Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 58(21): 9061-9070, 2024 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-38743562

RESUMEN

Bottlenose dolphins (Tursiops truncatus) are keystone and sentinel species in the world's oceans. We studied correlations between per- and polyfluoroalkyl substances (PFAS) and their stress axis. We investigated associations between plasma biomarkers of 12 different PFAS variants and three cortisol pools (total, bound, and free) in wild T. truncatus from estuarine waters of Charleston, South Carolina (n = 115) and Indian River Lagoon, Florida (n = 178) from 2003 to 2006, 2010-2013, and 2015. All PFAS and total cortisol levels for these dolphins were previously reported; bound cortisol levels and free cortisol calculations have not been previously reported. We tested null hypotheses that levels of each PFAS were not correlated with those of each cortisol pool. Free cortisol levels were lower when PFOS, PFOA, and PFHxS biomarker levels were higher, but free cortisol levels were higher when PFTriA was higher. Bound cortisol levels were higher when there were higher PFDA, PFDoDA, PFDS, PFTeA, and PFUnDA biomarkers. Total cortisol was higher when PFOA was lower, but total cortisol was higher when PFDA, PFDoDA, PFTeA, and PFTriA were higher. Additional analyses indicated sex and age trends, as well as heterogeneity of effects from the covariates carbon chain length and PFAS class. Although this is a cross-sectional observational study and, therefore, could reflect cortisol impacts on PFAS toxicokinetics, these correlations are suggestive that PFAS impacts the stress axis in T. truncatus. However, if PFAS do impact the stress axis of dolphins, it is specific to the chemical structure, and could affect the individual pools of cortisol differently. It is critical to conduct long-term studies on these dolphins and to compare them to populations that have no or little expose to PFAS.


Asunto(s)
Biomarcadores , Delfín Mular , Hidrocortisona , Contaminantes Químicos del Agua , Animales , Delfín Mular/metabolismo , Hidrocortisona/sangre , Hidrocortisona/metabolismo , Monitoreo del Ambiente , Fluorocarburos , Estrés Fisiológico , Femenino , Masculino , South Carolina , Florida
2.
Gen Comp Endocrinol ; 349: 114467, 2024 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-38342330

RESUMEN

Most environments exhibit predictable yearly changes, permitting animals to anticipate them. The hypothalamic-pituitary-adrenal (HPA) axis is a key physiological pathway that enables animals to cope with such changes. Monitoring glucocorticoid (the end products of the HPA axis) levels in wild animals throughout the year can improve our understanding of how this pathway responds to different conditions. For this study, we collected 18 months of data on two species of North American flying squirrels (Glaucomys sabrinus and G. volans) living in a southern Ontario forest where temperature and food availability fluctuate dramatically throughout the year. These squirrels are active year-round, nest communally, and rely on scatter hoarded foods in the winter months. Flying squirrels have extremely high levels of free plasma cortisol relative to other mammals, but it is unknown how these levels are affected by environmental and reproductive factors. For both species, our goals were to (1) validate an enzyme immunoassay (EIA) to measure their fecal glucocorticoid metabolite (FGM) concentrations and (2) assess yearly differences, seasonal changes, and the influence of sex, reproduction, and ambient temperature on FGM concentrations in each species. In the lab, we successfully validated the use of antibody 5α-pregnane-3ß, 11ß, 21-triol-20-one EIA for FGM analysis in both species. In the field, neither sex nor reproductive status (breeding condition or not) were linked to FGM concentrations in either species. FGM concentrations were higher in autumn compared to the spring and summer. There were no other seasonal differences. We discuss possible explanations for the autumn peak in FGM concentrations (increased energy expenditure and social nesting changes), as well as outline possible avenues for future research. Understanding how individuals and populations respond to environmental change is a critical goal in evolutionary ecology, particularly in the context of a rapidly changing Anthropocene.


Asunto(s)
Glucocorticoides , Hidrocortisona , Humanos , Animales , Sistema Hipotálamo-Hipofisario , Sistema Hipófiso-Suprarrenal , Estaciones del Año , Habilidades de Afrontamiento , América del Norte , Mamíferos
3.
Gen Comp Endocrinol ; 354: 114541, 2024 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-38685390

RESUMEN

The measurement of glucocorticoid (GC) hormones provides us with a window into the stress physiology of vertebrates and the adaptative responses they use to cope with predictable and unpredictable changes in the environment. Baseline GCs inform us about the metabolic demands they are subject to at that point in their yearly life-history stage, whereas GC changes (often increases) in response to acute challenges inform us on their capacity to cope with more immediate environmental challenges. However, baseline GC levels and the kinetics of GC responses to acute stressors can vary substantially among and within species, depending on individual characteristics (age, sex, condition, life-history stage). In addition, a thorough understanding of the stress status of an animal requires moving beyond the measurement of GCs alone by focusing on downstream measures of metabolic activation, such as oxidative stress. Here, we evaluated the changes in blood cortisol and oxidative stress markers in wild adult Columbian ground squirrels (Urocitellus columbianus), following a 30-min capture-handling stress performed in mid-late June. Measurements were taken when males were post-reproductive and preparing for hibernation and adult females were weaning litters. We found three key results. First, the time-course of GC increase was markedly slower (by an order of magnitude) than what is currently reported in the literature for most species of mammals, birds and reptiles. Second, there were marked differences in the male and female response, linked to differences in life-history stage: females close to weaning had abolished GC responses, whereas post-reproductive males did not. Third, there were mild to moderate increases in oxidative damage and decreases in oxidative defenses in response to our short-term challenge, consistent with the idea that short-term acute metabolic activation may carry physiological costs. However, these changes were not correlated to the changes in GCs, a novel result suggesting a disconnect between the hormonal stress response and oxidative damage.


Asunto(s)
Estrés Fisiológico , Animales , Femenino , Masculino , Estrés Fisiológico/fisiología , Estrés Oxidativo/fisiología , Hidrocortisona/metabolismo , Hidrocortisona/sangre , Glucocorticoides/metabolismo , Sciuridae/fisiología
4.
Proc Biol Sci ; 290(2010): 20231464, 2023 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-37935366

RESUMEN

A critical time in the life of a male occurs at reproduction, when his behaviour, physiology and resources must be brought to bear for the central purpose of his life-propagating his genes. We ask whether reproduction results in dysfunction of the stress axis, is linked to life history, and causes senescence. We assessed if deterioration in the axis underlies variation in reproductive lifespan in males of five species of North American ground squirrels whose life history varies from near semelparity to iteroparity. The most stressful and energy-demanding time occurs in spring during the intense 2-3 week breeding competition just after arousal from hibernation. We compared their stress axis functioning before and after the mating period using a hormonal challenge protocol. We found no evidence of stress axis dysfunction after reproduction in any species nor was there a relationship between reproductive lifespan and stress axis functional deterioration. Moreover, there was no consistent relationship between free cortisol levels and downstream measures (energy mobilization, haematology, immunity and body indices of condition). Thus, stress axis function was not traded off to promote reproduction irrespective of life history and lifespan, and we conclude that it is a prerequisite for life. Hence, it functions as a constraint and does not undergo senescence.


Asunto(s)
Mamíferos , Reproducción , Animales , Masculino , Reproducción/fisiología , Estaciones del Año , Longevidad/fisiología
5.
Proc Biol Sci ; 290(1999): 20230661, 2023 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-37192667

RESUMEN

The assumption that activity and foraging are risky for prey underlies many predator-prey theories and has led to the use of predator-prey activity overlap as a proxy of predation risk. However, the simultaneous measures of prey and predator activity along with timing of predation required to test this assumption have not been available. Here, we used accelerometry data on snowshoe hares (Lepus americanus) and Canada lynx (Lynx canadensis) to determine activity patterns of prey and predators and match these to precise timing of predation. Surprisingly we found that lynx kills of hares were as likely to occur during the day when hares were inactive as at night when hares were active. We also found that activity rates of hares were not related to the chance of predation at daily and weekly scales, whereas lynx activity rates positively affected the diel pattern of lynx predation on hares and their weekly kill rates of hares. Our findings suggest that predator-prey diel activity overlap may not always be a good proxy of predation risk, and highlight a need for examining the link between predation and spatio-temporal behaviour of predator and prey to improve our understanding of how predator-prey behavioural interactions drive predation risk.


Asunto(s)
Liebres , Lynx , Animales , Ecosistema , Conducta Predatoria
6.
Proc Biol Sci ; 290(1996): 20221421, 2023 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-37015272

RESUMEN

Some mammal species inhabiting high-latitude biomes have evolved a seasonal moulting pattern that improves camouflage via white coats in winter and brown coats in summer. In many high-latitude and high-altitude areas, the duration and depth of snow cover has been substantially reduced in the last five decades. This reduction in depth and duration of snow cover may create a mismatch between coat colour and colour of the background environment, and potentially reduce the survival rate of species that depend on crypsis. We used long-term (1977-2020) field data and capture-mark-recapture models to test the hypothesis that whiteness of the coat influences winter apparent survival in a cyclic population of snowshoe hares (Lepus americanus) at Kluane, Yukon, Canada. Whiteness of the snowshoe hare coat in autumn declined during this study, and snowshoe hares with a greater proportion of whiteness in their coats in autumn survived better during winter. However, whiteness of the coat in spring did not affect subsequent summer survival. These results are consistent with the hypothesis that the timing of coat colour change in autumn can reduce overwinter survival. Because declines in cyclic snowshoe hare populations are strongly affected by low winter survival, the timing of coat colour change may adversely affect snowshoe hare population dynamics as climate change continues.


Asunto(s)
Liebres , Animales , Color , Ecosistema , Canadá , Dinámica Poblacional , Estaciones del Año
7.
Horm Behav ; 155: 105426, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37716083

RESUMEN

Inclement weather can rapidly modify the thermal conditions experienced by animals, inducing changes in their behavior, body condition, and stress physiology, and affecting their survival and breeding success. For animals living in variable environments, the extent to which they have adapted to cope with inclement weather is not established, especially for hibernating species with a short active season that are constrained temporally to breed and store energy for subsequent hibernation. We examined behavioral (foraging activity) and physiological (body mass and fecal cortisol metabolites) responses of Columbian ground squirrels (Urocitellus columbianus), small hibernating rodents inhabiting open meadows in Rocky Mountains, to 3 events of inclement weather (two snow storms in May 2021 and May 2022, one heavy rainfall in June 2022). We found that individuals adapted to inclement weather conditions by (1) reducing above-ground activity, including foraging, (2) decreasing the mobilization of stored resources as indicated by a decrease in the activity of the hypothalamo-pituitary-adrenal (HPA) axis and lower fecal cortisol metabolites in the hours/days following periods of inclement weather; and (3) compensating through increased foraging and more local activity when favorable conditions resumed. As a result, body mass and growth did not decrease following short periods of inclement weather. Columbian ground squirrels were well-adapted to short periods of inclement weather, coping via modifications of their behavior and the activity of the HPA axis.

8.
Oecologia ; 201(3): 609-623, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36864247

RESUMEN

Chronic stress has long been hypothesized to play a role in driving population cycles. Christian (1950) hypothesized that high population density results in chronic stress and mass "die-offs" in small mammal populations. Updated variations of this hypothesis propose that chronic stress at high population density may reduce fitness, reproduction, or program aspects of phenotype, driving population declines. We tested the effect of density on the stress axis in meadow voles (Microtus pennsylvanicus) by manipulating population density in field enclosures over three years. Using fecal corticosterone metabolites as a non-invasive measure of glucocorticoid (GC) concentrations, we found that density alone was not associated with GC differences. However, we found that the seasonal relationship of GC levels differed by density treatment, with high-density populations having elevated GC levels early in the breeding season and decreasing towards late summer. We additionally tested hippocampal glucocorticoid receptor and mineralocorticoid receptor gene expression in juvenile voles born at different densities, with the hypothesis that high density may reduce receptor expression, altering negative feedback of the stress axis. We found that females had marginally higher glucocorticoid receptor expression at high density, no effect in males, and no detectable effect of density on mineralocorticoid receptor expression in either sex. Hence, we found no evidence that high density directly impairs negative feedback in the hippocampus, but rather female offspring may be better equipped for negative feedback. We compare our findings with prior studies to attempt to disentangle the complicated relationship between density, seasonality, sex, reproduction and the stress axis.


Asunto(s)
Receptores de Glucocorticoides , Receptores de Mineralocorticoides , Animales , Masculino , Femenino , Reproducción , Mamíferos , Arvicolinae
9.
Gen Comp Endocrinol ; 334: 114212, 2023 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-36646325

RESUMEN

Analysis of glucocorticoid profiles serves as a valuable, multi-faceted tool for insight into the behavior and physiology of wild populations. Recently, the measurement of fecal glucocorticoid metabolites (FCMs) has exploded in popularity due to its compatibility with noninvasive techniques and remote environments A critical first step is to perform a biological validation to ensure that the assay accurately reflect changes in FCM levels. We use an enzyme immunoassay (EIA) to perform a biological validation on samples collected from two males and six females in a wild population of Colobus vellerosus in response to three naturally occurring potential stressors. We also describe the FCM response pattern in the week following parturition in three females and examine the influence of sex, reproductive state, and time of day on the concentrations of baseline samples collected daily from 13 adult individuals over a period of four months. We validated the assay: FCM levels increase in response to natural stressors with a two-day lag. In the two days surrounding parturition, FMC levels increased. Baseline concentrations were affected by collection time and female reproductive state, with lactating females having lower concentrations than pregnant or cycling females. Thus, we successfully carried out the first validation and characterization of FCMs in a wild African colobine. This will serve as an essential foundation for future studies of C. vellerosus and similar wild primates whose objective is to investigate the role glucocorticoids play in responses to social and ecological challenges.


Asunto(s)
Colobus , Glucocorticoides , Animales , Embarazo , Masculino , Femenino , Glucocorticoides/metabolismo , Colobus/metabolismo , Lactancia , Reproducción , Parto , Heces
10.
Ecol Lett ; 25(4): 981-991, 2022 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-35148018

RESUMEN

Snowshoe hare cycles are one of the most prominent phenomena in ecology. Experimental studies point to predation as the dominant driving factor, but previous experiments combining food supplementation and predator removal produced unexplained multiplicative effects on density. We examined the potential interactive effects of food limitation and predation in causing hare cycles using an individual-based food-supplementation experiment over-winter across three cycle phases that naturally varied in predation risk. Supplementation doubled over-winter survival with the largest effects occurring in the late increase phase. Although the proximate cause of mortality was predation, supplemented hares significantly decreased foraging time and selected for conifer habitat, potentially reducing their predation risk. Supplemented hares also lost less body mass which resulted in the production of larger leverets. Our results establish a mechanistic link between how foraging time, mass loss and predation risk affect survival and reproduction, potentially driving demographic changes associated with hare cycles.


Asunto(s)
Liebres , Animales , Ecosistema , Dinámica Poblacional , Conducta Predatoria , Estaciones del Año
11.
Front Neuroendocrinol ; 62: 100924, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33992652

RESUMEN

The perinatal period is a sensitive time in mammalian development that can have long-lasting consequences on offspring phenotype via maternal effects. Maternal effects have been most intensively studied with respect to two major conditions: maternal diet and maternal stress. In this review, we shift the focus by discussing five major additional maternal cues and their influence on offspring phenotype: maternal androgen levels, photoperiod (melatonin), microbiome, immune regulation, and milk composition. We present the key findings for each of these topics in mammals, their mechanisms of action, and how they interact with each other and with the maternal influences of diet and stress. We explore their impacts in the contexts of both predictive adaptive responses and the developmental origins of disease, identify knowledge gaps and research opportunities in the field, and place a particular emphasis on the application and consideration of these effects in non-model species and natural ecological systems.


Asunto(s)
Herencia Materna , Melatonina , Animales , Femenino , Mamíferos , Fotoperiodo , Embarazo
12.
Horm Behav ; 142: 105179, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35477059

RESUMEN

Year-around defense of extremely patchy habitat may require hormones that drive territorial behavior, but have no other costly physiological effects. The American pika (Ochotona princeps), but not the snowshoe hare (Lepus americanus) nor the eastern cottontail rabbit (Sylvilagus floridanus), exhibits this behavior. The former engages in contest competition against all individuals independent of sex to protect its territory in highly fragmented patches on mountain talus slopes; the latter in scramble competition in more continuous forests, grasslands, and shrublands. The hormonal basis for this difference in lagomorphs is unknown. Dehydroepiandrosterone is a prohormone produced by the zona reticularis of the adrenal cortex. It has no effect on aggressive behavior until converted in the brain to estrogen. We assessed levels (DHEA-S plus DHEA) in all species collected in the wild. In nonbreeding pikas, levels were 256 times higher than in hares and 22 times higher than in rabbits. Within species, females and males had similar levels. The proportion of the adrenal cortex devoted to the zona reticularis was significantly larger in pikas than in hares or rabbits. Our evidence is consistent with the hypothesis that dehydroepiandrosterone drives this individual-based, year-around territoriality in pikas. We propose a definitive experiment to determine this and recommend comparative studies in central Asia where there is high diversity of pika species whose behavior ranges from individual-based territoriality to colonial. Thus, we speculate that the wild American pika has the adrenal-brain nexus for all seasons and is an excellent model to understand how habitat drives the hormonal control of spacing behavior.


Asunto(s)
Lagomorpha , Territorialidad , Animales , Deshidroepiandrosterona , Ecosistema , Femenino , Bosques , Pradera , Masculino , Conejos
13.
Horm Behav ; 145: 105236, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35917594

RESUMEN

In some cooperatively breeding groups, individuals have distinct behavioral characteristics that are often stable and predictable across time. However, in others, as in the eusocial naked mole-rat, evidence for behavioral phenotypes is ambiguous. Here, we study whether the naked mole-rat can be divided into discrete phenotypes and if circulating hormone concentrations underpin these differences. Naked mole-rat colonies consist of a single breeding female and large numbers of non-reproductive subordinates that in some cases can exceed several hundred in a colony. The subordinates can potentially be divided into soldiers, who defend the colony; workers, who maintain it; and dispersers, who want to leave it. We established six colonies de novo, tracked them over three years, and assessed the behavior and hormone concentrations of the subordinates. We found that soldiers tended to be from earlier litters and were higher ranked compared to workers, whereas dispersers were distributed throughout litters and rankings. There was no difference in estradiol, testosterone, or dehydroepiandrosterone (DHEA) concentrations among phenotypes. Progesterone concentrations were higher in soldiers, but this difference appeared to be driven by a few individuals. Principal component analysis demonstrated that soldiers separated into a discrete category relative to workers/dispersers, with the highest ranked loadings being age, body mass, and testosterone concentrations. However, the higher testosterone in soldiers was correlated with large body size instead of strictly behavioral phenotype. Workers and dispersers have more overlap with each other and no hormonal differences. Thus the behavioral variation in subordinate naked mole-rats is likely not driven by circulating steroid hormone concentrations, but rather it may stem from alternative neural and/or neuroendocrine mechanisms.


Asunto(s)
Ratas Topo , Progesterona , Animales , Deshidroepiandrosterona , Estradiol , Femenino , Fenotipo , Testosterona
14.
Horm Behav ; 145: 105232, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35853411

RESUMEN

Social interactions are a ubiquitous feature of the lives of vertebrate species. These may be cooperative or competitive, and shape the dynamics of social systems, with profound effects on individual behavior, physiology, fitness, and health. On one hand, a wealth of studies on humans, laboratory animal models, and captive species have focused on understanding the relationships between social interactions and individual health within the context of disease and pathology. On the other, ecological studies are attempting an understanding of how social interactions shape individual phenotypes in the wild, and the consequences this entails in terms of adaptation. Whereas numerous studies in wild vertebrates have focused on the relationships between social environments and the stress axis, much remains to be done in understanding how socially-related activation of the stress axis coordinates other key physiological functions related to health. Here, we review the state of our current knowledge on the effects that social interactions may have on other markers of vertebrate fitness and health. Building upon complementary findings from the biomedical and ecological fields, we identify 6 key physiological functions (cellular metabolism, oxidative stress, cellular senescence, immunity, brain function, and the regulation of biological rhythms) which are intimately related to the stress axis, and likely directly affected by social interactions. Our goal is a holistic understanding of how social environments affect vertebrate fitness and health in the wild. Whereas both social interactions and social environments are recognized as important sources of phenotypic variation, their consequences on vertebrate fitness, and the adaptive nature of social-stress-induced phenotypes, remain unclear. Social flexibility, or the ability of an animal to change its social behavior with resulting changes in social systems in response to fluctuating environments, has emerged as a critical underlying factor that may buffer the beneficial and detrimental effects of social environments on vertebrate fitness and health.


Asunto(s)
Medio Social , Vertebrados , Adaptación Fisiológica , Animales , Humanos , Conducta Social , Estrés Psicológico , Vertebrados/fisiología
15.
Horm Behav ; 146: 105262, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36191397

RESUMEN

Evolutionary endocrinology aims to understand how natural selection shapes endocrine systems and the degree to which endocrine systems themselves can induce phenotypic responses to environmental changes. Such responses may be specialized in that they reflect past selection for responsiveness only to those ecological factors that ultimately influence natural selection. Alternatively, endocrine responses may be broad and generalized, allowing organisms to cope with a variety of environmental changes simultaneously. Here, we empirically tested whether the endocrine response of female North American red squirrels (Tamiasciurus hudsonicus) was specialized or generalized. We first quantified the direction and magnitude of natural selection acting on three female life history traits (parturition date, litter size, offspring postnatal growth rate) during 32 years of fluctuations in four potential ecological agents of selection (food availability, conspecific density, predator abundance, and temperature). Only three of the four variables (food, density, and predators) affected patterns of natural selection on female life history traits. We then quantified fecal glucocorticoid metabolites (FGMs) across 7 years and found that all four environmental variables, regardless of their effects on patterns of selection, were associated with glucocorticoid production. Our results provide support for a generalized, rather than specific, glucocorticoid response to environmental change that can integrate across multiple co-occurring environmental stressors.


Asunto(s)
Glucocorticoides , Selección Genética , Animales , Embarazo , Femenino , Sciuridae/fisiología , Evolución Biológica , Tamaño de la Camada/fisiología
16.
Horm Behav ; 139: 105111, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35063725

RESUMEN

Social environments can profoundly affect the behavior and stress physiology of group-living animals. In many territorial species, territory owners advertise territorial boundaries to conspecifics by scent marking. Several studies have investigated the information that scent marks convey about donors' characteristics (e.g., dominance, age, sex, reproductive status), but less is known about whether scents affect the behavior and stress of recipients. We experimentally tested the hypothesis that scent marking may be a potent source of social stress in territorial species. We tested this hypothesis for Columbian ground squirrels (Urocitellus columbianus) during lactation, when territorial females defend individual nest-burrows against conspecifics. We exposed lactating females, on their territory, to the scent of other lactating females. Scents were either from unfamiliar females, kin relatives (a mother, daughter, or sister), or their own scent (control condition). We expected females to react strongly to novel scents from other females on their territory, displaying increased vigilance, and higher cortisol levels, indicative of behavioral and physiological stress. We further expected females to be more sensitive to unfamiliar female scents than to kin scents, given the matrilineal social structure of this species and known fitness benefits of co-breeding in female kin groups. Females were highly sensitive to intruder (both unfamiliar and kin) scents, but not to their own scent. Surprisingly, females reacted more strongly to the scent of close kin than to the scent of unfamiliar females. Vigilance behavior increased sharply in the presence of scents; this increase was more marked for kin than unfamiliar female scents, and was mirrored by a marked 131% increase in free plasma cortisol levels in the presence of kin (but not unfamiliar female) scents. Among kin scents, lactating females were more vigilant to the scent of sisters of equal age, but showed a marked 318% increase in plasma free cortisol levels in response to the scent of older and more dominant mothers. These results suggest that scent marks convey detailed information on the identity of intruders, directly affecting the stress axis of territory holders.


Asunto(s)
Lactancia , Odorantes , Animales , Femenino , Hidrocortisona , Feromonas , Sciuridae/fisiología , Territorialidad
17.
Oecologia ; 199(2): 301-312, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35713713

RESUMEN

Telomeres are specialized non-coding DNA sequences located at the end of chromosomes and that protect genetic information. Telomere loss over lifespan is generally viewed as a phenomenon associated with aging in animals. Recently, telomere elongation after hibernation has been described in several mammals. Whether this pattern is an adaptation to repair DNA damage caused during rewarming from torpor or if it coevolved as a mechanism to promote somatic maintenance in preparation for the upcoming reproductive effort remains unclear. In a longitudinal study measuring telomere length using buccal swabs, we tested if telomere elongation was related to reproductive success in wild adult female Columbian ground squirrels (Urocitellus columbianus) that were monitored from emergence from hibernation to the end of the reproductive season. We found three key results. First, female telomere length increased at the start of the breeding season, both in breeding and non-breeding individuals. Second, post-emergence telomere lengthening was unrelated to female future reproductive output. Third, telomere length decreased in breeding females during lactation, but remained stable in non-breeding females over a similar period. Within breeders, telomeres shortened more in females producing larger and heavier litters. We concluded that telomere lengthening after hibernation did not constrain immediate female reproductive capacities. It was more likely to be part of the body recovery process that takes place after hibernation. Telomere erosion that occurs after birth may constitute a physiological cost of female reproduction.


Asunto(s)
Homeostasis del Telómero , Telómero , Animales , Femenino , Estudios Longitudinales , Masculino , Reproducción/fisiología , Sciuridae/genética
18.
Proc Biol Sci ; 288(1964): 20211908, 2021 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-34847769

RESUMEN

Predation is a key organizing force in ecosystems. The threat of predation may act to programme the endocrine hypothalamic-pituitary-adrenal axis during development to prepare offspring for the environment they are likely to encounter. Such effects are typically investigated through the measurement of corticosteroids (Cort). Corticosteroid-binding globulin (CBG) plays a key role in regulating the bioavailability of Cort, with only free unbound Cort being biologically active. We investigated the effects of prenatal predator odour exposure (POE) in mice on offspring CBG and its impact on Cort dynamics before, during and after restraint stress in adulthood. POE males, but not females, had significantly higher serum CBG at baseline and during restraint and lower circulating levels of Free Cort. Restraint stress was associated with reduced liver transcript abundance of SerpinA6 (CBG-encoding gene) only in control males. POE did not affect SerpinA6 promoter DNA methylation. Our results indicate that prenatal exposure to a natural stressor led to increased CBG levels, decreased per cent of Free Cort relative to total and inhibited restraint stress-induced downregulation of CBG transcription. These changes suggest an adaptive response to a high predator risk environment in males but not females that could buffer male offspring from chronic Cort exposure.


Asunto(s)
Sistema Hipotálamo-Hipofisario , Transcortina , Animales , Femenino , Masculino , Ratones , Embarazo , Corticosterona , Ecosistema , Sistema Hipotálamo-Hipofisario/metabolismo , Odorantes , Sistema Hipófiso-Suprarrenal/metabolismo , Transcortina/metabolismo
19.
J Anim Ecol ; 90(4): 784-795, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33550586

RESUMEN

Nearly 100 years ago, Charles Elton described lemming and vole population cycles as ecological models for understanding population regulation in nature. Yet, the mechanisms driving these cycles are still not fully understood. These rodent populations can continue to cycle in the absence of predation and with food supplementation, and represent a major unsolved problem in population ecology. It has been hypothesized that the social environment at high population density can drive selection for a low-reproduction phenotype, resulting in population self-regulation as an intrinsic mechanism driving the cycles. However, a physiological mechanism for this self-regulation has not been demonstrated. We manipulated population density in wild meadow voles Microtus pennsylvanicus using large-scale field enclosures over 3 years and examined reproductive performance and physiology. Within the field enclosures, we assessed the proportion of breeding animals, mass at sexual maturation, and faecal androgen and oestrogen metabolites. We then collected brain tissue from juvenile voles born at high or low density, quantified mRNA expression of gonadotropin-releasing hormone (GnRH) and oestrogen receptor alpha (ERα) and measured DNA methylation at six CpG sites in a region that was highly conserved with the mouse GnRH promoter. At high density, there was a lower proportion of reproductive animals. Juvenile voles born at high densities had reduced expression of GnRH in the hypothalamus, accompanied by marginally lower faecal sex hormone metabolites. Female juvenile voles born at high density also had higher methylation levels at two CpG sites while males did not, aligning with prior observations that females (but not males) from high-density environments retain reduced reproduction long term. Our results support a physiological basis for population self-regulation in vole cycles, as altering population density alone induced reproductive downregulation at the hypothalamic level. Our results demonstrate that altering the early-life social environment can fundamentally impact reproductive function in the brain. This, in turn, can drive population demography changes in wild animals.


Asunto(s)
Arvicolinae , Autocontrol , Animales , Femenino , Hormona Liberadora de Gonadotropina , Masculino , Ratones , Densidad de Población , Reproducción
20.
Oecologia ; 197(1): 71-88, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34435235

RESUMEN

The boreal forest is one of the world's ecosystems most affected by global climate warming. The snowshoe hare, its predators, and their population dynamics dominate the mammalian component of the North American boreal forest. Our past research has shown the 9-11-year hare cycle to be predator driven, both directly as virtually all hares that die are killed by their predators, and indirectly through sublethal risk effects on hare stress physiology, behavior, and reproduction. We replicated this research over the entire cycle by measuring changes in predation risk expected to drive changes in chronic stress. We examined changes in hare condition and stress axis function using a hormonal challenge protocol in the late winter of 7 years-spanning all phases of the cycle from the increase through to the low (2014-2020). We simultaneously monitored changes in hare abundance as well as those of their primary predators, lynx and coyotes. Despite observing the expected changes in hare-predator numbers over the cycle, we did not see the predicted changes in chronic stress metrics in the peak and decline phases. Thus, the comprehensive physiological signature indicative of chronic predator-induced stress seen from our previous work was not present in this current cycle. We postulate that hares may now be increasingly showing behavior-mediated rather than stress-mediated responses to their predators. We present evidence that increases in primary productivity have affected boreal community structure and function. We speculate that climate change has caused this major shift in the indirect effects of predation on hares.


Asunto(s)
Liebres , Animales , Ecosistema , América del Norte , Conducta Predatoria , Estaciones del Año , Taiga
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA