RESUMEN
Previous studies suggest that long-term supplementation and dietary intake of omega-3 polyunsaturated fatty acids (PUFAs) may have neuroprotective effects following brain injury. The objective of this study was to investigate potential neuroprotective effects of omega-3 PUFAs on white matter following closed-head trauma. The closed-head injury model of engineered rotational acceleration (CHIMERA) produces a reproducible injury in the optic tract and brachium of the superior colliculus in mice. Damage is detectable using diffusion tensor imaging (DTI) metrics, particularly fractional anisotropy (FA), with sensitivity comparable to histology. We acquired in vivo (n = 38) and ex vivo (n = 41) DTI data in mice divided into sham and CHIMERA groups with two dietary groups: one deficient in omega-3 PUFAs and one adequate in omega-3 PUFAs. We examined injury effects (reduction in FA) and neuroprotection (FA reduction modulated by diet) in the optic tract and brachium. We verified that diet did not affect FA in sham animals. In injured animals, we found significantly reduced FA in the optic tract and brachium (~10% reduction, p < 0.001), and Bayes factor analysis showed strong evidence to reject the null hypothesis. However, Bayes factor analysis showed substantial evidence to accept the null hypothesis of no diet-related FA differences in injured animals in the in vivo and ex vivo samples. Our results indicate no neuroprotective effect from adequate dietary omega-3 PUFA intake on white matter damage following traumatic brain injury. Since damage from CHIMERA mainly affects white matter, our results do not necessarily contradict previous findings showing omega-3 PUFA-mediated neuroprotection in gray matter.
Asunto(s)
Lesiones Traumáticas del Encéfalo/diagnóstico por imagen , Dieta , Ácidos Grasos Omega-3/uso terapéutico , Fármacos Neuroprotectores/uso terapéutico , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/lesiones , Animales , Teorema de Bayes , Imagen de Difusión Tensora , Sustancia Gris/patología , Traumatismos Cerrados de la Cabeza/diagnóstico por imagen , Masculino , Ratones , Ratones Endogámicos C57BL , Tracto Óptico/diagnóstico por imagen , Tracto Óptico/lesiones , Colículos Superiores/diagnóstico por imagen , Colículos Superiores/lesionesRESUMEN
Hypertension and aging are leading risk factors for stroke and vascular contributions to cognitive impairment and dementia (VCID). Most animal models fail to capture the complex interplay between these pathophysiological processes. In the current study, we examined the development of cognitive impairment in 18-month-old spontaneously hypertensive rats (SHR) before and following ischemic stroke. Sixty SHRs were housed for 18 months with cognitive assessments every 6 months and post-surgery. MRI scans were performed at baseline and throughout the study. On day 3 post-stroke, rats were randomized to receive either angiotensin II type 2 receptor (AT2R) agonist Compound 21 (C21) or plain water for 8 weeks. SHRs demonstrated a progressive cognitive decline and significant MRI abnormalities before stroke. Perioperative mortality within 72 h of stroke was low. Stroke resulted in significant acute brain swelling, chronic brain atrophy, and sustained sensorimotor and behavioral deficits. There was no evidence of anhedonia at week 8. C21 enhanced sensorimotor recovery and ischemic lesion resolution at week 8. SHRs represent a clinically relevant animal model to study aging and stroke-associated VCID. This study underscores the importance of translational disease modeling and provides evidence that modulation of the AT2R signaling via C21 may be a useful therapeutic option to improve sensorimotor and cognitive outcomes even in aged animals.
RESUMEN
N-acetylaspartate (NAA) is recognized as a noninvasive diagnostic neuronal marker for a host of neuropsychiatric disorders using magnetic resonance spectroscopy (MRS). Numerous correlative clinical studies have found significant decreases in NAA levels in specific neuronal systems in an array of neuropsychiatric and substance-abuse disorders. We have recently identified the methamphetamine-induced neuronal protein known as "shati" as the NAA biosynthetic enzyme (aspartate N-acetyltransferase [Asp-NAT]; gene Nat8l). We have generated an Nat8l transgenic knockout mouse line to study the functions of NAA in the nervous system. We were unable to breed homozygous Nat8l knockout mice successfully for study and so used the heterozygous mice (Nat8l(+/-) ) for initial characterization. MRS analysis of the Nat8l(+/-) mice indicated significant reductions in NAA in cortex (-38%) and hypothalamus (-29%) compared with wild-type controls, which was confirmed using HPLC (-29% in forebrain). The level of the neuromodulator N-acetylaspartylglutamate (NAAG), which is synthesized from NAA, was decreased by 12% in forebrain as shown by HPLC. Behavioral analyses of the heterozygous animals indicated normal behavior in most respects but reduced vertical activity in open-field tests compared with age- and sex-matched wild-type mice of the same strain. Nat8l(+/-) mice also showed atypical locomotor responses to methamphetamine administration, suggesting that NAA is involved in modulating the hyperactivity effect of methamphetamine. These observations add to accumulating evidence suggesting that NAA has specific regulatory functional roles in mesolimbic and prefrontal neuronal pathways either directly or indirectly through impact on NAAG synthesis
Asunto(s)
Ácido Aspártico/análogos & derivados , Acetiltransferasas/metabolismo , Análisis de Varianza , Animales , Ácido Aspártico/metabolismo , Encéfalo/metabolismo , Colina/metabolismo , Cromatografía Líquida de Alta Presión , Dipéptidos/deficiencia , Dipéptidos/genética , Dopaminérgicos/farmacología , Conducta Exploratoria/fisiología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Locomoción/efectos de los fármacos , Locomoción/genética , Espectroscopía de Resonancia Magnética , Metanfetamina/farmacología , Ratones , Ratones Endogámicos C57BL , Ratones NoqueadosRESUMEN
Organophosphate-based chemical agents (OP), including nerve agents and certain pesticides such as paraoxon, are potent acetylcholinesterase inhibitors that cause severe convulsions and seizures, leading to permanent central nervous system (CNS) damage if not treated promptly. The current treatment regimen for OP poisoning is intramuscular injection of atropine sulfate with an oxime such as pralidoxime (2-PAM) to mitigate cholinergic over-activation of the somatic musculature and autonomic nervous system. This treatment does not provide protection against CNS cholinergic overactivation and therefore convulsions require additional medication. Benzodiazepines are the currently accepted treatment for OP-induced convulsions, but the convulsions become refractory to these GABAA agonists and repeated dosing has diminishing effectiveness. As such, adjunct anticonvulsant treatments are needed to provide improved protection against recurrent and prolonged convulsions and the associated excitotoxic CNS damage that results from them. Previously we have shown that brief, 4-min administration of 3%-5% isoflurane in 100% oxygen has profound anticonvulsant and CNS protective effects when administered 30 min after a lethal dose of paraoxon. In this report we provide an extended time course of the effectiveness of 5% isoflurane delivered for 5 min, ranging from 60 to 180 min after a lethal dose of paraoxon in rats. We observed substantial effectiveness in preventing neuronal loss as shown by Fluoro-Jade B staining when isoflurane was administered 1 h after paraoxon, with diminishing effectiveness at 90, 120 and 180 min. In vivo magnetic resonance imaging (MRI) derived T2 and mean diffusivity (MD) values showed that 5-min isoflurane administration at a concentration of 5% prevents brain edema and tissue damage when administered 1 h after a lethal dose of paraoxon. We also observed reduced astrogliosis as shown by GFAP immunohistochemistry. Studies with continuous EEG monitoring are ongoing to demonstrate effectiveness in animal models of soman poisoning.
RESUMEN
Endocannabinoids [2-arachidonoylglycerol (2-AG) and N-arachidonoylethanolamine (AEA)], endogenously produced arachidonate-based lipids, are anti-inflammatory physiological ligands for two known cannabinoid receptors, CB1 and CB2, yet the molecular and cellular mechanisms underlying their effects after brain injury are poorly defined. In the present study, we hypothesize that traumatic brain injury (TBI)-induced loss of endocannabinoids exaggerates neurovascular injury, compromises brain-cerebrospinal fluid (CSF) barriers (BCB) and causes behavioral dysfunction. Preliminary analysis in human CSF and plasma indicates changes in endocannabinoid levels. This encouraged us to investigate the levels of endocannabinoid-metabolizing enzymes in a mouse model of controlled cortical impact (CCI). Reductions in endocannabinoid (2-AG and AEA) levels in plasma were supported by higher expression of their respective metabolizing enzymes, monoacylglycerol lipase (MAGL), fatty acid amide hydrolase (FAAH), and cyclooxygenase 2 (Cox-2) in the post-TBI mouse brain. Following increased metabolism of endocannabinoids post-TBI, we observed increased expression of CB2, non-cannabinoid receptor Transient receptor potential vanilloid-1 (TRPV1), aquaporin 4 (AQP4), ionized calcium binding adaptor molecule 1 (IBA1), glial fibrillary acidic protein (GFAP), and acute reduction in cerebral blood flow (CBF). The BCB and pericontusional cortex showed altered endocannabinoid expressions and reduction in ventricular volume. Finally, loss of motor functions and induced anxiety behaviors were observed in these TBI mice. Taken together, our findings suggest endocannabinoids and their metabolizing enzymes play an important role in the brain and BCB integrity and highlight the need for more extensive studies on these mechanisms.
Asunto(s)
Antineoplásicos , Lesiones Traumáticas del Encéfalo , Lesiones Encefálicas , Ratones , Humanos , Animales , Endocannabinoides/metabolismo , Encéfalo/metabolismo , Lesiones Traumáticas del Encéfalo/complicaciones , Receptor Cannabinoide CB1/metabolismoRESUMEN
The consequences of forceful rotational acceleration on the central nervous system are not fully understood. While traumatic brain injury (TBI) research primarily has focused on effects related to the brain parenchyma, reports of traumatic meningeal enhancement in TBI patients may possess clinical significance. The objective of this study was to evaluate the meninges and brain for changes in dynamic contrast enhancement (DCE) magnetic resonance imaging (MRI) following closed-head impact model of engineered rotational acceleration (CHIMERA)-induced cerebral insult. Adult male and female mice received one (1 × ; n = 19 CHIMERA, n = 19 Sham) or four (4 × one/day; n = 18 CHIMERA, n = 12 Sham) injuries. Each animal underwent three MRI scans: 1 week before injury, immediately after the final injury, and 1 week post-injury. Compared with baseline readings and measures in sham animals, meningeal DCE in males was increased after single impact and repetitive injury. In female mice, DCE was elevated relative to their baseline level after a single impact. One week after CHIMERA, the meningeal enhancement returned to below baseline for single injured male mice, but compared with uninjured mice remained elevated in both sexes in the multiple impact groups. Pre-DCE meningeal T2-weighted relaxation time was increased only after 1 × CHIMERA in injured mice. Since vision is impaired after CHIMERA, visual pathway regions were analyzed through imaging and glial fibrillary acidic protein (GFAP) histology. Initial DCE in the lateral geniculate nucleus (LGN) and superior colliculus (SC) and T2 increases in the optic tract (OPT) and LGN were observed after injury with decreases in DCE and T2 1 week later. Astrogliosis was apparent in the OPT and SC with increased GFAP staining 7 days post-injury. To our knowledge, this is the first study to examine meningeal integrity after CHIMERA in both male and female rodents. DCE-MRI may serve as a useful approach for pre-clinical models of meningeal injury that will enable further evaluation of the underlying mechanisms.
Asunto(s)
Lesiones Traumáticas del Encéfalo , Vías Visuales , Animales , Femenino , Humanos , Masculino , Ratones , Aceleración , Lesiones Traumáticas del Encéfalo/patología , Modelos Animales de Enfermedad , Imagen por Resonancia Magnética , Meninges/diagnóstico por imagen , Ratones Endogámicos C57BL , Vías Visuales/patologíaRESUMEN
Pre-clinical models of traumatic brain injury (TBI) have been the primary experimental tool for understanding the potential mechanisms and cellular alterations that follow brain injury, but the human relevance and translational value of these models are often called into question. Efforts to better recapitulate injury biomechanics and the use of non-rodent species with neuroanatomical similarities to humans may address these concerns and promise to advance experimental studies toward clinical impact. In addition to improving translational aspects of animal models, it is also advantageous to establish pre-clinical outcomes that can be directly compared with the same outcomes in humans. Non-invasive imaging and particularly MRI is promising for this purpose given that MRI is a primary tool for clinical diagnosis and at the same time increasingly available at the pre-clinical level. The objective of this study was to identify which commonly used radiologic markers of TBI outcomes can be found also in a translationally relevant pre-clinical model of TBI. The ferret was selected as a human relevant species for this study with folded cortical geometry and relatively high white matter content and the closed head injury model of engineered rotation and acceleration (CHIMERA) TBI model was selected for biomechanical similarities to human injury. A comprehensive battery of MRI protocols based on common data elements (CDEs) for human TBI was collected longitudinally for the identification of MRI markers and voxelwise analysis of T2, contrast enhancement and diffusion tensor MRI values. The most prominent MRI findings were consistent with focal hemorrhage and edema in the brain stem region following high severity injury as well as vascular and meningeal injury evident by contrast enhancement. While conventional MRI outcomes were not highly conspicuous in less severe cases, quantitative voxelwise analysis indicated diffusivity and anisotropy alterations in the acute and chronic periods after TBI. The main conclusions of this study support the translational relevance of closed head TBI models in intermediate species and identify brain stem and meningeal vulnerability. Additionally, the MRI findings highlight a subset of CDEs with promise to bridge pre-clinical studies with human TBI outcomes.
RESUMEN
Multiple Sclerosis (MS) causes neurologic disability due to inflammation, demyelination, and neurodegeneration. Immunosuppressive treatments can modify the disease course but do not effectively promote remyelination or prevent long term neurodegeneration. As a novel approach to mitigate chronic stage pathology, we tested transplantation of mouse induced neural stem cells (iNSCs) into the chronically demyelinated corpus callosum (CC) in adult mice. Male C57BL/6 mice fed 0.3% cuprizone for 12 weeks exhibited CC atrophy with chronic demyelination, astrogliosis, and microglial activation. Syngeneic iNSCs were transplanted into the CC after ending cuprizone and perfused for neuropathology 2 weeks later. Magnetic resonance imaging (MRI) sequences for magnetization transfer ratio (MTR), diffusion-weighted imaging (T2), and diffusion tensor imaging (DTI) quantified CC pathology in live mice before and after iNSC transplantation. Each MRI technique detected progressive CC pathology. Mice that received iNSCs had normalized DTI radial diffusivity, and reduced astrogliosis post-imaging. A motor skill task that engages the CC is Miss-step wheel running, which demonstrated functional deficits from cuprizone demyelination. Transplantation of iNSCs resulted in marked recovery of running velocity. Neuropathology after wheel running showed that iNSC grafts significantly increased host oligodendrocytes and proliferating oligodendrocyte progenitors, while modulating axon damage. Transplanted iNSCs differentiated along astrocyte and oligodendrocyte lineages, without myelinating, and many remained neural stem cells. Our findings demonstrate the applicability of neuroimaging and functional assessments for pre-clinical interventional trials during chronic demyelination and detect improved function from iNSC transplantation. Directly reprogramming fibroblasts into iNSCs facilitates the future translation towards exogenous autologous cell therapies.
Asunto(s)
Cuerpo Calloso/patología , Cuerpo Calloso/fisiología , Células Madre Pluripotentes Inducidas/trasplante , Actividad Motora , Esclerosis Múltiple/patología , Esclerosis Múltiple/fisiopatología , Células-Madre Neurales/trasplante , Remielinización , Animales , Astrocitos/patología , Astrocitos/fisiología , Diferenciación Celular , Cuerpo Calloso/diagnóstico por imagen , Modelos Animales de Enfermedad , Células Madre Pluripotentes Inducidas/fisiología , Imagen por Resonancia Magnética , Masculino , Ratones Endogámicos C57BL , Esclerosis Múltiple/prevención & control , Células-Madre Neurales/fisiología , Oligodendroglía/patología , Oligodendroglía/fisiologíaRESUMEN
Angiotensin II (Ang II)-mediated activation of its type I receptor (AT1R) in the central nervous system promotes glial proliferation, local inflammation, and a decrease of cerebral blood flow. Angiotensin-(1-7) (Ang-(1-7))-an Ang II derivative peptide-signals through the Mas receptor (MasR) in opposition to Ang II/AT1R, promoting anti-inflammatory, vasodilatory, and neuroprotective effects. As our laboratory has previously demonstrated beneficial effects of AT1R inhibition following controlled cortical impact (CCI) in mice, we asked whether activation of Ang-(1-7)/MasR signaling would also be beneficial in this model. Adult male C57BL/6 mice were injured by CCI. Ang-(1-7) or vehicle was administered subcutaneously (S.Q.) at 1 mg/kg/day at 1 or 6 h post-injury, until animals were sacrificed at 3 or 29 days post-injury (dpi). Ang-(1-7) attenuated motor deficits at 3 dpi and improved performance in the Morris Water Maze at 28 dpi. Brain histology or magnetic resonance imaging (MRI) indicated that Ang-(1-7)-treated mice had smaller lesion volumes at 3, 10, 24, and 29 dpi. Pre-treatment with A779, a MasR antagonist, prevented Ang-(1-7) from reducing lesion volume at 3 dpi, suggesting that the benefits of Ang-(1-7) were MasR-dependent. Immunohistochemistry revealed that Ang-(1-7) reduced microgliosis at 3 and 29 dpi, and astrogliosis at 29 dpi. Ang-(1-7) decreased neuronal and capillary loss at 29 dpi. In summary, S.Q. administration of Ang-(1-7) after injury had anti-inflammatory, neuroprotective, and cerebrovascular-protective actions leading to improved functional and pathological recovery in a mouse model of traumatic brain injury (TBI). These data show for the first time that Ang-(1-7) has potential therapeutic use for TBI.
Asunto(s)
Angiotensina I/farmacología , Lesiones Traumáticas del Encéfalo/patología , Encéfalo/efectos de los fármacos , Fármacos Neuroprotectores/farmacología , Fragmentos de Péptidos/farmacología , Recuperación de la Función/efectos de los fármacos , Animales , Encéfalo/patología , Masculino , Ratones , Ratones Endogámicos C57BLRESUMEN
We sought to understand the mechanisms underlying cognitive deficits that are reported to affect non-native subjects following their prolonged stay and/or work at high altitude (HA). We found that mice exposed to a simulated environment of 5000â¯m exhibit deficits in hippocampal learning and memory accompanied by abnormalities in brain MR imaging. Exposure (1-8â¯months) to HA led to an increase in brain ventricular volume, a reduction in relative cerebral blood flow and changes in diffusion tensor imaging (DTI) derived parameters within the hippocampus and corpus callosum. Furthermore, neuropathological examination revealed significant expansion of the neurovascular network, microglia activation and demyelination within the corpus callosum. Electrophysiological recordings from the corpus callosum indicated that axonal excitabilities are increased while refractory periods are longer despite a lack of change in action potential conduction velocities of both myelinated and unmyelinated fibers. Next generation RNA-sequencing identified alterations in hippocampal and amygdala transcriptome signaling pathways linked to angiogenesis, neuroinflammation and myelination. Our findings reveal that exposure to hypobaric-hypoxia triggers maladaptive responses inducing cognitive deficits and suggest potential mechanisms underlying the adverse impacts of staying or traveling at high altitude.
Asunto(s)
Adaptación Fisiológica/fisiología , Altitud , Presión Atmosférica , Circulación Cerebrovascular/fisiología , Trastornos de la Memoria/metabolismo , Neuronas/metabolismo , Animales , Hipocampo/metabolismo , Hipocampo/patología , Masculino , Trastornos de la Memoria/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neocórtex/metabolismo , Neocórtex/patología , Neuronas/patología , Distribución AleatoriaRESUMEN
We offer a new means of noninvasively assessing mean microvessel segment length and radius after ischemic stroke. This method involves measuring changes in T2 and T2â after injecting an intravascular superparamagnetic iron oxide contrast agent and result was verified using laser scanning confocal microscopy (LSCM) of both normal brain tissue and the ischemic recovery region. Embolic stroke was induced in 8 male Wistar rats and magnetic resonance imaging (MRI) performed 1 day and 6 weeks later. On MRI taken at 6 weeks, MRI of the recovery region revealed a significant increase in mean vessel size index (VSI) (5.75 ± 0.54 vs 4.81 ± 0.3 9µm; p < 0.001) and decrease in mean segment length (MSL) (16.61 ± 2.33 vs 26.52 ± 3.20 µm; p < 0.001) compared to the normal contralateral hemisphere, comparable with published values. There was also a significant correlation between MSL and VSI measured by MRI vs LSCM in the recovery region and normal contralateral hemisphere (p < 0.001). Our data suggest that a) morphological changes in the microvasculature can be measured noninvasively using MRI, and b) both MRI and LSCM give comparable information about both of these important parameters.
Asunto(s)
Encéfalo/irrigación sanguínea , Imagen por Resonancia Magnética , Microscopía Confocal , Microvasos/patología , Accidente Cerebrovascular/patología , Animales , Procesamiento de Imagen Asistido por Computador , Masculino , Ratas , Ratas WistarRESUMEN
We investigated vascular changes after stroke using magnetic resonance imaging (MRI) microvascular density (MVD) measurement. T(2) and T(2)(*) were measured in eight rats before and after injecting an intravascular superparamagnetic iron oxide contrast agent to derive the corresponding transverse relaxation shift. Reliability of MRI for measurement of MVD was compared with corresponding sections immunostained with von Willebrand factor (vWF) 2 weeks after stroke. The intracorrelation coefficient (ICC) and its 95% lower bound (LB) was high in the ischemic recovery region (ICC=0.753), moderate in the contralateral area of normal brain tissue (ICC=0.70), and low in the ischemic core (ICC=0.24). A very good agreement (ICC=0.85) and correlation (r=0.90) were observed using only the recovery region and normal contralateral hemisphere (ICC=0.85; 95% LB=0.78; P<0.05). The mean MRI MVD in the center of the core lesion (26+/-9 per mm(2)) was lower than in the recovery region (209+/-60 per mm(2)) or contralateral normal hemisphere (313+/-32 per mm(2)). However, large errors in MRI MVD were encountered in the ischemic core. Our data demonstrate that MRI MVD measurements can quantitatively evaluate microvascular changes in the brain tissue after stroke, if the MVD is not extremely low as in the ischemic core.