Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 130(26): 265101, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37450828

RESUMEN

The propagation and energy coupling of intense laser beams in plasmas are critical issues in inertial confinement fusion. Applying magnetic fields to such a setup has been shown to enhance fuel confinement and heating. Here we report on experimental measurements demonstrating improved transmission and increased smoothing of a high-power laser beam propagating in a magnetized underdense plasma. We also measure enhanced backscattering, which our kinetic simulations show is due to magnetic confinement of hot electrons, thus leading to reduced target preheating.


Asunto(s)
Electrones , Calefacción , Frecuencia Cardíaca , Cinética , Rayos Láser
2.
Phys Rev Lett ; 129(11): 114801, 2022 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-36154426

RESUMEN

Premature relativistic transparency of ultrathin, laser-irradiated targets is recognized as an obstacle to achieving a stable radiation pressure acceleration in the "light sail" (LS) mode. Experimental data, corroborated by 2D PIC simulations, show that a few-nm thick overcoat surface layer of high Z material significantly improves ion bunching at high energies during the acceleration. This is diagnosed by simultaneous ion and neutron spectroscopy following irradiation of deuterated plastic targets. In particular, copious and directional neutron production (significantly larger than for other in-target schemes) arises, under optimal parameters, as a signature of plasma layer integrity during the acceleration.

3.
Phys Rev Lett ; 127(19): 194801, 2021 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-34797126

RESUMEN

We report on the selective acceleration of carbon ions during the interaction of ultrashort, circularly polarized and contrast-enhanced laser pulses, at a peak intensity of 5.5×10^{20} W/cm^{2}, with ultrathin carbon foils. Under optimized conditions, energies per nucleon of the bulk carbon ions reached significantly higher values than the energies of contaminant protons (33 MeV/nucleon vs 18 MeV), unlike what is typically observed in laser-foil acceleration experiments. Experimental data, and supporting simulations, emphasize different dominant acceleration mechanisms for the two ion species and highlight an (intensity dependent) optimum thickness for radiation pressure acceleration; it is suggested that the preceding laser energy reaching the target before the main pulse arrives plays a key role in a preferential acceleration of the heavier ion species.

4.
World J Urol ; 38(1): 143-150, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30993426

RESUMEN

BACKGROUND: Basophils, eosinophils and monocytes may be involved in BCG-induced immune responses and be associated with outcomes of bladder cancer patients receiving intravesical BCG. Our objective was to explore the association of baseline counts of basophils, eosinophils and monocytes with outcomes of patients with high-grade T1 bladder cancer receiving a standard course of intravesical BCG. METHODS: We retrospectively reviewed medical records of patients with primary T1 HG/G3 bladder cancer. After re-TURBT, patients were treated with a 6-week course of intravesical BCG induction followed by intravesical BCG every week for 3 weeks given at 3, 6, 12, 18, 24, 30 and 36 months from initiation of therapy The analysis of potential risk factors for recurrence, muscle invasion and cancer-specific and overall survival was performed using univariable Cox regression models. Those factors that presented, at univariate analysis, an association with the event at a liberal p < 0.1, have been selected for the development of a multivariable model. RESULTS: A total of 1045 patients with primary T1 HG/G3 were included. A total of 678 (64.9%) recurrences, 303 (29.0%) progressions and 150 (14.3%) deaths were observed during follow-up. Multivariate analysis showed that logarithmic transformation of basophils count was associated with a 30% increment in the hazard of recurrence per unit increase of logarithmic basophils count (HR 1.30; 95% confidence interval 1.09-1.54; p = 0.0026). Basophil count modeled by quartiles was also significantly associated with time to recurrence [second vs. lower quartile HR 1.42 (1.12-1.79); p = 0.003, third vs. lower quartile HR 1.26 (1.01-1.57); p = 0.041; upper vs. lower quartile HR 1.36 (1.1-1.68); p = 0.005]. The limitations of a retrospective study are applicable. CONCLUSION: Baseline basophil count may predict recurrence in BCG-treated HG/G3 T1 bladder cancer patients. External validation is warranted.


Asunto(s)
Vacuna BCG/administración & dosificación , Basófilos/patología , Cistectomía/métodos , Recurrencia Local de Neoplasia/diagnóstico , Estadificación de Neoplasias/métodos , Neutrófilos/patología , Neoplasias de la Vejiga Urinaria/terapia , Adyuvantes Inmunológicos/administración & dosificación , Administración Intravesical , Adulto , Anciano , Anciano de 80 o más Años , Progresión de la Enfermedad , Femenino , Estudios de Seguimiento , Humanos , Recuento de Leucocitos , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Factores de Tiempo , Neoplasias de la Vejiga Urinaria/patología
5.
Phys Rev Lett ; 122(2): 025001, 2019 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-30720299

RESUMEN

The propagation of fast electron currents in near solid-density media was investigated via proton probing. Fast currents were generated inside dielectric foams via irradiation with a short (∼0.6 ps) laser pulse focused at relativistic intensities (Iλ^{2}∼4×10^{19} W cm^{-2} µm^{2}). Proton probing provided a spatially and temporally resolved characterization of the evolution of the electromagnetic fields and of the associated net currents directly inside the target. The progressive growth of beam filamentation was temporally resolved and information on the divergence of the fast electron beam was obtained. Hybrid simulations of electron propagation in dense media indicate that resistive effects provide a major contribution to field generation and explain well the topology, magnitude, and temporal growth of the fields observed in the experiment. Estimations of the growth rates for different types of instabilities pinpoints the resistive instability as the most likely dominant mechanism of beam filamentation.

6.
Phys Rev Lett ; 120(20): 204801, 2018 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-29864368

RESUMEN

A dual ion species plasma expansion scheme from a novel target structure is introduced, in which a nanometer-thick layer of pure deuterium exists as a buffer species at the target-vacuum interface of a hydrogen plasma. Modeling shows that by controlling the deuterium layer thickness, a composite H^{+}/D^{+} ion beam can be produced by target normal sheath acceleration (TNSA), with an adjustable ratio of ion densities, as high energy proton acceleration is suppressed by the acceleration of a spectrally peaked deuteron beam. Particle in cell modeling shows that a (4.3±0.7) MeV per nucleon deuteron beam is accelerated, in a directional cone of half angle 9°. Experimentally, this was investigated using state of the art cryogenic targetry and a spectrally peaked deuteron beam of (3.4±0.7) MeV per nucleon was measured in a cone of half angle 7°-9°, while maintaining a significant TNSA proton component.

7.
Int Braz J Urol ; 44(1): 63-68, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29211396

RESUMEN

OBJECTIVES: The aim of our study is to present early outcomes of our series of retroperitoneal-RAPN (Robot Assisted Partial Nephrectomy). MATERIALS AND METHODS: From September 2010 until December 2015, we performed 81 RAPN procedures (44 at left kidney and 37 at right). Average size was 3cm (1-9). Average PADUA score 7.1 (5-10). Average surgical time (overall and only robot time), ischemia time, blood loss, pathological stage, complications and hospital stay have been recorded. RESULTS: All of the cases were completed successfully without any operative complication or surgical conversion. Average surgical time was 177 minutes (75-340). Operative time was 145 minutes (80-300), overall blood loss was 142cc (60-310cc). In 30 cases the pedicle was late clamped with an average ischemia time of 4 minutes (2-7). None of the patient had positive surgical margins at definitive histology (49pT1a, 12pT1b, 3pT2a, 2pT3a). Hospital stay was 3 days (2-7). CONCLUSIONS: The retroperitoneal robotic partial nephrectomy approach is safe and allows treatment of even quite complex tumors. It also combines the already well known advantages guaranteed by the da Vinci® robotic surgical system, with the advantages of the retroperitoneoscopic approach.


Asunto(s)
Neoplasias Renales/cirugía , Nefrectomía/métodos , Espacio Retroperitoneal/cirugía , Procedimientos Quirúrgicos Robotizados/métodos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Resultado del Tratamiento
8.
Phys Rev Lett ; 119(5): 054801, 2017 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-28949740

RESUMEN

The acceleration of ions from ultrathin (10-100 nm) carbon foils has been investigated using intense (∼6×10^{20} W cm^{-2}) ultrashort (45 fs) laser pulses, highlighting a strong dependence of the ion beam parameters on the laser polarization, with circularly polarized (CP) pulses producing the highest energies for both protons and carbons (25-30 MeV/nucleon); in particular, carbon ion energies obtained employing CP pulses were significantly higher (∼2.5 times) than for irradiations employing linearly polarized pulses. Particle-in-cell simulations indicate that radiation pressure acceleration becomes the dominant mechanism for the thinnest targets and CP pulses.

9.
Phys Rev Lett ; 118(20): 204802, 2017 May 19.
Artículo en Inglés | MEDLINE | ID: mdl-28581776

RESUMEN

A method to achieve stable radiation pressure acceleration (RPA) of heavy ions from laser-irradiated ultrathin foils is proposed, where a high-Z material coating in front is used. The coated high-Z material, acting as a moving electron repository, continuously replenishes the accelerating heavy ion foil with comoving electrons in the light-sail acceleration stage due to its successive ionization under laser fields with Gaussian temporal profile. As a result, the detrimental effects such as foil deformation and electron loss induced by the Rayleigh-Taylor-like and other instabilities in RPA are significantly offset and suppressed so that stable acceleration of heavy ions are maintained. Particle-in-cell simulations show that a monoenergetic Al^{13+} beam with peak energy 3.8 GeV and particle number 10^{10} (charge >20 nC) can be obtained at intensity 10^{22} W/cm^{2}.

10.
Phys Rev Lett ; 119(25): 255002, 2017 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-29303310

RESUMEN

We investigate the formation of a laser-produced magnetized jet under conditions of a varying mass ejection rate and a varying divergence of the ejected plasma flow. This is done by irradiating a solid target placed in a 20 T magnetic field with, first, a collinear precursor laser pulse (10^{12} W/cm^{2}) and, then, a main pulse (10^{13} W/cm^{2}) arriving 9-19 ns later. Varying the time delay between the two pulses is found to control the divergence of the expanding plasma, which is shown to increase the strength of and heating in the conical shock that is responsible for jet collimation. These results show that plasma collimation due to shocks against a strong magnetic field can lead to stable, astrophysically relevant jets that are sustained over time scales 100 times the laser pulse duration (i.e., >70 ns), even in the case of strong variability at the source.

11.
Phys Rev Lett ; 119(18): 185002, 2017 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-29219555

RESUMEN

We report on the first experimental observation of a current-driven instability developing in a quasineutral matter-antimatter beam. Strong magnetic fields (≥1 T) are measured, via means of a proton radiography technique, after the propagation of a neutral electron-positron beam through a background electron-ion plasma. The experimentally determined equipartition parameter of ε_{B}≈10^{-3} is typical of values inferred from models of astrophysical gamma-ray bursts, in which the relativistic flows are also expected to be pair dominated. The data, supported by particle-in-cell simulations and simple analytical estimates, indicate that these magnetic fields persist in the background plasma for thousands of inverse plasma frequencies. The existence of such long-lived magnetic fields can be related to analog astrophysical systems, such as those prevalent in lepton-dominated jets.

12.
Opt Express ; 24(5): 5212-5234, 2016 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-29092347

RESUMEN

We present a comprehensive model for predicting the full performance of a second harmonic generation-optical parametric amplification system that aims at enhancing the temporal contrast of laser pulses. The model simultaneously takes into account all the main parameters at play in the system such as the group velocity mismatch, the beam divergence, the spectral content, the pump depletion, and the length of the nonlinear crystals. We monitor the influence of the initial parameters of the input pulse and the interdependence of the two related non-linear processes on the performance of the system and show its optimum configuration. The influence of the initial beam divergence on the spectral and the temporal characteristics of the generated pulse is discussed. In addition, we show that using a crystal slightly longer than the optimum length and introducing small delay between the seed and the pump ensures maximum efficiency and compensates for the spectral shift in the optical parametric amplification stage in case of chirped input pulse. As an example, calculations for bandwidth transform limited and chirped pulses of sub-picosecond duration in beta barium borate crystal are presented.

13.
Opt Express ; 24(24): 28104-28112, 2016 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-27906375

RESUMEN

A significant level of back reflected laser energy was measured during the interaction of ultra-short, high contrast PW laser pulses with solid targets at 30° incidence. 2D PIC simulations carried out for the experimental conditions show that at the laser-target interface a dynamic regular structure is generated during the interaction, which acts as a grating (quasi-grating) and reflects back a significant amount of incident laser energy. With increasing laser intensity above 1018 W/cm2 the back reflected fraction increases due to the growth of the surface modulation to larger amplitudes. Above 1020 W/cm2 this increase results in the partial destruction of the quasi-grating structure and, hence, in the saturation of the back reflection efficiency. The PIC simulation results are in good agreement with the experimental findings, and, additionally, demonstrate that in presence of a small amount of pre-plasma this regular structure will be smeared out and the back reflection reduced.

14.
Appl Opt ; 55(33): 9341-9346, 2016 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-27869832

RESUMEN

The temporal contrast of a regeneratively amplified, sub-picosecond pulse is enhanced by employing a low-gain optical parametric amplification stage self-pumped by the second harmonic of the pulse. Through careful characterization of the two related nonlinear processes and optimization of the non-collinear geometry, a robust high-contrast idler pulse has been generated, with excellent spatial quality in both the near and far field. The overall energy conversion efficiency exceeds 14%, with 33% intensity conversion efficiency. The temporal cleaning is implemented without any bandwidth losses or spectral shift and produces approximately 20% temporal shortening. These experimental findings are in excellent agreement with numerical calculations.

15.
Phys Rev Lett ; 115(5): 054802, 2015 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-26274423

RESUMEN

The production of neutron beams having short temporal duration is studied using ultraintense laser pulses. Laser-accelerated protons are spectrally filtered using a laser-triggered microlens to produce a short duration neutron pulse via nuclear reactions induced in a converter material (LiF). This produces a ∼3 ns duration neutron pulse with 10(4) n/MeV/sr/shot at 0.56 m from the laser-irradiated proton source. The large spatial separation between the neutron production and the proton source allows for shielding from the copious and undesirable radiation resulting from the laser-plasma interaction. This neutron pulse compares favorably to the duration of conventional accelerator sources and should scale up with, present and future, higher energy laser facilities to produce brighter and shorter neutron beams for ultrafast probing of dense materials.

16.
J Xray Sci Technol ; 23(6): 791-7, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26756414

RESUMEN

X-ray backscatter imaging can be used for a wide range of imaging applications, in particular for industrial inspection and portal security. Currently, the application of this imaging technique to the detection of landmines is limited due to the surrounding sand or soil strongly attenuating the 10s to 100s of keV X-rays required for backscatter imaging. Here, we introduce a new approach involving a 140 MeV short-pulse (< 100 fs) electron beam generated by laser wakefield acceleration to probe the sample, which produces Bremsstrahlung X-rays within the sample enabling greater depths to be imaged. A variety of detector and scintillator configurations are examined, with the best time response seen from an absorptive coated BaF2 scintillator with a bandpass filter to remove the slow scintillation emission components. An X-ray backscatter image of an array of different density and atomic number items is demonstrated. The use of a compact laser wakefield accelerator to generate the electron source, combined with the rapid development of more compact, efficient and higher repetition rate high power laser systems will make this system feasible for applications in the field. Content includes material subject to Dstl (c) Crown copyright (2014). Licensed under the terms of the Open Government Licence except where otherwise stated. To view this licence, visit http://www.nationalarchives.gov.uk/doc/open-government-licence/version/3 or write to the Information Policy Team, The National Archives, Kew, London TW9 4DU, or email: psi@ nationalarchives.gsi.gov.uk.


Asunto(s)
Bombas (Dispositivos Explosivos)/clasificación , Rayos Láser , Intensificación de Imagen Radiográfica/instrumentación , Dispersión de Radiación , Tomografía Computarizada por Rayos X/instrumentación , Guerra , Diseño de Equipo , Análisis de Falla de Equipo , Fantasmas de Imagen , Rayos X
17.
Phys Rev Lett ; 113(23): 235001, 2014 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-25526131

RESUMEN

The intricate spatial and energy distribution of magnetic fields, self-generated during high power laser irradiation (at Iλ^{2}∼10^{13}-10^{14} W.cm^{-2}.µm^{2}) of a solid target, and of the heat-carrying electron currents, is studied in inertial confinement fusion (ICF) relevant conditions. This is done by comparing proton radiography measurements of the fields to an improved magnetohydrodynamic description that fully takes into account the nonlocality of the heat transport. We show that, in these conditions, magnetic fields are rapidly advected radially along the target surface and compressed over long time scales into the dense parts of the target. As a consequence, the electrons are weakly magnetized in most parts of the plasma flow, and we observe a reemergence of nonlocality which is a crucial effect for a correct description of the energetics of ICF experiments.

18.
Phys Rev Lett ; 110(20): 205001, 2013 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-25167421

RESUMEN

We report on the temporally and spatially resolved detection of the precursory stages that lead to the formation of an unmagnetized, supercritical collisionless shock in a laser-driven laboratory experiment. The measured evolution of the electrostatic potential associated with the shock unveils the transition from a current free double layer into a symmetric shock structure, stabilized by ion reflection at the shock front. Supported by a matching particle-in-cell simulation and theoretical considerations, we suggest that this process is analogous to ion reflection at supercritical collisionless shocks in supernova remnants.

19.
Phys Rev Lett ; 110(13): 135003, 2013 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-23581330

RESUMEN

Using ion carbon beams generated by high intensity short pulse lasers we perform measurements of single shot mean charge equilibration in cold or isochorically heated solid density aluminum matter. We demonstrate that plasma effects in such matter heated up to 1 eV do not significantly impact the equilibration of carbon ions with energies 0.045-0.5 MeV/nucleon. Furthermore, these measurements allow for a first evaluation of semiempirical formulas or ab initio models that are being used to predict the mean of the equilibrium charge state distribution for light ions passing through warm dense matter.

20.
Phys Rev Lett ; 108(11): 115002, 2012 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-22540479

RESUMEN

A novel regime is proposed where, by employing linearly polarized laser pulses at intensities 10(21) W cm(-2) (2 orders of magnitude lower than discussed in previous work [T. Esirkepov et al., Phys. Rev. Lett. 92, 175003 (2004)]), ions are dominantly accelerated from ultrathin foils by the radiation pressure and have monoenergetic spectra. In this regime, ions accelerated from the hole-boring process quickly catch up with the ions accelerated by target normal sheath acceleration, and they then join in a single bunch, undergoing a hybrid light-sail-target normal sheath acceleration. Under an appropriate coupling condition between foil thickness, laser intensity, and pulse duration, laser radiation pressure can be dominant in this hybrid acceleration. Two-dimensional particle-in-cell simulations show that 1.26 GeV quasimonoenergetic C(6+) beams are obtained by linearly polarized laser pulses at intensities of 10(21) W cm(-2).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA