Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Diabetologia ; 67(6): 1138-1154, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38489029

RESUMEN

AIMS/HYPOTHESIS: A hallmark chronic complication of type 2 diabetes mellitus is vascular hyperpermeability, which encompasses dysfunction of the cerebrovascular endothelium and the subsequent development of associated cognitive impairment. The present study tested the hypothesis that during type 2 diabetes circulating small extracellular vesicles (sEVs) exhibit phenotypic changes that facilitate pathogenic disruption of the vascular barrier. METHODS: sEVs isolated from the plasma of a mouse model of type 2 diabetes and from diabetic human individuals were characterised for their ability to disrupt the endothelial cell (EC) barrier. The contents of sEVs and their effect on recipient ECs were assessed by proteomics and identified pathways were functionally interrogated with small molecule inhibitors. RESULTS: Using intravital imaging, we found that diabetic mice (Leprdb/db) displayed hyperpermeability of the cerebrovasculature. Enhanced vascular leakiness was recapitulated following i.v. injection of sEVs from diabetic mice into non-diabetic recipient mice. Characterisation of circulating sEV populations from the plasma of diabetic mice and humans demonstrated increased quantity and size of sEVs compared with those isolated from non-diabetic counterparts. Functional experiments revealed that sEVs from diabetic mice or humans induced the rapid and sustained disruption of the EC barrier through enhanced paracellular and transcellular leak but did not induce inflammation. Subsequent sEV proteome and recipient EC phospho-proteome analysis suggested that extracellular vesicles (sEVs) from diabetic mice and humans modulate the MAPK/MAPK kinase (MEK) and Rho-associated protein kinase (ROCK) pathways, cell-cell junctions and actin dynamics. This was confirmed experimentally. Treatment of sEVs with proteinase K or pre-treatment of recipient cells with MEK or ROCK inhibitors reduced the hyperpermeability-inducing effects of circulating sEVs in the diabetic state. CONCLUSIONS/INTERPRETATION: Diabetes is associated with marked increases in the concentration and size of circulating sEVs. The modulation of sEV-associated proteins under diabetic conditions can induce vascular leak through activation of the MEK/ROCK pathway. These data identify a new paradigm by which diabetes can induce hyperpermeability and dysfunction of the cerebrovasculature and may implicate sEVs in the pathogenesis of cognitive decline during type 2 diabetes.


Asunto(s)
Permeabilidad Capilar , Diabetes Mellitus Tipo 2 , Vesículas Extracelulares , Animales , Vesículas Extracelulares/metabolismo , Ratones , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Humanos , Masculino , Diabetes Mellitus Experimental/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Proteómica , Ratones Endogámicos C57BL
2.
Circ Res ; 127(6): 727-743, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32552404

RESUMEN

RATIONALE: We previously identified somatic activating mutations in the KRAS (Kirsten rat sarcoma viral oncogene homologue) gene in the endothelium of the majority of human sporadic brain arteriovenous malformations; a disorder characterized by direct connections between arteries and veins. However, whether this genetic abnormality alone is sufficient for lesion formation, as well as how active KRAS signaling contributes to arteriovenous malformations, remains unknown. OBJECTIVE: To establish the first in vivo models of somatic KRAS gain of function in the endothelium in both mice and zebrafish to directly observe the phenotypic consequences of constitutive KRAS activity at a cellular level in vivo, and to test potential therapeutic interventions for arteriovenous malformations. METHODS AND RESULTS: Using both postnatal and adult mice, as well as embryonic zebrafish, we demonstrate that endothelial-specific gain of function mutations in Kras (G12D or G12V) are sufficient to induce brain arteriovenous malformations. Active KRAS signaling leads to altered endothelial cell morphogenesis and increased cell size, ectopic sprouting, expanded vessel lumen diameter, and direct connections between arteries and veins. Furthermore, we show that these lesions are not associated with altered endothelial growth dynamics or a lack of proper arteriovenous identity but instead seem to feature exuberant angiogenic signaling. Finally, we demonstrate that KRAS-dependent arteriovenous malformations in zebrafish are refractory to inhibition of the downstream effector PI3K but instead require active MEK (mitogen-activated protein kinase kinase 1) signaling. CONCLUSIONS: We demonstrate that active KRAS expression in the endothelium is sufficient for brain arteriovenous malformations, even in the setting of uninjured adult vasculature. Furthermore, the finding that KRAS-dependent lesions are reversible in zebrafish suggests that MEK inhibition may represent a promising therapeutic treatment for arteriovenous malformation patients. Graphical Abstract: A graphical abstract is available for this article.


Asunto(s)
Células Endoteliales/enzimología , Mutación con Ganancia de Función , Malformaciones Arteriovenosas Intracraneales/genética , MAP Quinasa Quinasa 1/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Animales , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/patología , Femenino , Predisposición Genética a la Enfermedad , Células Endoteliales de la Vena Umbilical Humana/enzimología , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Malformaciones Arteriovenosas Intracraneales/enzimología , Malformaciones Arteriovenosas Intracraneales/patología , Hemorragias Intracraneales/enzimología , Hemorragias Intracraneales/genética , Hemorragias Intracraneales/patología , MAP Quinasa Quinasa 1/antagonistas & inhibidores , Masculino , Ratones Transgénicos , Permeabilidad , Fenotipo , Fosfatidilinositol 3-Quinasa/metabolismo , Inhibidores de las Quinasa Fosfoinosítidos-3/farmacología , Transducción de Señal , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra
3.
N Engl J Med ; 378(3): 250-261, 2018 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-29298116

RESUMEN

BACKGROUND: Sporadic arteriovenous malformations of the brain, which are morphologically abnormal connections between arteries and veins in the brain vasculature, are a leading cause of hemorrhagic stroke in young adults and children. The genetic cause of this rare focal disorder is unknown. METHODS: We analyzed tissue and blood samples from patients with arteriovenous malformations of the brain to detect somatic mutations. We performed exome DNA sequencing of tissue samples of arteriovenous malformations of the brain from 26 patients in the main study group and of paired blood samples from 17 of those patients. To confirm our findings, we performed droplet digital polymerase-chain-reaction (PCR) analysis of tissue samples from 39 patients in the main study group (21 with matching blood samples) and from 33 patients in an independent validation group. We interrogated the downstream signaling pathways, changes in gene expression, and cellular phenotype that were induced by activating KRAS mutations, which we had discovered in tissue samples. RESULTS: We detected somatic activating KRAS mutations in tissue samples from 45 of the 72 patients and in none of the 21 paired blood samples. In endothelial cell-enriched cultures derived from arteriovenous malformations of the brain, we detected KRAS mutations and observed that expression of mutant KRAS (KRASG12V) in endothelial cells in vitro induced increased ERK (extracellular signal-regulated kinase) activity, increased expression of genes related to angiogenesis and Notch signaling, and enhanced migratory behavior. These processes were reversed by inhibition of MAPK (mitogen-activated protein kinase)-ERK signaling. CONCLUSIONS: We identified activating KRAS mutations in the majority of tissue samples of arteriovenous malformations of the brain that we analyzed. We propose that these malformations develop as a result of KRAS-induced activation of the MAPK-ERK signaling pathway in brain endothelial cells. (Funded by the Swiss Cancer League and others.).


Asunto(s)
Malformaciones Arteriovenosas Intracraneales/genética , Mutación , Proteínas Proto-Oncogénicas p21(ras)/genética , Adulto , Células Cultivadas , Análisis Mutacional de ADN , Exoma , Expresión Génica , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Malformaciones Arteriovenosas Intracraneales/etiología , Malformaciones Arteriovenosas Intracraneales/patología , Quinasas Quinasa Quinasa PAM/metabolismo , Sistema de Señalización de MAP Quinasas , Fosforilación , Proteínas Proto-Oncogénicas p21(ras)/metabolismo
4.
Arterioscler Thromb Vasc Biol ; 40(8): 1818-1829, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32510978

RESUMEN

OBJECTIVE: Coronavirus disease 2019 (COVID-19) is a global pandemic involving >5 500 000 cases worldwide as of May 26, 2020. The culprit is the severe acute respiratory syndrome coronavirus-2, which invades cells by binding to ACE2 (angiotensin-converting enzyme 2). While the majority of patients mount an appropriate antiviral response and recover at home, others progress to respiratory distress requiring hospital admission for supplemental oxygen. In severe cases, deterioration to acute respiratory distress syndrome necessitating mechanical ventilation, development of severe thrombotic events, or cardiac injury and dysfunction occurs. In this review, we highlight what is known to date about COVID-19 and cardiovascular risk, focusing in on the putative role of the endothelium in disease susceptibility and pathogenesis. Approach and Results: Cytokine-driven vascular leak in the lung alveolar-endothelial interface facilitates acute lung injury in the setting of viral infection. Given that the virus affects multiple organs, including the heart, it likely gains access into systemic circulation by infecting or passing from the respiratory epithelium to the endothelium for viral dissemination. Indeed, cardiovascular complications of COVID-19 are highly prevalent and include acute cardiac injury, myocarditis, and a hypercoagulable state, all of which may be influenced by altered endothelial function. Notably, the disease course is worse in individuals with preexisting comorbidities that involve endothelial dysfunction and may be linked to elevated ACE2 expression, such as diabetes mellitus, hypertension, and cardiovascular disease. CONCLUSIONS: Rapidly emerging data on COVID-19, together with results from studies on severe acute respiratory syndrome coronavirus-1, are providing insight into how endothelial dysfunction may contribute to the pandemic that is paralyzing the globe. This may, in turn, inform the design of biomarkers predictive of disease course, as well as therapeutics targeting pathogenic endothelial responses.


Asunto(s)
Enfermedades Cardiovasculares/patología , Infecciones por Coronavirus/epidemiología , Peptidil-Dipeptidasa A/metabolismo , Neumonía Viral/epidemiología , Síndrome Respiratorio Agudo Grave/epidemiología , Síndrome Respiratorio Agudo Grave/patología , Enzima Convertidora de Angiotensina 2 , Biomarcadores/sangre , COVID-19 , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/fisiopatología , Infecciones por Coronavirus/patología , Infecciones por Coronavirus/fisiopatología , Citocinas/metabolismo , Endotelio Vascular/metabolismo , Endotelio Vascular/patología , Humanos , Pandemias/estadística & datos numéricos , Neumonía Viral/patología , Neumonía Viral/fisiopatología , Prevalencia , Medición de Riesgo , Síndrome Respiratorio Agudo Grave/virología , Índice de Severidad de la Enfermedad , Análisis de Supervivencia
5.
Development ; 144(13): 2428-2444, 2017 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-28536097

RESUMEN

The transcriptional pathways activated downstream of vascular endothelial growth factor (VEGF) signaling during angiogenesis remain incompletely characterized. By assessing the signals responsible for induction of the Notch ligand delta-like 4 (DLL4) in endothelial cells, we find that activation of the MAPK/ERK pathway mirrors the rapid and dynamic induction of DLL4 transcription and that this pathway is required for DLL4 expression. Furthermore, VEGF/ERK signaling induces phosphorylation and activation of the ETS transcription factor ERG, a prerequisite for DLL4 induction. Transcription of DLL4 coincides with dynamic ERG-dependent recruitment of the transcriptional co-activator p300. Genome-wide gene expression profiling identified a network of VEGF-responsive and ERG-dependent genes, and ERG chromatin immunoprecipitation (ChIP)-seq revealed the presence of conserved ERG-bound putative enhancer elements near these target genes. Functional experiments performed in vitro and in vivo confirm that this network of genes requires ERK, ERG and p300 activity. Finally, genome-editing and transgenic approaches demonstrate that a highly conserved ERG-bound enhancer located upstream of HLX (which encodes a transcription factor implicated in sprouting angiogenesis) is required for its VEGF-mediated induction. Collectively, these findings elucidate a novel transcriptional pathway contributing to VEGF-dependent angiogenesis.


Asunto(s)
Proteína p300 Asociada a E1A/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Regulación de la Expresión Génica/efectos de los fármacos , Redes Reguladoras de Genes/efectos de los fármacos , Transcripción Genética/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/farmacología , Proteínas Adaptadoras Transductoras de Señales , Animales , Proteínas de Unión al Calcio , Bovinos , Elementos de Facilitación Genéticos/genética , Femenino , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Intrones/genética , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Ratones , Neovascularización Fisiológica/genética , Regulador Transcripcional ERG/metabolismo , Pez Cebra/embriología
6.
Blood ; 125(20): 3202-12, 2015 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-25838349

RESUMEN

The blood contains high concentrations of circulating extracellular vesicles (EVs), and their levels and contents are altered in several disease states, including cardiovascular disease. However, the function of circulating EVs, especially the microRNAs (miRNAs) that they contain, are poorly understood. We sought to determine the effect of secreted vesicles produced by quiescent endothelial cells (ECs) on monocyte inflammatory responses and to assess whether transfer of microRNAs occurs between these cells. We observed that monocytic cells cocultured (but not in contact) with ECs were refractory to inflammatory activation. Further characterization revealed that endothelium-derived EVs (EC-EVs) suppressed monocyte activation by enhancing immunomodulatory responses and diminishing proinflammatory responses. EVs isolated from mouse plasma also suppressed monocyte activation. Importantly, injection of EC-EVs in vivo repressed monocyte/macrophage activation, confirming our in vitro findings. We found that several antiinflammatory microRNAs were elevated in EC-EV-treated monocytes. In particular, miR-10a was transferred to monocytic cells from EC-EVs and could repress inflammatory signaling through the targeting of several components of the NF-κB pathway, including IRAK4. Our findings reveal that ECs secrete EVs that can modulate monocyte activation and suggest that altered EV secretion and/or microRNA content may affect vascular inflammation in the setting of cardiovascular disease.


Asunto(s)
Células Endoteliales/metabolismo , MicroARNs/genética , Monocitos/inmunología , Monocitos/metabolismo , Vesículas Secretoras/metabolismo , Comunicación Celular , Línea Celular , Técnicas de Cocultivo , Espacio Extracelular , Humanos , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Factores Reguladores del Interferón/metabolismo , Lipopolisacáridos/inmunología , FN-kappa B/metabolismo , Transducción de Señal
7.
Cancer Gene Ther ; 28(7-8): 769-784, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-32647136

RESUMEN

We have adapted a zebrafish (Danio rerio) tumor xenograft model for use in the study of oncolytic virotherapy. Following implantation of mammalian cancer cells into the perivitelline space of developing zebrafish embryos, both local and intravenous oncolytic virus treatments produce a tumor-specific infection with measurable antitumor effects. Tumor cells are injected at 48 h post fertilization, with oncolytic virus treatment then being administered 24 h later to allow for an initial period of tumor development and angiogenesis. Confocal fluorescent imaging is used to quantify dynamics within the tumor environment. The natural translucency of zebrafish at the embryo stage, coupled with the availability of strains with fluorescent immune and endothelial cell reporter lines, gives the model broad potential to allow for real time, in vivo investigation of important events within tumors throughout the course of virotherapy. Zebrafish xenografts offer a system with biologic fidelity to processes in human cancer development that influence oncolytic virus efficacy, and to our knowledge this is the first demonstration of the model's use in the context of virotherapy. Compared with other models, our protocol offers a powerful, inexpensive approach to evaluating novel oncolytic viruses and oncolytic virus-based combination therapies, with potential application to investigating the impacts of virotherapy on immune response, tumor vasculature, and metastatic disease.


Asunto(s)
Virus Oncolíticos/metabolismo , Animales , Modelos Animales , Microambiente Tumoral , Pez Cebra
8.
Basic Res Cardiol ; 105(3): 365-77, 2010 May.
Artículo en Inglés | MEDLINE | ID: mdl-20127487

RESUMEN

Major nuclear envelope abnormalities, such as disruption and/or presence of intranuclear organelles, have rarely been described in cardiomyocytes from dilated cardiomyopathy (DCM) patients. In this study, we screened a series of 25 unrelated DCM patient samples for (a) cardiomyocyte nuclear abnormalities and (b) mutations in LMNA and TMPO as they are two DCM-causing genes that encode proteins involved in maintaining nuclear envelope architecture. Among the 25 heart samples investigated, we identified major cardiomyocyte nuclear abnormalities in 8 patients. Direct sequencing allowed the detection of three heterozygous LMNA mutations (p.D192G, p.Q353K and p.R541S) in three patients. By multiplex ligation-dependant probe amplification (MLPA)/quantitative real-time PCR, we found a heterozygous deletion encompassing exons 3-12 of the LMNA gene in one patient. Immunostaining demonstrated that this deletion led to a decrease in lamin A/C expression in cardiomyocytes from this patient. This LMNA deletion as well as the p.D192G mutation was found in patients displaying major cardiomyocyte nuclear envelope abnormalities, while the p.Q353K and p.R541S mutations were found in patients without specific nuclear envelope abnormalities. None of the DCM patients included in the study carried a mutation in the TMPO gene. Taken together, we found no evidence of a genotype-phenotype relationship between the onset and the severity of DCM, the presence of nuclear abnormalities and the presence or absence of LMNA mutations. We demonstrated that a large deletion in LMNA associated with reduced levels of the protein in the nuclear envelope suggesting a haploinsufficiency mechanism can lead to cardiomyocyte nuclear envelope disruption and thus underlie the pathogenesis of DCM.


Asunto(s)
Cardiomiopatía Dilatada/genética , Cardiomiopatía Dilatada/patología , Eliminación de Gen , Lamina Tipo A/genética , Miocitos Cardíacos/ultraestructura , Membrana Nuclear/ultraestructura , Adolescente , Adulto , Cardiomiopatía Dilatada/fisiopatología , Estudios de Cohortes , Proteínas de Unión al ADN/genética , Femenino , Pruebas Genéticas , Genotipo , Humanos , Masculino , Proteínas de la Membrana/genética , Persona de Mediana Edad , Mutación/genética , Linaje , Fenotipo , Adulto Joven
9.
Exp Cell Res ; 314(13): 2362-75, 2008 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-18538321

RESUMEN

Mutations in the lamin A/C gene are involved in multiple human disorders for which the pathophysiological mechanisms are partially understood. Conflicting results prevail regarding the organization of lamin A and C mutants within the nuclear envelope (NE) and on the interactions of each lamin to its counterpart. We over-expressed various lamin A and C mutants both independently and together in COS7 cells. When expressed alone, lamin A with cardiac/muscular disorder mutations forms abnormal aggregates inside the NE and not inside the nucleoplasm. Conversely, the equivalent lamin C organizes as intranucleoplasmic aggregates that never connect to the NE as opposed to wild type lamin C. Interestingly, the lamin C molecules present within these aggregates exhibit an abnormal increased mobility. When co-expressed, the complex formed by lamin A/C aggregates in the NE. Lamin A and C mutants for lipodystrophy behave similarly to the wild type. These findings reveal that lamins A and C may be differentially affected depending on the mutation. This results in multiple possible physiological consequences which likely contribute in the phenotypic variability of laminopathies. The inability of lamin C mutants to join the nuclear rim in the absence of lamin A is a potential pathophysiological mechanism for laminopathies.


Asunto(s)
Enfermedades Genéticas Congénitas/etiología , Lamina Tipo A/fisiología , Animales , Células COS , Núcleo Celular/metabolismo , Precipitación Química , Chlorocebus aethiops , Progresión de la Enfermedad , Enfermedades Genéticas Congénitas/genética , Enfermedades Genéticas Congénitas/metabolismo , Humanos , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Distrofia Muscular de Emery-Dreifuss/genética , Distrofia Muscular de Emery-Dreifuss/metabolismo , Membrana Nuclear/metabolismo , Mutación Puntual , Unión Proteica , Transporte de Proteínas , Transfección
10.
EMBO Mol Med ; 5(7): 1017-34, 2013 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-23733368

RESUMEN

Activation of inflammatory pathways in the endothelium contributes to vascular diseases, including sepsis and atherosclerosis. We demonstrate that miR-146a and miR-146b are induced in endothelial cells upon exposure to pro-inflammatory cytokines. Despite the rapid transcriptional induction of the miR-146a/b loci, which is in part mediated by EGR-3, miR-146a/b induction is delayed and sustained compared to the expression of leukocyte adhesion molecules, and in fact coincides with the down-regulation of inflammatory gene expression. We demonstrate that miR-146 negatively regulates inflammation. Over-expression of miR-146a blunts endothelial activation, while knock-down of miR-146a/b in vitro or deletion of miR-146a in mice has the opposite effect. MiR-146 represses the pro-inflammatory NF-κB pathway as well as the MAP kinase pathway and downstream EGR transcription factors. Finally, we demonstrate that HuR, an RNA binding protein that promotes endothelial activation by suppressing expression of endothelial nitric oxide synthase (eNOS), is a novel miR-146 target. Thus, we uncover an important negative feedback regulatory loop that controls pro-inflammatory signalling in endothelial cells that may impact vascular inflammatory diseases.


Asunto(s)
Células Endoteliales/inmunología , Mediadores de Inflamación/inmunología , MicroARNs/inmunología , Transducción de Señal , Animales , Línea Celular , Citocinas/inmunología , Regulación hacia Abajo , Proteínas ELAV/inmunología , Células Endoteliales/metabolismo , Endotelio Vascular/inmunología , Endotelio Vascular/metabolismo , Sitios Genéticos , Humanos , Inflamación/genética , Inflamación/inmunología , Interleucina-1beta/inmunología , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , MicroARNs/genética , Proteínas Quinasas Activadas por Mitógenos/inmunología , FN-kappa B/inmunología , Factor de Transcripción AP-1/inmunología , Activación Transcripcional , Regulación hacia Arriba
11.
Dev Cell ; 26(1): 45-58, 2013 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-23830865

RESUMEN

Vegf signaling specifies arterial fate during early vascular development by inducing the transcription of Delta-like 4 (Dll4), the earliest Notch ligand gene expressed in arterial precursor cells. Dll4 expression precedes that of Notch receptors in arteries, and factors that direct its arterial-specific expression are not known. To identify the transcriptional program that initiates arterial Dll4 expression, we characterized an arterial-specific and Vegf-responsive enhancer of Dll4. Our findings demonstrate that Notch signaling is not required for initiation of Dll4 expression in arteries and suggest that Notch instead functions as a maintenance factor. Importantly, we find that Vegf signaling activates MAP kinase (MAPK)-dependent E26 transformation-specific sequence (ETS) factors in the arterial endothelium to drive expression of Dll4 and Notch4. These findings identify a Vegf/MAPK-dependent transcriptional pathway that specifies arterial identity by activating Notch signaling components and illustrate how signaling cascades can modulate broadly expressed transcription factors to achieve tissue-specific transcriptional outputs.


Asunto(s)
Aorta/fisiología , Regulación del Desarrollo de la Expresión Génica , Factor A de Crecimiento Endotelial Vascular/metabolismo , Proteínas Adaptadoras Transductoras de Señales , Animales , Animales Modificados Genéticamente/embriología , Animales Modificados Genéticamente/metabolismo , Aorta/metabolismo , Sitios de Unión , Proteínas de Unión al Calcio , Endocardio/embriología , Endocardio/metabolismo , Elementos de Facilitación Genéticos , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Sistema de Señalización de MAP Quinasas , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones , Especificidad de Órganos , Proteínas Proto-Oncogénicas/genética , Proteínas Proto-Oncogénicas/metabolismo , Receptor Notch4 , Receptores Notch/genética , Receptores Notch/metabolismo , Transactivadores/genética , Transactivadores/metabolismo , Transcripción Genética , Regulador Transcripcional ERG , Factor A de Crecimiento Endotelial Vascular/genética , Pez Cebra/embriología , Pez Cebra/genética , Pez Cebra/metabolismo
12.
PLoS One ; 7(9): e45918, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23029315

RESUMEN

A-type lamins A and C are nuclear intermediate filament proteins in which mutations have been implicated in multiple disease phenotypes commonly known as laminopathies. A few studies have implicated sumoylation in the regulation of A-type lamins. Sumoylation is a post-translational protein modification that regulates a wide range of cellular processes through the attachment of small ubiquitin-related modifier (sumo) to various substrates. Here we showed that laminopathy mutants result in the mislocalization of sumo1 both in vitro (C2C12 cells overexpressing mutant lamins A and C) and in vivo (primary myoblasts and myopathic muscle tissue from the Lmna(H222P/H222P) mouse model). In C2C12 cells, we showed that the trapping of sumo1 in p.Asp192Gly, p.Gln353Lys, and p.Arg386Lys aggregates of lamin A/C correlated with an increased steady-state level of sumoylation. However, lamin A and C did not appear to be modified by sumo1. Our results suggest that mutant lamin A/C alters the dynamics of sumo1 and thus misregulation of sumoylation may be contributing to disease progression in laminopathies.


Asunto(s)
Lamina Tipo A/genética , Mutación Missense , Procesamiento Proteico-Postraduccional , Proteína SUMO-1/metabolismo , Animales , Células COS , Línea Celular , Chlorocebus aethiops , Expresión Génica , Lamina Tipo A/metabolismo , Ratones , Ratones Transgénicos , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Enfermedades Musculares/genética , Enfermedades Musculares/metabolismo , Mioblastos Esqueléticos/metabolismo , Cultivo Primario de Células , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Transporte de Proteínas , Sumoilación , Enzimas Ubiquitina-Conjugadoras/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA