Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Lancet Oncol ; 23(1): 53-64, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34838156

RESUMEN

BACKGROUND: Effective treatments are needed to improve outcomes for high-grade glioma and low-grade glioma. The activity and safety of dabrafenib plus trametinib were evaluated in adult patients with recurrent or progressive BRAFV600E mutation-positive high-grade glioma and low-grade glioma. METHODS: This study is part of an ongoing open-label, single-arm, phase 2 Rare Oncology Agnostic Research (ROAR) basket trial at 27 community and academic cancer centres in 13 countries (Austria, Belgium, Canada, France, Germany, Italy, Japan, the Netherlands, Norway, South Korea, Spain, Sweden, and the USA). The study enrolled patients aged 18 years or older with an Eastern Cooperative Oncology Group performance status of 0, 1, or 2. Patients with BRAFV600E mutation-positive high-grade glioma and low-grade glioma received dabrafenib 150 mg twice daily plus trametinib 2 mg once daily orally until unacceptable toxicity, disease progression, or death. In the high-grade glioma cohort, patients were required to have measurable disease at baseline using the Response Assessment in Neuro-Oncology high-grade glioma response criteria and have been treated previously with radiotherapy and first-line chemotherapy or concurrent chemoradiotherapy. Patients with low-grade glioma were required to have measurable non-enhancing disease (except pilocytic astrocytoma) at baseline using the Response Assessment in Neuro-Oncology low-grade glioma criteria. The primary endpoint, in the evaluable intention-to-treat population, was investigator-assessed objective response rate (complete response plus partial response for high-grade glioma and complete response plus partial response plus minor response for low-grade glioma). This trial is ongoing, but is closed for enrolment, NCT02034110. FINDINGS: Between April 17, 2014, and July 25, 2018, 45 patients (31 with glioblastoma) were enrolled into the high-grade glioma cohort and 13 patients were enrolled into the low-grade glioma cohort. The results presented here are based on interim analysis 16 (data cutoff Sept 14, 2020). In the high-grade glioma cohort, median follow-up was 12·7 months (IQR 5·4-32·3) and 15 (33%; 95% CI 20-49) of 45 patients had an objective response by investigator assessment, including three complete responses and 12 partial responses. In the low-grade glioma cohort, median follow-up was 32·2 months (IQR 25·1-47·8). Nine (69%; 95% CI 39-91) of 13 patients had an objective response by investigator assessment, including one complete response, six partial responses, and two minor responses. Grade 3 or worse adverse events were reported in 31 (53%) patients, the most common being fatigue (five [9%]), decreased neutrophil count (five [9%]), headache (three [5%]), and neutropenia (three [5%]). INTERPRETATION: Dabrafenib plus trametinib showed clinically meaningful activity in patients with BRAFV600E mutation-positive recurrent or refractory high-grade glioma and low-grade glioma, with a safety profile consistent with that in other indications. BRAFV600E testing could potentially be adopted in clinical practice for patients with glioma. FUNDING: Novartis.


Asunto(s)
Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Neoplasias Encefálicas/tratamiento farmacológico , Glioma/tratamiento farmacológico , Mutación , Proteínas Proto-Oncogénicas B-raf/genética , Adolescente , Adulto , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/mortalidad , Femenino , Glioma/genética , Glioma/mortalidad , Humanos , Imidazoles/administración & dosificación , Isocitrato Deshidrogenasa/genética , Masculino , Persona de Mediana Edad , Oximas/administración & dosificación , Piridonas/administración & dosificación , Pirimidinonas/administración & dosificación , Adulto Joven
2.
Lancet Oncol ; 21(9): 1234-1243, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32818466

RESUMEN

BACKGROUND: Effective treatments for patients with cholangiocarcinoma after progression on gemcitabine-based chemotherapy are urgently needed. Mutations in the BRAF gene have been found in 5% of biliary tract tumours. The combination of dabrafenib and trametinib has shown activity in several BRAFV600E-mutated cancers. We aimed to assess the activity and safety of dabrafenib and trametinib combination therapy in patients with BRAFV600E-mutated biliary tract cancer. METHODS: This study is part of an ongoing, phase 2, open-label, single-arm, multicentre, Rare Oncology Agnostic Research (ROAR) basket trial in patients with BRAFV600E-mutated rare cancers. Patients were eligible for the biliary tract cancer cohort if they were aged 18 years or older, had BRAFV600E-mutated, unresectable, metastatic, locally advanced, or recurrent biliary tract cancer, an Eastern Cooperative Oncology Group performance status of 0-2, and had received previous systemic treatment. All patients were treated with oral dabrafenib 150 mg twice daily and oral trametinib 2 mg once daily until disease progression or intolerance of treatment. The primary endpoint was the overall response rate, which was determined by Response Evaluation Criteria in Solid Tumors version 1.1 in the intention-to-treat evaluable population, which comprised all enrolled patients regardless of receiving treatment who were evaluable (ie, had progression, began a new anticancer treatment, withdrew consent, died, had stable disease for 6 weeks or longer, or had two or more post-baseline assessments). The ROAR trial is registered with ClinicalTrials.gov, NCT02034110. These results are based on an interim analysis; the study is active but not recruiting. FINDINGS: Between March 12, 2014, and July 18, 2018, 43 patients with BRAFV600E-mutated biliary tract cancer were enrolled to the study and were evaluable. Median follow-up was 10 months (IQR 6-15). An investigator-assessed overall response was achieved by 22 (51%, 95% CI 36-67) of 43 patients. An independent reviewer-assessed overall response was achieved by 20 (47%, 95% CI 31-62) of 43 patients. The most common grade 3 or worse adverse event was increased γ-glutamyltransferase in five (12%) patients. 17 (40%) patients had serious adverse events and nine (21%) had treatment-related serious adverse events, the most frequent of which was pyrexia (eight [19%]). No treatment-related deaths were reported. INTERPRETATION: Dabrafenib plus trametinib combination treatment showed promising activity in patients with BRAFV600E-mutated biliary tract cancer, with a manageable safety profile. Routine testing for BRAFV600E mutations should be considered in patients with biliary tract cancer. FUNDING: GlaxoSmithKline and Novartis.


Asunto(s)
Neoplasias del Sistema Biliar/tratamiento farmacológico , Imidazoles/administración & dosificación , Oximas/administración & dosificación , Proteínas Proto-Oncogénicas B-raf/genética , Piridonas/administración & dosificación , Pirimidinonas/administración & dosificación , Adolescente , Adulto , Anciano , Protocolos de Quimioterapia Combinada Antineoplásica/administración & dosificación , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Neoplasias del Sistema Biliar/genética , Neoplasias del Sistema Biliar/patología , Supervivencia sin Enfermedad , Femenino , Humanos , Imidazoles/efectos adversos , Masculino , Persona de Mediana Edad , Mutación/genética , Recurrencia Local de Neoplasia/tratamiento farmacológico , Recurrencia Local de Neoplasia/genética , Recurrencia Local de Neoplasia/patología , Oximas/efectos adversos , Piridonas/efectos adversos , Pirimidinonas/efectos adversos , Resultado del Tratamiento
3.
Nat Med ; 29(5): 1103-1112, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37059834

RESUMEN

BRAFV600E alterations are prevalent across multiple tumors. Here we present final efficacy and safety results of a phase 2 basket trial of dabrafenib (BRAF kinase inhibitor) plus trametinib (MEK inhibitor) in eight cohorts of patients with BRAFV600E-mutated advanced rare cancers: anaplastic thyroid carcinoma (n = 36), biliary tract cancer (n = 43), gastrointestinal stromal tumor (n = 1), adenocarcinoma of the small intestine (n = 3), low-grade glioma (n = 13), high-grade glioma (n = 45), hairy cell leukemia (n = 55) and multiple myeloma (n = 19). The primary endpoint of investigator-assessed overall response rate in these cohorts was 56%, 53%, 0%, 67%, 54%, 33%, 89% and 50%, respectively. Secondary endpoints were median duration of response (DoR), progression-free survival (PFS), overall survival (OS) and safety. Median DoR was 14.4 months, 8.9 months, not reached, 7.7 months, not reached, 31.2 months, not reached and 11.1 months, respectively. Median PFS was 6.7 months, 9.0 months, not reached, not evaluable, 9.5 months, 5.5 months, not evaluable and 6.3 months, respectively. Median OS was 14.5 months, 13.5 months, not reached, 21.8 months, not evaluable, 17.6 months, not evaluable and 33.9 months, respectively. The most frequent (≥20% of patients) treatment-related adverse events were pyrexia (40.8%), fatigue (25.7%), chills (25.7%), nausea (23.8%) and rash (20.4%). The encouraging tumor-agnostic activity of dabrafenib plus trametinib suggests that this could be a promising treatment approach for some patients with BRAFV600E-mutated advanced rare cancers. ClinicalTrials.gov registration: NCT02034110 .


Asunto(s)
Adenocarcinoma , Glioma , Humanos , Imidazoles/efectos adversos , Piridonas/efectos adversos , Pirimidinonas/efectos adversos , Protocolos de Quimioterapia Combinada Antineoplásica/efectos adversos , Proteínas Proto-Oncogénicas B-raf/genética , Mutación/genética
4.
Biochem Soc Trans ; 40(1): 195-9, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22260689

RESUMEN

Although the EGFR (epidermal growth factor receptor) was discovered over 30 years ago, its mechanism of activation is still the subject of intense study. There are many published studies on the mechanism of EGFR activation and regulation, including biochemical and biophysical analyses and crystallographic structures of EGFR in different activation states and conformations, mutated at various amino acids or bound to different pharmacological inhibitors. The cumulative biochemical, biophysical and structural data have led to a nearly complete account of the mechanism of activation of EGFR. The role of the JXM (juxtamembrane) domain in EGFR structure and activity has only recently begun to be elucidated through biochemical, biophysical and structural studies. In the present article, I review the studies that have highlighted the role of the JXM domain in EGFR activation.


Asunto(s)
Activación Enzimática , Receptores ErbB/química , Secuencia de Aminoácidos , Señalización del Calcio , Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Humanos , Datos de Secuencia Molecular , Neoplasias/enzimología , Unión Proteica , Dominios y Motivos de Interacción de Proteínas , Transporte de Proteínas
5.
PLoS Comput Biol ; 7(12): e1002319, 2011 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-22219718

RESUMEN

Coregulator proteins (CoRegs) are part of multi-protein complexes that transiently assemble with transcription factors and chromatin modifiers to regulate gene expression. In this study we analyzed data from 3,290 immuno-precipitations (IP) followed by mass spectrometry (MS) applied to human cell lines aimed at identifying CoRegs complexes. Using the semi-quantitative spectral counts, we scored binary protein-protein and domain-domain associations with several equations. Unlike previous applications, our methods scored prey-prey protein-protein interactions regardless of the baits used. We also predicted domain-domain interactions underlying predicted protein-protein interactions. The quality of predicted protein-protein and domain-domain interactions was evaluated using known binary interactions from the literature, whereas one protein-protein interaction, between STRN and CTTNBP2NL, was validated experimentally; and one domain-domain interaction, between the HEAT domain of PPP2R1A and the Pkinase domain of STK25, was validated using molecular docking simulations. The scoring schemes presented here recovered known, and predicted many new, complexes, protein-protein, and domain-domain interactions. The networks that resulted from the predictions are provided as a web-based interactive application at http://maayanlab.net/HT-IP-MS-2-PPI-DDI/.


Asunto(s)
Inmunoprecipitación/métodos , Espectrometría de Masas/métodos , Mapeo de Interacción de Proteínas , Proteómica/métodos , Algoritmos , Animales , Simulación por Computador , Humanos , Péptidos y Proteínas de Señalización Intracelular/química , Modelos Estadísticos , Conformación Molecular , Unión Proteica , Proteínas Quinasas/química , Proteína Fosfatasa 2/química , Proteínas Serina-Treonina Quinasas/química , Estructura Terciaria de Proteína , Programas Informáticos
6.
Mol Oncol ; 13(8): 1725-1743, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31116490

RESUMEN

The ability to predict responsiveness to drugs in individual patients is limited. We hypothesized that integrating molecular information from databases would yield predictions that could be experimentally tested to develop transcriptomic signatures for specific drugs. We analyzed lung adenocarcinoma patient data from The Cancer Genome Atlas and identified a subset of patients in which xanthine dehydrogenase (XDH) expression correlated with decreased survival. We tested allopurinol, an FDA-approved drug that inhibits XDH, on human non-small-cell lung cancer (NSCLC) cell lines obtained from the Broad Institute Cancer Cell Line Encyclopedia and identified sensitive and resistant cell lines. We utilized the transcriptomic profiles of these cell lines to identify six-gene signatures for allopurinol-sensitive and allopurinol-resistant cell lines. Transcriptomic networks identified JAK2 as an additional target in allopurinol-resistant lines. Treatment of resistant cell lines with allopurinol and CEP-33779 (a JAK2 inhibitor) resulted in cell death. The effectiveness of allopurinol alone or allopurinol and CEP-33779 was verified in vivo using tumor formation in NCR-nude mice. We utilized the six-gene signatures to predict five additional allopurinol-sensitive NSCLC cell lines and four allopurinol-resistant cell lines susceptible to combination therapy. We searched the transcriptomic data from a library of patient-derived NSCLC tumors from the Jackson Laboratory to identify tumors that would be predicted to be sensitive to allopurinol or allopurinol + CEP-33779 treatment. Patient-derived tumors showed the predicted drug sensitivity in vivo. These data indicate that we can use integrated molecular information from cancer databases to predict drug responsiveness in individual patients and thus enable precision medicine.


Asunto(s)
Alopurinol/uso terapéutico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapéutico , Genómica , Neoplasias Pulmonares/tratamiento farmacológico , Neoplasias Pulmonares/genética , Análisis de Sistemas , Alopurinol/farmacología , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Carcinoma de Pulmón de Células no Pequeñas/tratamiento farmacológico , Carcinoma de Pulmón de Células no Pequeñas/genética , Carcinoma de Pulmón de Células no Pequeñas/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Resistencia a Antineoplásicos/efectos de los fármacos , Resistencia a Antineoplásicos/genética , Femenino , Perfilación de la Expresión Génica , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Janus Quinasa 2/antagonistas & inhibidores , Janus Quinasa 2/metabolismo , Neoplasias Pulmonares/patología , Ratones Desnudos , Fenotipo , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Piridinas/farmacología , Piridinas/uso terapéutico , Triazoles/farmacología , Triazoles/uso terapéutico , Ensayos Antitumor por Modelo de Xenoinjerto
7.
J Mol Neurosci ; 53(4): 600-7, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24488601

RESUMEN

3,6'-Disinapoyl sucrose (DISS) is an oligosaccharide ester natural product originating from the root of wild Polygala tenuifolia. Our previous reports suggested that DISS can have neuroprotective effects and antidepressive activity in rats, at least in part, by increased expression of cyclic AMP response element (CRE)-binding protein (CREB) and its downstream target protein, brain-derived neurotrophic factor (BDNF). The aim of the present study was to explore the mechanism of DISS-modulated BDNF and CREB expression. In this study, we confirmed its neuroprotective effect by showing that DISS, at concentrations above 30 µM, could promote the neuron cell viability and protected the glutamate and H2O2-induced toxicity in the human neuroblastoma (SH-SY5Y) cell line. DISS treatment also increased acute (from 15 to 30 min) BDNF expression and CREB phosphorylation in a dose-dependent manner. Pharmacological inhibition of mitogen-activated protein kinase 1 (ERK1/2), CaMKII, and Trk (with U0126, KN93, or K252a, respectively) partially attenuated the stimulatory effect of DISS on phospho-CREB and BDNF expression; however, it was not inhibited by pharmacological inhibition of PKA or PI3K (with H89 and LY294002, respectively). The results are consistent with the effects of DISS on CRE-directed gene transcription, as U0126 and KN-93 treatment also blocked the DISS-induced expression of the CRE-luciferase reporter gene. The results from the present study suggest that DISS-mediated regulation of BDNF gene expression is associated with CREB-mediated transcription of BDNF and upstream activation of ERK1/2 and CaMKII. Finally, DISS may exert neuroprotective and antidepressant effects through these signaling pathways in neuronal cells.


Asunto(s)
Factor Neurotrófico Derivado del Encéfalo/metabolismo , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Ácidos Cumáricos/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Sistema de Señalización de MAP Quinasas , Fármacos Neuroprotectores/farmacología , Sacarosa/análogos & derivados , Factor Neurotrófico Derivado del Encéfalo/genética , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/antagonistas & inhibidores , Línea Celular Tumoral , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/metabolismo , Humanos , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3 , Fosforilación , Inhibidores de Proteínas Quinasas/farmacología , Sacarosa/farmacología
8.
PLoS One ; 7(11): e49702, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23166750

RESUMEN

The epidermal growth factor receptor (EGFR) is involved in many cancers and EGFR has been heavily pursued as a drug target. Drugs targeting EGFR have shown promising clinical results for several cancer types. However, resistance to EGFR inhibitors often occurs, such as with KRAS mutant cancers, therefore new methods of targeting EGFR are needed. The juxtamembrane (JXM) domain of EGFR is critical for receptor activation and targeting this region could potentially be a new method of inhibiting EGFR. We hypothesized that the structural role of the JXM region could be mimicked by peptides encoding a JXM amino acid sequence, which could interfere with EGFR signaling and consequently could have anti-cancer activity. A peptide encoding EGFR 645-662 conjugated to the Tat sequence (TE-64562) displayed anti-cancer activity in multiple human cancer cell types with diminished activity in non-EGFR expressing cells and non-cancerous cells. In nude mice, TE-64562 delayed MDA-MB-231 tumor growth and prolonged survival, without inducing toxicity. TE-64562 induced non-apoptotic cell death after several hours and caspase-3-mediated apoptotic cell death with longer treatment. Mechanistically, TE-64562 bound to EGFR, inhibited its dimerization and caused its down-regulation. TE-64562 reduced phosphorylated and total EGFR levels but did not inhibit kinase activity and instead prolonged it. Our analysis of patient data from The Cancer Genome Atlas supported the hypothesis that down-regulation of EGFR is a potential therapeutic strategy, since phospho- and total-EGFR levels were strongly correlated in a large majority of patient tumor samples, indicating that lower EGFR levels are associated with lower phospho-EGFR levels and presumably less proliferative signals in breast cancer. Akt and Erk were inhibited by TE-64562 and this inhibition was observed in vivo in tumor tissue upon treatment with TE-64562. These results are the first to indicate that the JXM domain of EGFR is a viable drug target for several cancer types.


Asunto(s)
Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/química , Péptidos/farmacología , Proteínas Recombinantes de Fusión/farmacología , Animales , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Receptores ErbB/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Femenino , Humanos , Ratones , Ratones Desnudos , Péptidos/química , Péptidos/metabolismo , Fosforilación/efectos de los fármacos , Unión Proteica , Dominios y Motivos de Interacción de Proteínas/efectos de los fármacos , Multimerización de Proteína/efectos de los fármacos , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Recombinantes de Fusión/química , Proteínas Recombinantes de Fusión/metabolismo , Transducción de Señal/efectos de los fármacos , Carga Tumoral/efectos de los fármacos , Ensayo de Tumor de Célula Madre , Ensayos Antitumor por Modelo de Xenoinjerto , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/química , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/metabolismo
9.
Cell Signal ; 23(9): 1489-95, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21596131

RESUMEN

The role of Gßγ in adenylyl cyclase (AC) signaling is complicated due to its role as a conditional activator (AC2, AC4 and AC7) and an inhibitor (AC1, AC3 and AC8). AC2 is stimulated by Gα(s) and if Gßγ is present the stimulation is synergistic. The precise mechanism of this synergistic activation is still not known. In order to further elucidate the role of Gßγ in AC2 activation by Gα(s), peptides derived from the C1 domains of AC2 were synthesized and the ability of the various peptides to regulate AC2 function was tested. Our results identify two new Gßγ-binding sites in the AC2 C1 domain, AC2 C1a 339-360 and AC2 C1b 578-602 that are involved with stimulation of AC2 by Gßγ. These two regions are different from the previously described QEHA motif in the C2 domain of AC2. Further, the recently discovered PFAHL motif was confirmed to bind and to be involved with stimulation of AC2 by Gßγ. These functional studies indicate that multiple regions of AC2 are involved in the interaction with Gßγ.


Asunto(s)
Adenilil Ciclasas/química , Proteínas de Unión al GTP Heterotriméricas/metabolismo , Péptidos/síntesis química , Transducción de Señal , Adenilil Ciclasas/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Isoenzimas/metabolismo , Datos de Secuencia Molecular , Unión Proteica , Isoformas de Proteínas/metabolismo , Alineación de Secuencia , Homología de Secuencia de Aminoácido
10.
Mt Sinai J Med ; 77(4): 333-44, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20687178

RESUMEN

We examine how physiology and pathophysiology are studied from a systems perspective, using high-throughput experiments and computational analysis of regulatory networks. We describe the integration of these analyses with pharmacology, which leads to new understanding of drug action and enables drug discovery for complex diseases. Network studies of drug-target relationships can serve as an indication on the general trends in the approved drugs and the drug-discovery progress. There is a growing number of targeted therapies approved and in the pipeline, which meets a new set of problems with efficacy and adverse effects. The pitfalls of these mechanistically based drugs are described, along with how a systems view of drug action is increasingly important to uncover intricate signaling mechanisms that play an important part in drug action, resistance mechanisms, and off-target effects. Computational methodologies enable the classification of drugs according to their structures and to which proteins they bind. Recent studies have combined the structural analyses with analysis of regulatory networks to make predictions about the therapeutic effects of drugs for complex diseases and possible off-target effects.


Asunto(s)
Diseño de Fármacos , Farmacogenética , Medicamentos bajo Prescripción , Biología de Sistemas , Biología Computacional , Humanos , Mutación , Transducción de Señal
11.
Curr Opin Drug Discov Devel ; 13(3): 297-309, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20443163

RESUMEN

Systems biology uses experimental and computational approaches to characterize large sample populations systematically, process large datasets, examine and analyze regulatory networks, and model reactions to determine how components are joined to form functional systems. Systems biology technologies, data and knowledge are particularly useful in understanding disease processes and drug actions. An important area of integration between systems biology and drug discovery is the concept of polypharmacology: the treatment of diseases by modulating more than one target. Polypharmacology for complex diseases is likely to involve multiple drugs acting on distinct targets that are part of a network regulating physiological responses. This review discusses the current state of the systems-level understanding of diseases and both the therapeutic and adverse mechanisms of drug actions. Drug-target networks can be used to identify multiple targets and to determine suitable combinations of drug targets or drugs. Thus, the discovery of new drug therapies for complex diseases may be greatly aided by systems biology.


Asunto(s)
Descubrimiento de Drogas/métodos , Quimioterapia Combinada/efectos adversos , Quimioterapia Combinada/métodos , Biología de Sistemas/métodos , Enfermedad/genética , Sistemas de Liberación de Medicamentos/métodos , Humanos , Modelos Biológicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA