Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Plant Cell Physiol ; 2024 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-38581668

RESUMEN

Establishment of arbuscular mycorrhiza (AM) relies on a plant signaling pathway that can be activated by fungal chitinic signals such as short chain chitooligosaccharides (CO) and lipo-chitooligosaccharides (LCOs). The tomato LysM receptor-like kinase (LysM RLK) SlLYK10 has high affinity for LCOs and is involved in root colonization by arbuscular mycorrhizal fungi (AMF), however its role in LCO responses has not yet been studied. Here, we show that SlLYK10 proteins produced by the Sllyk10-1 and Sllyk10-2 mutant alleles, which both cause decreases in AMF colonization, and carry mutations in LysM1 and 2 respectively, have similar LCO binding affinities compared to the WT SlLYK10. However, the mutant forms were no longer able to induce cell death in Nicotiana benthamiana when co-expressed with MtLYK3, a Medicago truncatula LCO co-receptor, while they physically interacted with MtLYK3 in co-purification experiments. This suggests that the LysM mutations affect the ability of SlLYK10 to trigger signaling through a potential co-receptor rather than its ability to bind LCOs. Interestingly, tomato lines that contain a calcium (Ca2+) concentration reporter (Genetically Encoded Ca2+ indicators, GECO), showed Ca2+ spiking in response to LCO applications, but this occurred only in inner cell layers of the roots, while short chain COs also induced Ca2+ spiking in the epidermis. Moreover, LCO-induced Ca2+spiking was decreased in Sllyk10-1*GECO plants, suggesting that the decrease in AMF colonization in Sllyk10-1 is due to abnormal LCO signaling.

2.
Plant Physiol ; 192(2): 1435-1448, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-36722175

RESUMEN

Symbiotic microorganisms such as arbuscular mycorrhizal fungi (AMF) produce both conserved microbial molecules that activate plant defense and lipo-chitooligosaccharides (LCOs) that modulate plant defense. Beside a well-established role of LCOs in the activation of a signaling pathway required for AMF penetration in roots, LCO perception and defense modulation during arbuscular mycorrhiza is not well understood. Here we show that members of the LYRIIIA phylogenetic group from the multigenic Lysin Motif Receptor-Like Kinase family have a conserved role in dicotyledons as modulators of plant defense and regulate AMF colonization in the Solanaceae species Nicotiana benthamiana. Interestingly, these proteins have a high-affinity for LCOs in plant species able to form a symbiosis with AMF but have lost this property in species that have lost this ability. Our data support the hypothesis that LYRIIIA proteins modulate plant defense upon LCO perception to facilitate AMF colonization in mycotrophic plant species and that only their role in plant defense, but not their ability to be regulated by LCOs, has been conserved in non-mycotrophic plants.


Asunto(s)
Quitosano , Micorrizas , Filogenia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Micorrizas/fisiología , Quitosano/metabolismo , Quitina/metabolismo , Simbiosis/fisiología , Plantas/metabolismo , Raíces de Plantas/metabolismo
3.
Plant Cell Physiol ; 64(7): 746-757, 2023 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-37098213

RESUMEN

Lysin motif receptor-like kinases (LysM-RLKs) are involved in the perception of chitooligosaccharides (COs) and related lipochitooligosaccharides (LCOs) in plants. Expansion and divergence of the gene family during evolution have led to various roles in symbiosis and defense. By studying proteins of the LYR-IA subclass of LysM-RLKs of the Poaceae, we show here that they are high-affinity LCO-binding proteins with a lower affinity for COs, consistent with a role in LCO perception to establish arbuscular mycorrhiza (AM). In Papilionoid legumes, whole-genome duplication has resulted in two LYR-IA paralogs, MtLYR1 and MtNFP in Medicago truncatula, with MtNFP playing an essential role in root nodule symbiosis with nitrogen-fixing rhizobia. We show that MtLYR1 has retained the ancestral LCO-binding characteristic and is dispensable for AM. Domain swapping between the three LysMs of MtNFP and MtLYR1 and mutagenesis in MtLYR1 suggest that the MtLYR1 LCO-binding site is on the second LysM and that divergence in MtNFP led to better nodulation, but surprisingly with decreased LCO binding. These results suggest that divergence of the LCO-binding site has been important for the evolution of a role of MtNFP in nodulation with rhizobia.


Asunto(s)
Medicago truncatula , Micorrizas , Medicago truncatula/genética , Medicago truncatula/metabolismo , Proteínas de Plantas/metabolismo , Micorrizas/metabolismo , Simbiosis/genética , Quitina/metabolismo
4.
New Phytol ; 225(1): 448-460, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31596956

RESUMEN

Arbuscular mycorrhizal (AM) fungi greatly improve mineral uptake by host plants in nutrient-depleted soil and can intracellularly colonize root cortex cells in the vast majority of higher plants. However, AM fungi possess common fungal cell wall components such as chitin that can be recognized by plant chitin receptors to trigger immune responses, raising the question as to how AM fungi effectively evade chitin-triggered immune responses during symbiosis. In this study, we characterize a secreted lysin motif (LysM) effector identified from the model AM fungal species Rhizophagus irregularis, called RiSLM. RiSLM is one of the highest expressed effector proteins in intraradical mycelium during the symbiosis. In vitro binding assays show that RiSLM binds chitin-oligosaccharides and can protect fungal cell walls from chitinases. Moreover, RiSLM efficiently interferes with chitin-triggered immune responses, such as defence gene induction and reactive oxygen species production in Medicago truncatula. Although RiSLM also binds to symbiotic (lipo)chitooligosaccharides it does not interfere significantly with symbiotic signalling in Medicago. Host-induced gene silencing of RiSLM greatly reduces fungal colonization levels. Taken together, our results reveal a key role for AM fungal LysM effectors to subvert chitin-triggered immunity in symbiosis, pointing to a common role for LysM effectors in both symbiotic and pathogenic fungi.


Asunto(s)
Quitina/metabolismo , Lisina/metabolismo , Micorrizas/fisiología , Inmunidad de la Planta , Simbiosis , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Quitina/análogos & derivados , Quitinasas/metabolismo , Quitosano , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Silenciador del Gen , Genes Fúngicos , Glomeromycota/genética , Glomeromycota/fisiología , Interacciones Huésped-Patógeno , Micelio/metabolismo , Micorrizas/genética , Oligosacáridos
5.
Org Biomol Chem ; 15(37): 7802-7812, 2017 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-28876013

RESUMEN

Lipo-chitotetrasaccharide analogues where one central GlcNAc residue was replaced by a triazole unit have been synthesized from a derivative obtained by chitin depolymerization and a functionalized N-acetyl-glucosamine via the copper-catalyzed azide-alkyne cycloaddition. Their evaluation in a binding assay using LYR3, a putative lipo-chitooligosaccharide receptor in Medicago truncatula, shows a complete loss of binding.


Asunto(s)
Quitina/análogos & derivados , Medicago truncatula/química , Proteínas de Plantas/química , Quitina/síntesis química , Quitina/química , Quitosano , Oligosacáridos
6.
Biochem J ; 473(10): 1369-78, 2016 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-26987814

RESUMEN

LYR3 [LysM (lysin motif) receptor-like kinase 3] of Medicago truncatula is a high-affinity binding protein for symbiotic LCO (lipo-chitooligosaccharide) signals, produced by rhizobia bacteria and arbuscular mycorrhizal fungi. The present study shows that LYR3 from several other legumes, but not from two Lupinus species which are incapable of forming the mycorrhizal symbiosis, bind LCOs with high affinity and discriminate them from COs (chitooligosaccharides). The biodiversity of these proteins and the lack of binding to the Lupinus proteins were used to identify features required for high-affinity LCO binding. Swapping experiments between each of the three LysMs of the extracellular domain of the M. truncatula and Lupinus angustifolius LYR3 proteins revealed the crucial role of the third LysM in LCO binding. Site-directed mutagenesis identified a tyrosine residue, highly conserved in all LYR3 LCO-binding proteins, which is essential for high-affinity binding. Molecular modelling suggests that it may be part of a hydrophobic tunnel able to accommodate the LCO acyl chain. The lack of conservation of these features in the binding site of plant LysM proteins binding COs provides a mechanistic explanation of how LCO recognition might differ from CO perception by structurally related LysM receptors.


Asunto(s)
Quitina/análogos & derivados , Medicago truncatula/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Quitina/metabolismo , Quitosano , Lupinus/metabolismo , Oligosacáridos , Proteínas de Plantas/genética , Unión Proteica , Transducción de Señal , Simbiosis/genética , Simbiosis/fisiología
7.
Int J Mol Sci ; 18(6)2017 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-28561754

RESUMEN

Lectins are fundamental to plant life and have important roles in cell-to-cell communication; development and defence strategies. At the cell surface; lectins are present both as soluble proteins (LecPs) and as chimeric proteins: lectins are then the extracellular domains of receptor-like kinases (LecRLKs) and receptor-like proteins (LecRLPs). In this review; we first describe the domain architectures of proteins harbouring G-type; L-type; LysM and malectin carbohydrate-binding domains. We then focus on the functions of LecPs; LecRLKs and LecRLPs referring to the biological processes they are involved in and to the ligands they recognize. Together; LecPs; LecRLKs and LecRLPs constitute versatile recognition systems at the cell surface contributing to the detection of symbionts and pathogens; and/or involved in monitoring of the cell wall structure and cell growth.


Asunto(s)
Lectinas de Plantas/genética , Proteínas de Plantas/genética , Proteínas Quinasas/genética , Receptores Mitogénicos/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Filogenia , Lectinas de Plantas/metabolismo , Proteínas de Plantas/clasificación , Proteínas de Plantas/metabolismo , Dominios y Motivos de Interacción de Proteínas/genética , Proteínas Quinasas/metabolismo , Receptores Mitogénicos/metabolismo , Transducción de Señal/genética
8.
Development ; 139(18): 3383-91, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22874912

RESUMEN

Legumes have evolved the capacity to form a root nodule symbiosis with soil bacteria called rhizobia. The establishment of this symbiosis involves specific developmental events occurring both in the root epidermis (notably bacterial entry) and at a distance in the underlying root cortical cells (notably cell divisions leading to nodule organogenesis). The processes of bacterial entry and nodule organogenesis are tightly linked and both depend on rhizobial production of lipo-chitooligosaccharide molecules called Nod factors. However, how these events are coordinated remains poorly understood. Here, we have addressed the roles of two key symbiotic genes of Medicago truncatula, the lysin motif (LysM) domain-receptor like kinase gene NFP and the calcium- and calmodulin-dependent protein kinase gene DMI3, in the control of both nodule organogenesis and bacterial entry. By complementing mutant plants with corresponding genes expressed either in the epidermis or in the cortex, we have shown that epidermal DMI3, but not NFP, is sufficient for infection thread formation in root hairs. Epidermal NFP is sufficient to induce cortical cell divisions leading to nodule primordia formation, whereas DMI3 is required in both cell layers for these processes. Our results therefore suggest that a signal, produced in the epidermis under the control of NFP and DMI3, is responsible for activating DMI3 in the cortex to trigger nodule organogenesis. We integrate these data to propose a new model for epidermal/cortical crosstalk during early steps of nodulation.


Asunto(s)
Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Epidermis de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Nodulación de la Raíz de la Planta/fisiología , Medicago truncatula/genética , Epidermis de la Planta/genética , Proteínas de Plantas/genética , Nodulación de la Raíz de la Planta/genética , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Sinorhizobium meliloti/fisiología
9.
Glycoconj J ; 32(7): 455-64, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26233756

RESUMEN

Lipo-chitooligosaccharides produced by nitrogen-fixing rhizobia are signaling molecules involved in the establishment of an important agronomical and ecological symbiosis with plants. These compounds, known as Nod factors, are biologically active on plant roots at very low concentrations indicating that they are perceived by specific receptors. This article summarizes the main strategies developed for the syntheses of bioactive Nod factors and their derivatives in order to better understand their mode of perception. Different Nod factor receptors and LCO-binding proteins identified by genetic or biochemical approaches are also presented, indicating perception mechanisms that seem to be more complicated than expected, probably involving multi-component receptor complexes.


Asunto(s)
Lipopolisacáridos/metabolismo , Fijación del Nitrógeno/genética , Rhizobiaceae/metabolismo , Simbiosis/genética , Fabaceae/metabolismo , Fabaceae/microbiología , Lipopolisacáridos/química , Lipopolisacáridos/genética , Nitrógeno/metabolismo , Filogenia , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Rhizobiaceae/genética , Transducción de Señal
10.
Proc Natl Acad Sci U S A ; 108(49): 19824-9, 2011 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-22106285

RESUMEN

Recognition of microbial patterns by host pattern recognition receptors is a key step in immune activation in multicellular eukaryotes. Peptidoglycans (PGNs) are major components of bacterial cell walls that possess immunity-stimulating activities in metazoans and plants. Here we show that PGN sensing and immunity to bacterial infection in Arabidopsis thaliana requires three lysin-motif (LysM) domain proteins. LYM1 and LYM3 are plasma membrane proteins that physically interact with PGNs and mediate Arabidopsis sensitivity to structurally different PGNs from gram-negative and gram-positive bacteria. lym1 and lym3 mutants lack PGN-induced changes in transcriptome activity patterns, but respond to fungus-derived chitin, a pattern structurally related to PGNs, in a wild-type manner. Notably, lym1, lym3, and lym3 lym1 mutant genotypes exhibit supersusceptibility to infection with virulent Pseudomonas syringae pathovar tomato DC3000. Defects in basal immunity in lym3 lym1 double mutants resemble those observed in lym1 and lym3 single mutants, suggesting that both proteins are part of the same recognition system. We further show that deletion of CERK1, a LysM receptor kinase that had previously been implicated in chitin perception and immunity to fungal infection in Arabidopsis, phenocopies defects observed in lym1 and lym3 mutants, such as peptidoglycan insensitivity and enhanced susceptibility to bacterial infection. Altogether, our findings suggest that plants share with metazoans the ability to recognize bacterial PGNs. However, as Arabidopsis LysM domain proteins LYM1, LYM3, and CERK1 form a PGN recognition system that is unrelated to metazoan PGN receptors, we propose that lineage-specific PGN perception systems have arisen through convergent evolution.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Bacterias/metabolismo , Peptidoglicano/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/microbiología , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/genética , Bacterias/crecimiento & desarrollo , Bacterias/inmunología , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/inmunología , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Interacciones Huésped-Patógeno/inmunología , Immunoblotting , Microscopía Confocal , Mutación , Análisis de Secuencia por Matrices de Oligonucleótidos , Peptidoglicano/inmunología , Filogenia , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas/genética , Pseudomonas syringae/inmunología , Pseudomonas syringae/metabolismo , Pseudomonas syringae/fisiología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Staphylococcus aureus/inmunología , Staphylococcus aureus/metabolismo , Staphylococcus aureus/fisiología , Transcriptoma
11.
New Phytol ; 198(3): 875-886, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23432463

RESUMEN

Plant LysM proteins control the perception of microbial-derived N-acetylglucosamine compounds for the establishment of symbiosis or activation of plant immunity. This raises questions about how plants, and notably legumes, can differentiate friends and foes using similar molecular actors and whether any receptors can intervene in both symbiosis and resistance. To study this question, nfp and lyk3 LysM-receptor like kinase mutants of Medicago truncatula that are affected in the early steps of nodulation, were analysed following inoculation with Aphanomyces euteiches, a root oomycete. The role of NFP in this interaction was further analysed by overexpression of NFP and by transcriptome analyses. nfp, but not lyk3, mutants were significantly more susceptible than wildtype plants to A. euteiches, whereas NFP overexpression increased resistance. Transcriptome analyses on A. euteiches inoculation showed that mutation in the NFP gene led to significant changes in the expression of c. 500 genes, notably involved in cell dynamic processes previously associated with resistance to pathogen penetration. nfp mutants also showed an increased susceptibility to the fungus Colletotrichum trifolii. These results demonstrate that NFP intervenes in M. truncatula immunity, suggesting an unsuspected role for NFP in the perception of pathogenic signals.


Asunto(s)
Colletotrichum/patogenicidad , Interacciones Huésped-Patógeno , Medicago truncatula/metabolismo , Medicago truncatula/microbiología , Proteínas de Plantas/metabolismo , Aphanomyces/patogenicidad , Aphanomyces/fisiología , Resistencia a la Enfermedad/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Medicago truncatula/genética , Mutación , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología , Proteínas de Plantas/genética , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Plantas Modificadas Genéticamente , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Simbiosis/fisiología
12.
Plant Sci ; 332: 111696, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-37019339

RESUMEN

The establishment of the Legume-Rhizobia symbiosis is generally dependent on the production of rhizobial lipochitooligosaccharidic Nod factors (NFs) and their perception by plant Lysin Motif Receptor-Like Kinases (LysM-RLKs). In this study, we characterized a cluster of LysM-RLK genes implicated in strain-specific recognition in two highly divergent and widely-studied Medicago truncatula genotypes, A17 and R108. We then used reverse genetic approaches and biochemical analyses to study the function of selected genes in the clusters and the ability of their encoded proteins to bind NFs. Our study has revealed that the LYK cluster exhibits a high degree of variability among M. truncatula genotypes, which in A17 and R108 includes recent recombination events within the cluster and a transposon insertion in A17. The essential role of LYK3 in nodulation in A17 is not conserved in R108 despite similar sequences and good nodulation expression profiles. Although, LYK2, LYK5 and LYK5bis are not essential for nodulation of the two genotypes, some evidence points to accessory roles in nodulation, but not through high-affinity NF binding. This work shows that recent evolution in the LYK cluster provides a source of variation for nodulation, and potential robustness of signaling through genetic redundancy.


Asunto(s)
Medicago truncatula , Medicago truncatula/genética , Medicago truncatula/metabolismo , Familia de Multigenes , Simbiosis/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo
13.
Protein Sci ; 31(6): e4327, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35634776

RESUMEN

N-acetylglucosamine containing compounds acting as pathogenic or symbiotic signals are perceived by plant-specific Lysin Motif Receptor-Like Kinases (LysM-RLKs). The molecular mechanisms of this perception are not fully understood, notably those of lipo-chitooligosaccharides (LCOs) produced during root endosymbioses with nitrogen-fixing bacteria or arbuscular mycorrhizal fungi. In Medicago truncatula, we previously identified the LysM-RLK LYR3 (MtLYR3) as a specific LCO-binding protein. We also showed that the absence of LCO binding to LYR3 of the non-mycorrhizal Lupinus angustifolius, (LanLYR3), was related to LysM3, which differs from that of MtLYR3 by several amino acids and, particularly, by a critical tyrosine residue absent in LanLYR3. Here, we aimed to define the LCO binding site of MtLYR3 by using molecular modelling and simulation approaches, combined with site-directed mutagenesis and LCO binding experiments. 3D models of MtLYR3 and LanLYR3 ectodomains were built, and homology modelling and molecular dynamics (MD) simulations were performed. Molecular docking and MD simulation on the LysM3 identified potential key residues for LCO binding. We highlighted by steered MD simulations that in addition to the critical tyrosine, two other residues were important for LCO binding in MtLYR3. Substitution of these residues in LanLYR3-LysM3 by those of MtLYR3-LysM3 allowed the recovery of high-affinity LCO binding in experimental radioligand-binding assays. An analysis of selective constraints revealed that the critical tyrosine has experienced positive selection pressure and is absent in some LYR3 proteins. These findings now pave the way to uncover the functional significance of this specific evolutionary pattern.


Asunto(s)
Quitina , Medicago truncatula , Quitina/metabolismo , Quitosano , Medicago truncatula/genética , Simulación del Acoplamiento Molecular , Oligosacáridos , Tirosina/metabolismo
14.
Curr Biol ; 29(24): 4249-4259.e5, 2019 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-31813608

RESUMEN

Bacterial lipo-chitooligosaccharides (LCOs) are key mediators of the nitrogen-fixing root nodule symbiosis (RNS) in legumes. The isolation of LCOs from arbuscular mycorrhizal fungi suggested that LCOs are also signaling molecules in arbuscular mycorrhiza (AM). However, the corresponding plant receptors have remained uncharacterized. Here we show that petunia and tomato mutants in the LysM receptor-like kinases LYK10 are impaired in AM formation. Petunia and tomato LYK10 proteins have a high affinity for LCOs (Kd in the nM range) comparable to that previously reported for a legume LCO receptor essential for the RNS. Interestingly, the tomato and petunia LYK10 promoters, when introduced into a legume, were active in nodules similarly to the promoter of the legume orthologous gene. Moreover, tomato and petunia LYK10 coding sequences restored nodulation in legumes mutated in their orthologs. This combination of genetic and biochemical data clearly pinpoints Solanaceous LYK10 as part of an ancestral LCO perception system involved in AM establishment, which has been directly recruited during evolution of the RNS in legumes.


Asunto(s)
Lipopolisacáridos/metabolismo , Micorrizas/fisiología , Rhizobium/metabolismo , Quitina/análogos & derivados , Quitina/metabolismo , Quitosano , Fabaceae/metabolismo , Fabaceae/microbiología , Regulación de la Expresión Génica de las Plantas/genética , Solanum lycopersicum/metabolismo , Micorrizas/metabolismo , Oligosacáridos , Petunia/metabolismo , Proteínas de Plantas/metabolismo , Proteínas Quinasas/metabolismo , Transducción de Señal/genética , Simbiosis/genética
15.
Front Plant Sci ; 9: 923, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30022986

RESUMEN

LysM receptor-like kinases (LysM-RLKs), which are specific to plants, can control establishment of both the arbuscular mycorrhizal (AM) and the rhizobium-legume (RL) symbioses in response to signal molecules produced, respectively, by the fungal and bacterial symbiotic partners. While most studies on these proteins have been performed in legume species, there are also important findings that demonstrate the roles of LysM-RLKs in controlling symbiosis in non-legume plants. Phylogenomic studies, which have revealed the presence or absence of certain LysM-RLKs among different plant species, have provided insight into the evolutionary mechanisms underlying both the acquisition and the loss of symbiotic properties. The role of a key nodulation LysM-RLK, NFP/NFR5, in legume plants has thus probably been co-opted from an ancestral role in the AM symbiosis, and has been lost in most plant species that have lost the ability to establish the AM or the RL symbiosis. Another LysM-RLK, LYK3/NFR1, that controls the RL symbiosis probably became neo-functionalised following two rounds of gene duplication. Evidence suggests that a third LysM-RLK, LYR3/LYS12, is also implicated in perceiving microbial symbiotic signals, and this protein could have roles in symbiosis and/or plant immunity in different plant species. By focusing on these three LysM-RLKs that are widespread in plants we review their evolutionary history and what this can tell us about the evolution of both the RL and the AM symbioses.

16.
Mol Plant Microbe Interact ; 20(8): 912-21, 2007 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-17722695

RESUMEN

Many higher plants establish symbiotic relationships with arbuscular mycorrhizal (AM) fungi that improve their ability to acquire nutrients from the soil. In addition to establishing AM symbiosis, legumes also enter into a nitrogen-fixing symbiosis with bacteria known as rhizobia that results in the formation of root nodules. Several genes involved in the perception and transduction of bacterial symbiotic signals named "Nod factors" have been cloned recently in model legumes through forward genetic approaches. Among them, DMI3 (Doesn't Make Infections 3) is a calcium- and calmodulin-dependent kinase required for the establishment of both nodulation and AM symbiosis. We have identified, by a yeast two-hybrid system, a novel protein interacting with DMI3 named IPD3 (Interacting Protein of DMI3). IPD3 is predicted to interact with DMI3 through a C-terminal coiled-coil domain. Chimeric IPD3::GFP is localized to the nucleus of transformed Medicago truncatula root cells, in which split yellow fluorescent protein assays suggest that IPD3 and DMI3 physically interact in Nicotiana benthamiana. Like DMI3, IPD3 is extremely well conserved among the angiosperms and is absent from Arabidopsis. Despite this high level of conservation, none of the homologous proteins have a demonstrated biological or biochemical function. This work provides the first evidence of the involvement of IPD3 in a nuclear interaction with DMI3.


Asunto(s)
Proteínas Quinasas Dependientes de Calcio-Calmodulina/metabolismo , Medicago truncatula/enzimología , Micorrizas/fisiología , Proteínas de Plantas/fisiología , Secuencia de Aminoácidos , Proteínas Quinasas Dependientes de Calcio-Calmodulina/genética , Secuencia Conservada , Proteínas Fluorescentes Verdes/análisis , Medicago truncatula/microbiología , Modelos Moleculares , Datos de Secuencia Molecular , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Interferencia de ARN , Nódulos de las Raíces de las Plantas/genética , Nódulos de las Raíces de las Plantas/metabolismo , Nódulos de las Raíces de las Plantas/microbiología , Alineación de Secuencia , Simbiosis/fisiología , Técnicas del Sistema de Dos Híbridos
17.
Phytochemistry ; 67(20): 2208-14, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16962150

RESUMEN

The study of phosphoproteome on a global scale represents one of the challenges in the post-genomic era. Here, we propose an integrated procedure starting from the crude protein extract, that consists of sequential purification steps, and ending up in the identification of phosphorylation sites. This involves (i) an enrichment in phosphoproteins with a commercially available chromatography matrix, (ii) a 2-D gel analysis of the enriched fraction followed by the selective staining with the phosphospecific fluorescent dye Pro-Q Diamond, (iii) a phosphopeptide capture, from the tryptic lysate of 2-D spots, using IMAC micro-columns. In the end, the identification of the phosphoproteins and their corresponding phosphorylation sites were achieved by MALDI-TOF-TOF spectrometry. The method was applied to contrasting samples prepared from cell suspension cultures of Arabidopsis thaliana and roots of Medicago truncatula. The results obtained, demonstrated the robustness of the combination of two enrichment stages, sequentially at the protein and at the peptide levels, to analyse phosphoproteins in plants.


Asunto(s)
Arabidopsis/química , Medicago truncatula/química , Fosfoproteínas/análisis , Proteínas de Plantas/análisis , Proteómica/métodos , Fraccionamiento Químico , Cromatografía , Electroforesis en Gel Bidimensional , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Fosforilación , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción
19.
FEBS Lett ; 590(10): 1477-87, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27129432

RESUMEN

LYR3, LYK3, and NFP are lysin motif-containing receptor-like kinases (LysM-RLKs) from Medicago truncatula, involved in perception of symbiotic lipo-chitooligosaccharide (LCO) signals. Here, we show that LYR3, a high-affinity LCO-binding protein, physically interacts with LYK3, a key player regulating symbiotic interactions. In vitro, LYR3 is phosphorylated by the active kinase domain of LYK3. Fluorescence lifetime imaging/Förster resonance energy transfer (FLIM/FRET) experiments in tobacco protoplasts show that the interaction between LYR3 and LYK3 at the plasma membrane is disrupted or inhibited by addition of LCOs. Moreover, LYR3 attenuates the cell death response, provoked by coexpression of NFP and LYK3 in tobacco leaves.


Asunto(s)
Lipopolisacáridos/metabolismo , Medicago truncatula/metabolismo , Proteínas Quinasas/metabolismo , Protoplastos/metabolismo , Membrana Celular/metabolismo , Transferencia Resonante de Energía de Fluorescencia , Medicago truncatula/química , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Unión Proteica , Proteínas Quinasas/química , Proteínas Quinasas/genética , Simbiosis , Nicotiana/genética , Nicotiana/metabolismo
20.
Mol Plant Microbe Interact ; 16(10): 884-92, 2003 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-14558690

RESUMEN

Nod factors are signaling molecules secreted by Rhizobium bacteria. These lipo-chitooligosaccharides (LCOs) are required for symbiosis with legumes and can elicit specific responses at subnanomolar concentrations on a compatible host. How plants perceive LCOs is unclear. In this study, using fluorescent Nod factor analogs, we investigated whether sulfated and nonsulfated Nod factors were bound and perceived differently by Medicago truncatula and Vicia sativa root hairs. The bioactivity of three novel sulfated fluorescent LCOs was tested in a root hair deformation assay on M. truncatula, showing bioactivity down to 0.1 to 1 nM. Fluorescence microscopy of plasmolyzed M. truncatula root hairs shows that sulfated fluorescent Nod factors accumulate in the cell wall of root hairs, whereas they are absent from the plasma membrane when applied at 10 nM. When the fluorescent Nod factor distribution in medium surrounding a root was studied, a sharp decrease in fluorescence close to the root hairs was observed, visualizing the remarkable capacity of root hairs to absorb Nod factors from the medium. Fluorescence correlation microscopy was used to study in detail the mobilities of sulfated and nonsulfated fluorescent Nod factors which are biologically active on M. truncatula and V. sativa, respectively. Remarkably, no difference between sulfated and nonsulfated Nod factors was observed: both hardly diffuse and strongly accumulate in root hair cell walls of both M. truncatula and V. sativa. The implications for the mode of Nod factor perception are discussed.


Asunto(s)
Medicago/metabolismo , Oligosacáridos/metabolismo , Vicia sativa/metabolismo , Compuestos de Boro , Secuencia de Carbohidratos , Quitinasas/metabolismo , Colorantes Fluorescentes , Medicago/microbiología , Microscopía Fluorescente , Modelos Biológicos , Datos de Secuencia Molecular , Estructura Molecular , Oligosacáridos/química , Raíces de Plantas/metabolismo , Raíces de Plantas/microbiología , Rhizobium/metabolismo , Sulfatos/metabolismo , Vicia sativa/microbiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA