaceae/fisiología , Proteínas de Plantas/genética , Bryopsida/metabolismo , Bryopsida/parasitología , Proteínas de Plantas/metabolismo
3.
J Exp Bot ; 73(13): 4487-4495, 2022 07 16.
Artículo en Inglés | MEDLINE | ID: mdl-35524989

RESUMEN

Strigolactones (SLs), long known as butenolide rhizospheric signals, have been recognized since 2008 as a class of hormones regulating many aspects of plant development. Many authors also anticipate 'KAI2-ligand' (KL) as a novel class of phytohormones; however, this ligand remains elusive. Core genes of SL and KL pathways, first described in angiosperms, are found in all land plants and some even in green algae. This review reports current knowledge of these pathways in bryophytes. Data on the pathways mostly come from two models: the moss Physcomitrium patens and the liverwort Marchantia. Gene targeting methods have allowed functional analyses of both models. Recent work in Marchantia suggests that SLs' ancestral role was to recruit beneficial microbes as arbuscular mycorrhizal fungi. In contrast, the hormonal role of SLs observed in P. patens is probably a result of convergent evolution. Evidence for a functional KL pathway in both bryophyte models is very recent. Nevertheless, many unknowns remain and warrant a more extensive investigation of SL and KL pathways in various land plant lineages.


Asunto(s)
Bryopsida , Lactonas , Bryopsida/metabolismo , Compuestos Heterocíclicos con 3 Anillos , Lactonas/metabolismo , Ligandos , Reguladores del Crecimiento de las Plantas/metabolismo
4.
Plant Mol Biol ; 107(4-5): 245-277, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34245404

RESUMEN

KEY MESSAGE: Most known phytohormones regulate moss development. We present a comprehensive view of the synthesis and signaling pathways for the most investigated of these compounds in mosses, focusing on the model Physcomitrium patens. The last 50 years of research have shown that most of the known phytohormones are synthesized by the model moss Physcomitrium patens (formerly Physcomitrella patens) and regulate its development, in interaction with responses to biotic and abiotic stresses. Biosynthesis and signaling pathways are best described in P. patens for the three classical hormones auxins, cytokinins and abscisic acid. Furthermore, their roles in almost all steps of development, from early filament growth to gametophore development and sexual reproduction, have been the focus of much research effort over the years. Evidence of hormonal roles exist for ethylene and for CLE signaling peptides, as well as for salicylic acid, although their possible effects on development remain unclear. Production of brassinosteroids by P. patens is still debated, and modes of action for these compounds are even less known. Gibberellin biosynthesis and signaling may have been lost in P. patens, while gibberellin precursors such as ent-kaurene derivatives could be used as signals in a yet to discover pathway. As for jasmonic acid, it is not used per se as a hormone in P. patens, but its precursor OPDA appears to play a corresponding role in defense against abiotic stress. We have tried to gather a comprehensive view of the biosynthesis and signaling pathways for all these compounds in mosses, without forgetting strigolactones, the last class of plant hormones to be reported. Study of the strigolactone response in P. patens points to a novel signaling compound, the KAI2-ligand, which was likely employed as a hormone prior to land plant emergence.


Asunto(s)
Briófitas/metabolismo , Reguladores del Crecimiento de las Plantas/biosíntesis , Proteínas de Plantas/metabolismo , Transducción de Señal/fisiología , Briófitas/efectos de los fármacos , Briófitas/genética , Ciclopentanos/química , Ciclopentanos/metabolismo , Ciclopentanos/farmacología , Citocininas/química , Citocininas/metabolismo , Citocininas/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Giberelinas/química , Giberelinas/metabolismo , Giberelinas/farmacología , Ácidos Indolacéticos/química , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Estructura Molecular , Oxilipinas/química , Oxilipinas/metabolismo , Oxilipinas/farmacología , Reguladores del Crecimiento de las Plantas/química , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
5.
Plant J ; 95(1): 168-182, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29681058

RESUMEN

High-throughput RNA sequencing (RNA-seq) has recently become the method of choice to define and analyze transcriptomes. For the model moss Physcomitrella patens, although this method has been used to help analyze specific perturbations, no overall reference dataset has yet been established. In the framework of the Gene Atlas project, the Joint Genome Institute selected P. patens as a flagship genome, opening the way to generate the first comprehensive transcriptome dataset for this moss. The first round of sequencing described here is composed of 99 independent libraries spanning 34 different developmental stages and conditions. Upon dataset quality control and processing through read mapping, 28 509 of the 34 361 v3.3 gene models (83%) were detected to be expressed across the samples. Differentially expressed genes (DEGs) were calculated across the dataset to permit perturbation comparisons between conditions. The analysis of the three most distinct and abundant P. patens growth stages - protonema, gametophore and sporophyte - allowed us to define both general transcriptional patterns and stage-specific transcripts. As an example of variation of physico-chemical growth conditions, we detail here the impact of ammonium supplementation under standard growth conditions on the protonemal transcriptome. Finally, the cooperative nature of this project allowed us to analyze inter-laboratory variation, as 13 different laboratories around the world provided samples. We compare differences in the replication of experiments in a single laboratory and between different laboratories.


Asunto(s)
Bryopsida/genética , Conjuntos de Datos como Asunto , Genes de Plantas/genética , Mapeo Cromosómico , Genoma de Planta/genética , Secuenciación de Nucleótidos de Alto Rendimiento , Transcriptoma/genética
6.
Development ; 142(21): 3615-9, 2015 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-26534982

RESUMEN

Strigolactones (SLs), first identified for their role in parasitic and symbiotic interactions in the rhizosphere, constitute the most recently discovered group of plant hormones. They are best known for their role in shoot branching but, more recently, roles for SLs in other aspects of plant development have emerged. In the last five years, insights into the SL biosynthetic pathway have also been revealed and several key components of the SL signaling pathway have been identified. Here, and in the accompanying poster, we summarize our current understanding of the SL pathway and discuss how this pathway regulates plant development.


Asunto(s)
Lactonas/metabolismo , Desarrollo de la Planta , Transducción de Señal , Vías Biosintéticas , Lactonas/química , Brotes de la Planta/metabolismo , Proteolisis
7.
New Phytol ; 219(2): 743-756, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29781136

RESUMEN

Strigolactones (SLs) are key hormonal regulators of flowering plant development and are widely distributed amongst streptophytes. In Arabidopsis, SLs signal via the F-box protein MORE AXILLARY GROWTH2 (MAX2), affecting multiple aspects of development including shoot branching, root architecture and drought tolerance. Previous characterization of a Physcomitrella patens moss mutant with defective SL synthesis supports an ancient role for SLs in land plants, but the origin and evolution of signalling pathway components are unknown. Here we investigate the function of a moss homologue of MAX2, PpMAX2, and characterize its role in SL signalling pathway evolution by genetic analysis. We report that the moss Ppmax2 mutant shows very distinct phenotypes from the moss SL-deficient mutant. In addition, the Ppmax2 mutant remains sensitive to SLs, showing a clear transcriptional SL response in dark conditions, and the response to red light is also altered. These data suggest divergent evolutionary trajectories for SL signalling pathway evolution in mosses and vascular plants. In P. patens, the primary roles for MAX2 are in photomorphogenesis and moss early development rather than in SL response, which may require other, as yet unidentified, factors.


Asunto(s)
Bryopsida/metabolismo , Proteínas F-Box/metabolismo , Lactonas/metabolismo , Luz , Morfogénesis/efectos de la radiación , Proteínas de Plantas/metabolismo , Transducción de Señal , Bryopsida/genética , Bryopsida/efectos de la radiación , Núcleo Celular/efectos de los fármacos , Núcleo Celular/metabolismo , Núcleo Celular/efectos de la radiación , Epistasis Genética/efectos de los fármacos , Epistasis Genética/efectos de la radiación , Proteínas F-Box/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Lactonas/farmacología , Modelos Biológicos , Morfogénesis/efectos de los fármacos , Mutación/genética , Fenotipo , Proteínas de Plantas/genética , Transporte de Proteínas/efectos de los fármacos , Transporte de Proteínas/efectos de la radiación , Homología de Secuencia de Aminoácido , Transcripción Genética/efectos de los fármacos , Transcripción Genética/efectos de la radiación
8.
Nat Chem Biol ; 12(10): 787-794, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27479744

RESUMEN

Strigolactone plant hormones control plant architecture and are key players in both symbiotic and parasitic interactions. They contain an ABC tricyclic lactone connected to a butenolide group, the D ring. The DWARF14 (D14) strigolactone receptor belongs to the superfamily of α/ß-hydrolases, and is known to hydrolyze the bond between the ABC lactone and the D ring. Here we characterized the binding and catalytic functions of RAMOSUS3 (RMS3), the pea (Pisum sativum) ortholog of rice (Oryza sativa) D14 strigolactone receptor. Using new profluorescent probes with strigolactone-like bioactivity, we found that RMS3 acts as a single-turnover enzyme that explains its apparent low enzymatic rate. We demonstrated the formation of a covalent RMS3-D-ring complex, essential for bioactivity, in which the D ring was attached to histidine 247 of the catalytic triad. These results reveal an undescribed mechanism of plant hormone reception in which the receptor performs an irreversible enzymatic reaction to generate its own ligand.


Asunto(s)
4-Butirolactona/análogos & derivados , Compuestos Heterocíclicos con 3 Anillos/metabolismo , Histidina/metabolismo , Lactonas/metabolismo , Pisum sativum/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/metabolismo , 4-Butirolactona/química , 4-Butirolactona/metabolismo , Histidina/química , Ligandos , Estructura Molecular , Pisum sativum/enzimología , Reguladores del Crecimiento de las Plantas/química , Proteínas de Plantas/química
9.
Planta ; 243(6): 1441-53, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26979323

RESUMEN

MAIN CONCLUSION: A set of PpKAI2 - LIKE paralogs that may encode strigolactone receptors in Physcomitrella patens were identified through evolutionary, structural, and transcriptional analyses, suggesting that strigolactone perception may have evolved independently in basal land plants in a similar manner as spermatophytes. Carotenoid-derived compounds known as strigolactones are a new class of plant hormones that modulate development and interactions with parasitic plants and arbuscular mycorrhizal fungi. The strigolactone receptor protein DWARF14 (D14) belongs to the α/ß hydrolase family. D14 is closely related to KARRIKIN INSENSITIVE2 (KAI2), a receptor of smoke-derived germination stimulants called karrikins. Strigolactone and karrikin structures share a butenolide ring that is necessary for bioactivity. Charophyte algae and basal land plants produce strigolactones that influence their development. However phylogenetic studies suggest that D14 is absent from algae, moss, and liverwort genomes, raising the question of how these basal plants perceive strigolactones. Strigolactone perception during seed germination putatively evolved in parasitic plants through gene duplication and neofunctionalization of KAI2 paralogs. The moss Physcomitrella patens shows an increase in KAI2 gene copy number, similar to parasitic plants. In this study we investigated whether P. patens KAI2-LIKE (PpKAI2L) genes may contribute to strigolactone perception. Based on phylogenetic analyses and homology modelling, we predict that a clade of PpKAI2L proteins have enlarged ligand-binding cavities, similar to D14. We observed that some PpKAI2L genes have transcriptional responses to the synthetic strigolactone GR24 racemate or its enantiomers. These responses were influenced by light and dark conditions. Moreover, (+)-GR24 seems to be the active enantiomer that induces the transcriptional responses of PpKAI2L genes. We hypothesize that members of specific PpKAI2L clades are candidate strigolactone receptors in moss.


Asunto(s)
Bryopsida/metabolismo , Lactonas/química , Reguladores del Crecimiento de las Plantas/química , Proteínas de Plantas/fisiología , Sitios de Unión , Bryopsida/crecimiento & desarrollo , Evolución Molecular , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Lactonas/metabolismo , Modelos Moleculares , Filogenia , Reguladores del Crecimiento de las Plantas/genética , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/genética , ARN de Planta/metabolismo , Análisis de Secuencia de ADN
10.
Front Plant Sci ; 13: 887232, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35645992

RESUMEN

Although the main players of the strigolactone (SL) signaling pathway have been characterized genetically, how they regulate plant development is still poorly understood. Of central importance are the SUPPRESSOR OF MAX2 1-LIKE (SMXL) proteins that belong to a family of eight members in Arabidopsis thaliana, of which one subclade is involved in SL signaling and another one in the pathway of the chemically related karrikins. Through proteasomal degradation of these SMXLs, triggered by either DWARF14 (D14) or KARRIKIN INSENSITIVE2 (KAI2), several physiological processes are controlled, such as, among others, shoot and root architecture, seed germination, and seedling photomorphogenesis. Yet another clade has been shown to be involved in vascular development, independently of the D14 and KAI2 actions and not relying on proteasomal degradation. Despite their role in several aspects of plant development, the exact molecular mechanisms by which SMXLs regulate them are not completely unraveled. To fill the major knowledge gap in understanding D14 and KAI2 signaling, SMXLs are intensively studied, making it challenging to combine all the insights into a coherent characterization of these important proteins. To this end, this review provides an in-depth exploration of the recent data regarding their physiological function, evolution, structure, and molecular mechanism. In addition, we propose a selection of future perspectives, focusing on the apparent localization of SMXLs in subnuclear speckles, as observed in transient expression assays, which we couple to recent advances in the field of biomolecular condensates and liquid-liquid phase separation.

11.
Front Plant Sci ; 13: 887347, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35720613

RESUMEN

Strigolactones (SLs) are intriguing phytohormones that not only regulate plant development and architecture but also interact with other organisms in the rhizosphere as root parasitic plants (Striga, Orobanche, and Phelipanche) and arbuscular mycorrhizal fungi. Starting with a pioneering work in 2003 for the isolation and identification of the SL receptor in parasitic weeds, fluorescence labeling of analogs has proven a major strategy to gain knowledge in SL perception and signaling. Here, we present novel chemical tools for understanding the SL perception based on the enzymatic properties of SL receptors. We designed different profluorescent SL Guillaume Clavé (GC) probes and performed structure-activity relationship studies on pea, Arabidopsis thaliana, and Physcomitrium (formerly Physcomitrella) patens. The binding of the GC probes to PsD14/RMS3, AtD14, and OsD14 proteins was tested. We demonstrated that coumarin-based profluorescent probes were highly bioactive and well-adapted to dissect the enzymatic properties of SL receptors in pea and a resorufin profluorescent probe in moss, contrary to the commercially available fluorescein profluorescent probe, Yoshimulactone Green (YLG). These probes offer novel opportunities for the studies of SL in various plants.

12.
Methods Mol Biol ; 2309: 143-155, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34028685

RESUMEN

As a bryophyte and model plant, the moss Physcomitrium (Physcomitrella) patens (P. patens) is particularly well adapted to hormone evolution studies. Gene targeting through homologous recombination or CRISPR-Cas9 system, genome sequencing, and numerous transcriptomic datasets has allowed for molecular genetics studies and much progress in Evo-Devo knowledge. As to strigolactones, like for other hormones, both phenotypical and transcriptional responses can be studied, in both WT and mutant plants. However, as in any plant species, medium- to large-scale phenotype characterization is necessary, owing to the general high phenotypic variability. Therefore, many biological replicates are required. This may translate to large amount of the investigated compounds, particularly expensive (or difficult to synthesize) in the case of strigolactones. These issues prompted us to improve existing methods to limit the use of scarce/expensive compounds, as well as to simplify subsequent measures/sampling of P. patens. We hence scaled up well-tried experiments, in order to increment the number of tested genotypes in one given experiment.In this chapter, we will describe three methods we set up to study the response to strigolactones and related compounds in P. patens.


Asunto(s)
Bioensayo , Bryopsida/efectos de los fármacos , Compuestos Heterocíclicos con 3 Anillos/farmacología , Lactonas/farmacología , Desarrollo de la Planta/efectos de los fármacos , Reguladores del Crecimiento de las Plantas/farmacología , Plantas Modificadas Genéticamente/efectos de los fármacos , Bryopsida/genética , Bryopsida/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas , Genotipo , Fenotipo , Plantas Modificadas Genéticamente/genética , Plantas Modificadas Genéticamente/crecimiento & desarrollo , Factores de Tiempo
13.
BMC Plant Biol ; 10: 158, 2010 Aug 03.
Artículo en Inglés | MEDLINE | ID: mdl-20682047

RESUMEN

BACKGROUND: The proteasome subunit RPT5, which is essential for gametophyte development, is encoded by two genes in Arabidopsis thaliana; RPT5a and RPT5b. We showed previously that RPT5a and RPT5b are fully redundant in the Columbia (Col-0) accession, whereas in the Wassilewskia accession (Ws-4), RPT5b does not complement the effect of a strong rpt5a mutation in the male gametophyte, and only partially complements rpt5a mutation in the sporophyte. RPT5bCol-0 and RPT5bWs-4 differ by only two SNPs, one located in the promoter and the other in the seventh intron of the gene. RESULTS: By exploiting natural variation at RPT5b we determined that the SNP located in RPT5b intron seven, rather than the promoter SNP, is the sole basis of this lack of redundancy. In Ws-4 this SNP is predicted to create a new splicing branchpoint sequence that induces a partial mis-splicing of the pre-mRNA, leading to the introduction of a Premature Termination Codon. We characterized 5 accessions carrying this A-to-T substitution in intron seven and observed a complete correlation between this SNP and both a 10 to 20% level of the RPT5b pre-mRNA mis-splicing and the lack of ability to complement an rpt5a mutant phenotype. CONCLUSION: The accession-dependent unequal redundancy between RPT5a and RPT5b genes illustrates an example of evolutionary drifting between duplicated genes through alternative splicing.


Asunto(s)
Adenosina Trifosfatasas , Empalme Alternativo , Proteínas de Arabidopsis , Arabidopsis/genética , Arabidopsis/metabolismo , Polimorfismo de Nucleótido Simple/genética , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Mutación/genética
14.
Plant Methods ; 15: 79, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31367225

RESUMEN

BACKGROUND: Plant protoplasts are basic plant cells units in which the pecto-cellulosic cell wall has been removed, but the plasma membrane is intact. One of the main features of plant cells is their strong plasticity, and their propensity to regenerate an organism from a single cell. Methods and differentiation protocols used in plant physiology and biology usually involve macroscopic vessels and containers that make difficult, for example, to follow the fate of the same protoplast all along its full development cycle, but also to perform continuous studies of the influence of various gradients in this context. These limits have hampered the precise study of regeneration processes. RESULTS: Herein, we present the design of a comprehensive, physiologically relevant, easy-to-use and low-cost microfluidic and microscopic setup for the monitoring of Physcomitrella patens (P. patens) growth and development on a long-term basis. The experimental solution we developed is made of two parts (i) a microfluidic chip composed of a single layer of about a hundred flow-through microfluidic traps for the immobilization of protoplasts, and (ii) a low-cost, light-controlled, custom-made microscope allowing the continuous recording of the moss development in physiological conditions. We validated the experimental setup with three proofs of concepts: (i) the kinetic monitoring of first division steps and cell wall regeneration, (ii) the influence of the photoperiod on growth of the protonemata, and (iii) finally the induction of leafy buds using a phytohormone, cytokinin. CONCLUSIONS: We developed the design of a comprehensive, physiologically relevant, easy-to-use and low-cost experimental setup for the study of P. patens development in a microfluidic environment. This setup allows imaging of P. patens development at high resolution and over long time periods.

15.
J Exp Bot ; 59(11): 3087-98, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18583349

RESUMEN

The organization and dynamics of the plant endomembrane system require both universal and plant-specific molecules and compartments. The latter, despite the growing wealth of information, remains poorly understood. From the study of an Arabidopsis thaliana male gametophytic mutant, it was possible to isolate a gene named POKY POLLEN TUBE (POK) essential for pollen tube tip growth. The similarity between the predicted POK protein sequence and yeast Vps52p, a subunit from the GARP/VFT complex which is involved in the docking of vesicles from the prevacuolar compartment to the Golgi apparatus, suggested that the POK protein plays a role in plant membrane trafficking. Genetic analysis of Arabidopsis mutants affecting AtVPS53 or AtVPS54 genes which encode putative POK partners shows a transmission defect through the male gametophyte for all lines, which is similar to the pok mutant. Using a combination of biochemical approaches and specific antiserum it has been demonstrated that the POK protein is present in phylogenetically divergent plant species, associated with membranes and belongs to a high molecular weight complex. Combination of immunolocalization studies and pharmacological approaches in different plant cells revealed that the POK protein associates with Golgi and post-Golgi compartments. The role of POK in post-Golgi endomembrane trafficking and as a member of a putative plant GARP/VFT complex is discussed.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Flores/metabolismo , Aparato de Golgi/metabolismo , Membranas Intracelulares/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/inmunología , Inmunohistoquímica , Microscopía Confocal , Complejos Multiproteicos/metabolismo , Mutación , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/inmunología
16.
G3 (Bethesda) ; 6(11): 3647-3653, 2016 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-27613750

RESUMEN

Powerful genome editing technologies are needed for efficient gene function analysis. The CRISPR-Cas9 system has been adapted as an efficient gene-knock-out technology in a variety of species. However, in a number of situations, knocking out or modifying a single gene is not sufficient; this is particularly true for genes belonging to a common family, or for genes showing redundant functions. Like many plants, the model organism Physcomitrella patens has experienced multiple events of polyploidization during evolution that has resulted in a number of families of duplicated genes. Here, we report a robust CRISPR-Cas9 system, based on the codelivery of a CAS9 expressing cassette, multiple sgRNA vectors, and a cassette for transient transformation selection, for gene knock-out in multiple gene families. We demonstrate that CRISPR-Cas9-mediated targeting of five different genes allows the selection of a quintuple mutant, and all possible subcombinations of mutants, in one experiment, with no mutations detected in potential off-target sequences. Furthermore, we confirmed the observation that the presence of repeats in the vicinity of the cutting region favors deletion due to the alternative end joining pathway, for which induced frameshift mutations can be potentially predicted. Because the number of multiple gene families in Physcomitrella is substantial, this tool opens new perspectives to study the role of expanded gene families in the colonization of land by plants.

17.
PLoS One ; 9(6): e99206, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24911649

RESUMEN

In vascular plants, strigolactones (SLs) are known for their hormonal role and for their role as signal molecules in the rhizosphere. SLs are also produced by the moss Physcomitrella patens, in which they act as signaling factors for controlling filament extension and possibly interaction with neighboring individuals. To gain a better understanding of SL action at the cellular level, we investigated the effect of exogenously added molecules (SLs or analogs) in moss growth media. We used the previously characterized Ppccd8 mutant that is deficient in SL synthesis and showed that SLs affect moss protonema extension by reducing caulonema cell elongation and mainly cell division rate, both in light and dark conditions. Based on this effect, we set up bioassays to examine chemical structure requirements for SL activity in moss. The results suggest that compounds GR24, GR5, and 5-deoxystrigol are active in moss (as in pea), while other analogs that are highly active in the control of pea branching show little activity in moss. Interestingly, the karrikinolide KAR1, which shares molecular features with SLs, did not have any effect on filament growth, even though the moss genome contains several genes homologous to KAI2 (encoding the KAR1 receptor) and no canonical homologue to D14 (encoding the SL receptor). Further studies should investigate whether SL signaling pathways have been conserved during land plant evolution.


Asunto(s)
Briófitas/efectos de los fármacos , Lactonas/farmacología , Células Vegetales/efectos de los fármacos , Briófitas/crecimiento & desarrollo , Flores/efectos de los fármacos , Flores/crecimiento & desarrollo , Lactonas/química , Luz , Mutación , Células Vegetales/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
18.
Plant Reprod ; 27(2): 95-107, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24821062

RESUMEN

F-box protein genes family is one of the largest gene families in plants, with almost 700 predicted genes in the model plant Arabidopsis. F-box proteins are key components of the ubiquitin proteasome system that allows targeted protein degradation. Transcriptome analyses indicate that half of these F-box protein genes are found expressed in microspore and/or pollen, i.e., during male gametogenesis. To assess the role of F-box protein genes during this crucial developmental step, we selected 34 F-box protein genes recorded as highly and specifically expressed in pollen and isolated corresponding insertion mutants. We checked the expression level of each selected gene by RT-PCR and confirmed pollen expression for 25 genes, but specific expression for only 10 of the 34 F-box protein genes. In addition, we tested the expression level of selected F-box protein genes in 24 mutant lines and showed that 11 of them were null mutants. Transmission analysis of the mutations to the progeny showed that none of the single mutations was gametophytic lethal. These unaffected transmission efficiencies suggested leaky mutations or functional redundancy among F-box protein genes. Cytological observation of the gametophytes in the mutants confirmed these results. Combinations of mutations in F-box protein genes from the same subfamily did not lead to transmission defect either, further highlighting functional redundancy and/or a high proportion of pseudogenes among these F-box protein genes.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Proteínas F-Box/metabolismo , Polen/metabolismo , Seudogenes , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Proteínas F-Box/genética , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Polen/genética
19.
Methods Mol Biol ; 959: 21-43, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23299666

RESUMEN

In this chapter, we review the main organogenesis features and associated regulation processes of the moss Physcomitrella patens (P. patens), the model plant for the Bryophytes. We highlight how the study of this descendant of the earliest plant species that colonized earth, brings useful keys to understand the mechanisms that determine and control both vascular and non vascular plants organogenesis. Despite its simple morphogenesis pattern, P. patens still requires the fine tuning of organogenesis regulators, including hormone signalling, common to the whole plant kingdom, and which study is facilitated by a high number of molecular tools, among which the powerful possibility of gene targeting/replacement. The recent discovery of moss cells reprogramming capacity completes the picture of an excellent model for studying plant organogenesis.


Asunto(s)
Bryopsida/fisiología , Organogénesis/fisiología , Bryopsida/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Modelos Genéticos , Organogénesis/genética
20.
Curr Opin Plant Biol ; 16(5): 583-9, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23830996

RESUMEN

Strigolactones (SLs), a group of small carotenoid-derived molecules, were first known for their function in the rhizosphere in both symbiotic and parasitic interactions. Most of the progress for deciphering SL biosynthesis and signalling pathways comes from the use of high branching mutants identified in several species demonstrating that SLs also play a hormonal role in plant development. How SLs are perceived by the different organisms on which they show bioactivity is a current major challenge for the growing SL research community. These molecules very likely predate the colonization of land by plants and represent a fascinating example of signalling molecules involved in key innovations during plant evolution.


Asunto(s)
Lactonas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Plantas/metabolismo , Transducción de Señal , Evolución Biológica , Lactonas/química , Modelos Biológicos , Desarrollo de la Planta , Reguladores del Crecimiento de las Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Plantas/genética , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA