Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
iScience ; 27(1): 108620, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38188518

RESUMEN

Mosquito borne flaviviruses such as dengue and Zika represent a major public health problem due to globalization and propagation of susceptible vectors worldwide. Vertebrate host responses to dengue and Zika infections include the processing and release of pro-inflammatory cytokines through the activation of inflammasomes, resulting in disease severity and fatality. Mosquito saliva can facilitate pathogen infection by downregulating the host's immune response. However, the role of mosquito saliva in modulating host innate immune responses remains largely unknown. Here, we show that mosquito salivary gland extract (SGE) inhibits dengue and Zika virus-induced inflammasome activation by reducing NLRP3 expression, Caspase-1 activation, and 1L-1ß secretion in cultured human and mice macrophages. As a result, we observe that SGE inhibits virus detection in the early phase of infection. This study provides important insights into how mosquito saliva modulates host innate immunity during viral infection.

2.
Insect Biochem Mol Biol ; 167: 104097, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38428508

RESUMEN

Mosquito vectors of medical importance both blood and sugar feed, and their saliva contains bioactive molecules that aid in both processes. Although it has been shown that the salivary glands of several mosquito species exhibit α-glucosidase activities, the specific enzymes responsible for sugar digestion remain understudied. We therefore expressed and purified three recombinant salivary α-glucosidases from the mosquito vectors Aedes aegypti, Anopheles gambiae, and Culex quinquefasciatus and compared their functions and structures. We found that all three enzymes were expressed in the salivary glands of their respective vectors and were secreted into the saliva. The proteins, as well as mosquito salivary gland extracts, exhibited α-glucosidase activity, and the recombinant enzymes displayed preference for sucrose compared to p-nitrophenyl-α-D-glucopyranoside. Finally, we solved the crystal structure of the Ae. aegypti α-glucosidase bound to two calcium ions at a 2.3 Ångstrom resolution. Molecular docking suggested that the Ae. aegypti α-glucosidase preferred di- or polysaccharides compared to monosaccharides, consistent with enzymatic activity assays. Comparing structural models between the three species revealed a high degree of similarity, suggesting similar functional properties. We conclude that the α-glucosidases studied herein are important enzymes for sugar digestion in three mosquito species.


Asunto(s)
Aedes , Anopheles , Culex , Animales , Mosquitos Vectores/genética , alfa-Glucosidasas/genética , Aedes/genética , Anopheles/genética , Simulación del Acoplamiento Molecular , Culex/genética , Azúcares
3.
mBio ; : e0228923, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37909749

RESUMEN

Mosquito saliva facilitates blood meal acquisition through pharmacologically active compounds that prevent host hemostasis and immune responses. Here, we generated two knockout (KO) mosquito lines by CRISPR/Cas9 to functionally characterize D7L1 and D7L2, two abundantly expressed salivary proteins from the yellow fever mosquito vector Aedes aegypti. The D7s bind and scavenge biogenic amines and eicosanoids involved in hemostasis at the bite site. The absence of D7 proteins in the salivary glands of KO mosquitoes was confirmed by mass spectrometry, enzyme-linked immunosorbent assay, and fluorescence microscopy of the salivary glands with specific antibodies. D7-KO mosquitoes had longer probing times than parental wildtypes. The differences in probing time were abolished when mutant mice resistant to inflammatory insults were used. These results confirmed the role of D7 proteins as leukotriene scavengers in vivo. We also investigated the role of D7 salivary proteins in Plasmodium gallinaceum infection and transmission. Both KO lines had significantly fewer oocysts per midgut. We hypothesize that the absence of D7 proteins in the midgut of KO mosquitoes might be responsible for creating a harsh environment for the parasite. The information generated by this work highlights the biological functionality of salivary gene products in blood feeding and pathogen infection. IMPORTANCE During blood feeding, mosquitoes inject saliva into the host skin, preventing hemostasis and inflammatory responses. D7 proteins are among the most abundant components of the saliva of blood-feeding arthropods. Aedes aegypti, the vector of yellow fever and dengue, expresses two D7 long-form salivary proteins: D7L1 and D7L2. These proteins bind and counteract hemostatic agonists such as biogenic amines and leukotrienes. D7L1 and D7L2 knockout mosquitoes showed prolonged probing times and carried significantly less Plasmodium gallinaceum oocysts per midgut than wild-type mosquitoes. We hypothesize that reingested D7s play a vital role in the midgut microenvironment with important consequences for pathogen infection and transmission.

4.
Immunohorizons ; 6(6): 373-383, 2022 06 23.
Artículo en Inglés | MEDLINE | ID: mdl-35738824

RESUMEN

Blood-feeding arthropods secrete potent salivary molecules, which include platelet aggregation inhibitors, vasodilators, and anticoagulants. Among these molecules, Alboserpin, the major salivary anticoagulant from the mosquito vector Aedes albopictus, is a specific inhibitor of the human coagulation factor Xa (FXa). In this study, we investigated the anti-inflammatory properties of Alboserpin, in vitro and in vivo. In vitro, Alboserpin inhibited FXa-induced protease-activated receptor (PAR)-1, PAR-2, PAR-3, VCAM, ICAM, and NF-κB gene expression in primary dermal microvascular endothelial cells. Alboserpin also prevented FXa-stimulated ERK1/2 gene expression and subsequent inflammatory cytokine release (MCP-1, TNF-α, IL-6, IL-8, IL-1ß, IL-18). In vivo, Alboserpin reduced paw edema induced by FXa and subsequent release of inflammatory cytokines (CCL2, MCP-1, IL-1α, IL-6, IL-1ß). Alboserpin also reduced FXa-induced endothelial permeability in vitro and in vivo. These findings show that Alboserpin is a potent anti-inflammatory molecule, in vivo and in vitro, and may play a significant role in blood feeding.


Asunto(s)
Aedes , Aedes/metabolismo , Animales , Antiinflamatorios/farmacología , Anticoagulantes/farmacología , Citocinas , Células Endoteliales/metabolismo , Humanos , Interleucina-6 , Mosquitos Vectores , Receptor PAR-1/genética , Receptor PAR-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA