Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
J Biol Chem ; 292(51): 21083-21091, 2017 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-29084846

RESUMEN

The transient receptor potential vanilloid 3 (TRPV3) channel is a Ca2+-permeable thermosensitive ion channel widely expressed in keratinocytes, where together with epidermal growth factor receptor (EGFR) forms a signaling complex regulating epidermal homeostasis. Proper signaling through this complex is achieved and maintained via several pathways in which TRPV3 activation is absolutely required. Results of recent studies have suggested that low-level constitutive activity of TRPV3 induces EGFR-dependent signaling that, in turn, amplifies TRPV3 via activation of the mitogen-activated protein kinase ERK in a positive feedback loop. Here, we explored the molecular mechanism that increases TRPV3 activity through EGFR activation. We used mutagenesis and whole-cell patch clamp experiments on TRPV3 channels endogenously expressed in an immortalized human keratinocyte cell line (HaCaT) and in transiently transfected HEK293T cells and found that the sensitizing effect of EGFR on TRPV3 is mediated by ERK. We observed that ERK-mediated phosphorylation of TRPV3 alters its responsiveness to repeated chemical stimuli. Among several putative ERK phosphorylation sites, we identified threonine 264 in the N-terminal ankyrin repeat domain as the most critical site for the ERK-dependent modulation of TRPV3 channel activity. Of note, Thr264 is in close vicinity to a structurally and functionally important TRPV3 region comprising an atypical finger 3 and oxygen-dependent hydroxylation site. In summary, our findings indicate that Thr264 in TRPV3 is a key ERK phosphorylation site mediating EGFR-induced sensitization of the channel to stimulate signaling pathways involved in regulating skin homeostasis.


Asunto(s)
Factor de Crecimiento Epidérmico/metabolismo , Receptores ErbB/agonistas , Queratinocitos/metabolismo , Sistema de Señalización de MAP Quinasas , Proteína Quinasa 3 Activada por Mitógenos/metabolismo , Canales Catiónicos TRPV/metabolismo , Regulación hacia Arriba , Compuestos de Boro/farmacología , Línea Celular Transformada , Cimenos , Receptores ErbB/metabolismo , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Células HEK293 , Humanos , Queratinocitos/efectos de los fármacos , Queratinocitos/enzimología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Moduladores del Transporte de Membrana/farmacología , Proteína Quinasa 3 Activada por Mitógenos/química , Proteína Quinasa 3 Activada por Mitógenos/genética , Monoterpenos/farmacología , Mutagénesis Sitio-Dirigida , Mutación , Técnicas de Placa-Clamp , Fosforilación/efectos de los fármacos , Dominios y Motivos de Interacción de Proteínas , Procesamiento Proteico-Postraduccional/efectos de los fármacos , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Canales Catiónicos TRPV/agonistas , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/genética , Treonina/metabolismo , Regulación hacia Arriba/efectos de los fármacos
2.
J Neurosci ; 33(42): 16627-41, 2013 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-24133266

RESUMEN

Topically applied camphor elicits a sensation of cool, but nothing is known about how it affects cold temperature sensing. We found that camphor sensitizes a subpopulation of menthol-sensitive native cutaneous nociceptors in the mouse to cold, but desensitizes and partially blocks heterologously expressed TRPM8 (transient receptor potential cation channel subfamily M member 8). In contrast, camphor reduces potassium outward currents in cultured sensory neurons and, in cold nociceptors, the cold-sensitizing effects of camphor and menthol are additive. Using a membrane potential dye-based screening assay and heterologously expressed potassium channels, we found that the effects of camphor are mediated by inhibition of Kv7.2/3 channels subtypes that generate the M-current in neurons. In line with this finding, the specific M-current blocker XE991 reproduced the cold-sensitizing effect of camphor in nociceptors. However, the M-channel blocking effects of XE991 and camphor are not sufficient to initiate cold transduction but require a cold-activated inward current generated by TRPM8. The cold-sensitizing effects of XE991 and camphor are largest in high-threshold cold nociceptors. Low-threshold corneal cold thermoreceptors that express high levels of TRPM8 and lack potassium channels are not affected by camphor. We also found that menthol--like camphor--potently inhibits Kv7.2/3 channels. The apparent functional synergism arising from TRPM8 activation and M-current block can improve the effectiveness of topical coolants and cooling lotions, and may also enhance TRPM8-mediated analgesia.


Asunto(s)
Nociceptores/fisiología , Transducción de Señal/fisiología , Canales Catiónicos TRPM/metabolismo , Termorreceptores/fisiología , Sensación Térmica/fisiología , Animales , Alcanfor/farmacología , Frío , Femenino , Ganglios Espinales/efectos de los fármacos , Ganglios Espinales/metabolismo , Masculino , Mentol/farmacología , Ratones , Ratones Endogámicos C57BL , Fibras Nerviosas Amielínicas/efectos de los fármacos , Fibras Nerviosas Amielínicas/metabolismo , Nociceptores/metabolismo , Transducción de Señal/efectos de los fármacos , Canales Catiónicos TRPM/genética , Termorreceptores/metabolismo , Sensación Térmica/efectos de los fármacos
3.
Biochim Biophys Acta ; 1833(3): 520-8, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23220012

RESUMEN

The vanilloid transient receptor potential channel TRPV1 is a molecular integrator of noxious stimuli, including capsaicin, heat and protons. Despite clear similarities between the overall architecture of TRPV1 and voltage-dependent potassium (Kv) channels, the extent of conservation in the molecular logic for gating is unknown. In Kv channels, a small contact surface between S1 and the pore-helix is required for channel functioning. To explore the function of S1 in TRPV1, we used tryptophan-scanning mutagenesis and characterized the responses to capsaicin and protons. Wild-type-like currents were generated in 9 out of 17 mutants; three mutants (M445W, A452W, R455W) were non-functional. The conservative mutation R455K in the extracellular extent of S1 slowed down capsaicin-induced activation and prevented normal channel closure. This mutant was neither activated nor potentiated by protons, on the contrary, protons promoted a rapid deactivation of its currents. Similar phenotypes were found in two other gain-of-function mutants and also in the pore-helix mutant T633A, known to uncouple proton activation. We propose that the S1 domain contains a functionally important region that may be specifically involved in TRPV1 channel gating, and thus be important for the energetic coupling between S1-S4 sensor activation and gate opening. Analogous to Kv channels, the S1-pore interface might serve to stabilize conformations associated with TRPV1 channel gating.


Asunto(s)
Mutación/genética , Estructura Secundaria de Proteína , Protones , Canales Catiónicos TRPV/química , Células Cultivadas , Calor , Humanos , Concentración de Iones de Hidrógeno , Activación del Canal Iónico , Riñón/citología , Riñón/metabolismo , Técnicas de Placa-Clamp , Canales Catiónicos TRPV/genética , Canales Catiónicos TRPV/metabolismo
4.
Nat Commun ; 15(1): 473, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212624

RESUMEN

Complex II (CII) activity controls phenomena that require crosstalk between metabolism and signaling, including neurodegeneration, cancer metabolism, immune activation, and ischemia-reperfusion injury. CII activity can be regulated at the level of assembly, a process that leverages metastable assembly intermediates. The nature of these intermediates and how CII subunits transfer between metastable complexes remains unclear. In this work, we identify metastable species containing the SDHA subunit and its assembly factors, and we assign a preferred temporal sequence of appearance of these species during CII assembly. Structures of two species show that the assembly factors undergo disordered-to-ordered transitions without the appearance of significant secondary structure. The findings identify that intrinsically disordered regions are critical in regulating CII assembly, an observation that has implications for the control of assembly in other biomolecular complexes.


Asunto(s)
Dominio Catalítico , Estructura Secundaria de Proteína
5.
J Natl Cancer Inst ; 114(1): 130-138, 2022 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-34415331

RESUMEN

BACKGROUND: Pheochromocytoma and paraganglioma (PPGL) are neuroendocrine tumors with frequent mutations in genes linked to the tricarboxylic acid cycle. However, no pathogenic variant has been found to date in succinyl-CoA ligase (SUCL), an enzyme that provides substrate for succinate dehydrogenase (SDH; mitochondrial complex II [CII]), a known tumor suppressor in PPGL. METHODS: A cohort of 352 patients with apparently sporadic PPGL underwent genetic testing using a panel of 54 genes developed at the National Institutes of Health, including the SUCLG2 subunit of SUCL. Gene deletion, succinate levels, and protein levels were assessed in tumors where possible. To confirm the possible mechanism, we used a progenitor cell line, hPheo1, derived from a human pheochromocytoma, and ablated and re-expressed SUCLG2. RESULTS: We describe 8 germline variants in the guanosine triphosphate-binding domain of SUCLG2 in 15 patients (15 of 352, 4.3%) with apparently sporadic PPGL. Analysis of SUCLG2-mutated tumors and SUCLG2-deficient hPheo1 cells revealed absence of SUCLG2 protein, decrease in the level of the SDHB subunit of SDH, and faulty assembly of the complex II, resulting in aberrant respiration and elevated succinate accumulation. CONCLUSIONS: Our study suggests SUCLG2 as a novel candidate gene in the genetic landscape of PPGL. Large-scale sequencing may uncover additional cases harboring SUCLG2 variants and provide more detailed information about their prevalence and penetrance.


Asunto(s)
Neoplasias de las Glándulas Suprarrenales , Paraganglioma , Feocromocitoma , Neoplasias de las Glándulas Suprarrenales/genética , Neoplasias de las Glándulas Suprarrenales/patología , Mutación de Línea Germinal , Humanos , Paraganglioma/genética , Paraganglioma/patología , Feocromocitoma/genética , Feocromocitoma/patología , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo
6.
J Biol Chem ; 285(53): 41455-62, 2010 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-21044960

RESUMEN

The vanilloid transient receptor potential channel TRPV1 is a tetrameric six-transmembrane segment (S1-S6) channel that can be synergistically activated by various proalgesic agents such as capsaicin, protons, heat, or highly depolarizing voltages, and also by 2-aminoethoxydiphenyl borate (2-APB), a common activator of the related thermally gated vanilloid TRP channels TRPV1, TRPV2, and TRPV3. In these channels, the conserved charged residues in the intracellular S4-S5 region have been proposed to constitute part of a voltage sensor that acts in concert with other stimuli to regulate channel activation. The molecular basis of this gating event is poorly understood. We mutated charged residues all along the S4 and the S4-S5 linker of TRPV1 and identified four potential voltage-sensing residues (Arg(557), Glu(570), Asp(576), and Arg(579)) that, when specifically mutated, altered the functionality of the channel with respect to voltage, capsaicin, heat, 2-APB, and/or their interactions in different ways. The nonfunctional charge-reversing mutations R557E and R579E were partially rescued by the charge-swapping mutations R557E/E570R and D576R/R579E, indicating that electrostatic interactions contribute to allosteric coupling between the voltage-, temperature- and capsaicin-dependent activation mechanisms. The mutant K571E was normal in all aspects of TRPV1 activation except for 2-APB, revealing the specific role of Lys(571) in chemical sensitivity. Surprisingly, substitutions at homologous residues in TRPV2 or TRPV3 had no effect on temperature- and 2-APB-induced activity. Thus, the charged residues in S4 and the S4-S5 linker contribute to voltage sensing in TRPV1 and, despite their highly conserved nature, regulate the temperature and chemical gating in the various TRPV channels in different ways.


Asunto(s)
Canales Catiónicos TRPV/metabolismo , Canales de Potencial de Receptor Transitorio/metabolismo , Secuencia de Aminoácidos , Electrofisiología/métodos , Calor , Humanos , Canales Iónicos/química , Proteínas de la Membrana/química , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Estructura Terciaria de Proteína , Análisis de Secuencia de ADN , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
7.
Oncogene ; 40(14): 2539-2552, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33686239

RESUMEN

Pancreatic cancer is one of the deadliest forms of cancer, which is attributed to lack of effective treatment options and drug resistance. Mitochondrial inhibitors have emerged as a promising class of anticancer drugs, and several inhibitors of the electron transport chain (ETC) are being clinically evaluated. We hypothesized that resistance to ETC inhibitors from the biguanide class could be induced by inactivation of SMAD4, an important tumor suppressor involved in transforming growth factor ß (TGFß) signaling, and associated with altered mitochondrial activity. Here we show that, paradoxically, both TGFß-treatment and the loss of SMAD4, a downstream member of TGFß signaling cascade, induce resistance to biguanides, decrease mitochondrial respiration, and fragment the mitochondrial network. Mechanistically, the resistance of SMAD4-deficient cells is mediated by increased mitophagic flux driven by MAPK/ERK signaling, whereas TGFß-induced resistance is autophagy-independent and linked to epithelial-to-mesenchymal transition (EMT). Interestingly, mitochondria-targeted tamoxifen, a complex I inhibitor under clinical trial, overcomes resistance mediated by SMAD4-deficiency or TGFß signaling. Our data point to differential mechanisms underlying the resistance to treatment in PDAC arising from TGFß signaling and SMAD4 loss, respectively. The findings will help the development of mitochondria-targeted therapy for pancreatic cancer patients with SMAD4 as a plausible predictive marker.


Asunto(s)
Neoplasias Pancreáticas/metabolismo , Proteína Smad4/metabolismo , Humanos , Mitofagia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Transducción de Señal
8.
Biochim Biophys Acta Mol Basis Dis ; 1866(6): 165759, 2020 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-32151633

RESUMEN

Dihydroorotate dehydrogenase (DHODH) is an enzyme of the de novo pyrimidine synthesis pathway that provides nucleotides for RNA/DNA synthesis essential for proliferation. In mammalian cells, DHODH is localized in mitochondria, linked to the respiratory chain via the coenzyme Q pool. Here we discuss the role of DHODH in the oxidative phosphorylation system and in the initiation and progression of cancer. We summarize recent findings on DHODH biology, the progress made in the development of new, specific inhibitors of DHODH intended for cancer therapy, and the mechanistic insights into the consequences of DHODH inhibition.


Asunto(s)
Mitocondrias/genética , Neoplasias/genética , Fosforilación Oxidativa , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Proliferación Celular/efectos de los fármacos , Dihidroorotato Deshidrogenasa , Transporte de Electrón/genética , Inhibidores Enzimáticos/uso terapéutico , Humanos , Mitocondrias/metabolismo , Neoplasias/patología , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Ubiquinona/análogos & derivados , Ubiquinona/genética
9.
Biochem Biophys Rep ; 24: 100858, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33294636

RESUMEN

PURPOSE: Cancer cells rapidly adjust their balance between glycolytic and mitochondrial ATP production in response to changes in their microenvironment and to treatments like radiation and chemotherapy. Reliable, simple, high throughput assays that measure the levels of mitochondrial energy metabolism in cells are useful determinants of treatment effects. Mitochondrial metabolism is routinely determined by measuring the rate of oxygen consumption (OCR). We have previously shown that indirect inhibition of plasma membrane electron transport (PMET) by the mitochondrial uncoupler, FCCP, may also be a reliable measure of mitochondrial energy metabolism. Here, we aimed to validate these earlier findings by exploring the relationship between stimulation of oxygen consumption by FCCP and inhibition of PMET. METHODS: We measured PMET by reduction of the cell impermeable tetrazolium salt WST-1/PMS. We characterised the effect of different growth conditions on the extent of PMET inhibition by FCCP. Next, we compared FCCP-mediated PMET inhibition with FCCP-mediated stimulation of OCR using the Seahorse XF96e flux analyser, in a panel of cancer cell lines. RESULTS: We found a strong inverse correlation between stimulation of OCR and PMET inhibition by FCCP. PMET and OCR were much more severely affected by FCCP in cells that rely on mitochondrial energy production than in cells with a more glycolytic phenotype. CONCLUSION: Indirect inhibition of PMET by FCCP is a reliable, simple and inexpensive high throughput assay to determine the level of mitochondrial energy metabolism in cancer cells.

10.
Front Physiol ; 11: 543962, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33329014

RESUMEN

Tumor cells without mitochondrial (mt) DNA (ρ0 cells) are auxotrophic for uridine, and their growth is supported by pyruvate. While ATP synthesis in ρ0 cells relies on glycolysis, they fail to form tumors unless they acquire mitochondria from stromal cells. Mitochondrial acquisition restores respiration that is essential for de novo pyrimidine biosynthesis and for mitochondrial ATP production. The physiological processes that underpin intercellular mitochondrial transfer to tumor cells lacking mtDNA and the metabolic remodeling and restored tumorigenic properties of cells that acquire mitochondria are not well understood. Here, we investigated the changes in mitochondrial and nuclear gene expression that accompany mtDNA deletion and acquisition in metastatic murine 4T1 breast cancer cells. Loss of mitochondrial gene expression in 4T1ρ0 cells was restored in cells recovered from subcutaneous tumors that grew from 4T1ρ0 cells following acquisition of mtDNA from host cells. In contrast, the expression of most nuclear genes that encode respiratory complex subunits and mitochondrial ribosomal subunits was not greatly affected by loss of mtDNA, indicating ineffective mitochondria-to-nucleus communication systems for these nuclear genes. Further, analysis of nuclear genes whose expression was compromised in 4T1ρ0 cells showed that immune- and stress-related genes were the most highly differentially expressed, representing over 70% of those with greater than 16-fold higher expression in 4T1 compared with 4T1ρ0 cells. The monocyte recruiting chemokine, Ccl2, and Psmb8, a subunit of the immunoproteasome that generates MHCI-binding peptides, were the most highly differentially expressed. Early monocyte/macrophage recruitment into the tumor mass was compromised in 4T1ρ0 cells but recovered before mtDNA could be detected. Taken together, our results show that mitochondrial acquisition by tumor cells without mtDNA results in bioenergetic remodeling and re-expression of genes involved in immune function and stress adaptation.

11.
Cell Death Dis ; 11(2): 110, 2020 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-32034120

RESUMEN

p53-mutated tumors often exhibit increased resistance to standard chemotherapy and enhanced metastatic potential. Here we demonstrate that inhibition of dihydroorotate dehydrogenase (DHODH), a key enzyme of the de novo pyrimidine synthesis pathway, effectively decreases proliferation of cancer cells via induction of replication and ribosomal stress in a p53- and checkpoint kinase 1 (Chk1)-dependent manner. Mechanistically, a block in replication and ribosomal biogenesis result in p53 activation paralleled by accumulation of replication forks that activate the ataxia telangiectasia and Rad3-related kinase/Chk1 pathway, both of which lead to cell cycle arrest. Since in the absence of functional p53 the cell cycle arrest fully depends on Chk1, combined DHODH/Chk1 inhibition in p53-dysfunctional cancer cells induces aberrant cell cycle re-entry and erroneous mitosis, resulting in massive cell death. Combined DHODH/Chk1 inhibition effectively suppresses p53-mutated tumors and their metastasis, and therefore presents a promising therapeutic strategy for p53-mutated cancers.


Asunto(s)
Neoplasias de la Mama/metabolismo , Puntos de Control del Ciclo Celular , Proliferación Celular , Pirimidinas/biosíntesis , Ribosomas/metabolismo , Proteína p53 Supresora de Tumor/deficiencia , Animales , Protocolos de Quimioterapia Combinada Antineoplásica/farmacología , Neoplasias de la Mama/tratamiento farmacológico , Neoplasias de la Mama/genética , Neoplasias de la Mama/patología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/antagonistas & inhibidores , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/genética , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Dihidroorotato Deshidrogenasa , Femenino , Regulación Neoplásica de la Expresión Génica , Genes erbB-2 , Células HCT116 , Humanos , Leflunamida/farmacología , Células MCF-7 , Ratones Endogámicos BALB C , Ratones Endogámicos NOD , Ratones SCID , Ratones Transgénicos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/antagonistas & inhibidores , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Compuestos de Fenilurea/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Pirazinas/farmacología , Ribosomas/genética , Transducción de Señal , Proteína p53 Supresora de Tumor/genética
12.
Cell Metab ; 29(2): 399-416.e10, 2019 02 05.
Artículo en Inglés | MEDLINE | ID: mdl-30449682

RESUMEN

Cancer cells without mitochondrial DNA (mtDNA) do not form tumors unless they reconstitute oxidative phosphorylation (OXPHOS) by mitochondria acquired from host stroma. To understand why functional respiration is crucial for tumorigenesis, we used time-resolved analysis of tumor formation by mtDNA-depleted cells and genetic manipulations of OXPHOS. We show that pyrimidine biosynthesis dependent on respiration-linked dihydroorotate dehydrogenase (DHODH) is required to overcome cell-cycle arrest, while mitochondrial ATP generation is dispensable for tumorigenesis. Latent DHODH in mtDNA-deficient cells is fully activated with restoration of complex III/IV activity and coenzyme Q redox-cycling after mitochondrial transfer, or by introduction of an alternative oxidase. Further, deletion of DHODH interferes with tumor formation in cells with fully functional OXPHOS, while disruption of mitochondrial ATP synthase has little effect. Our results show that DHODH-driven pyrimidine biosynthesis is an essential pathway linking respiration to tumorigenesis, pointing to inhibitors of DHODH as potential anti-cancer agents.


Asunto(s)
ADN Mitocondrial/metabolismo , Mitocondrias/metabolismo , Neoplasias/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/fisiología , Pirimidinas/metabolismo , Animales , Línea Celular Tumoral , Respiración de la Célula , Dihidroorotato Deshidrogenasa , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Fosforilación Oxidativa , Ubiquinona/metabolismo
13.
Nat Commun ; 9(1): 2221, 2018 06 07.
Artículo en Inglés | MEDLINE | ID: mdl-29880867

RESUMEN

Cell growth and survival depend on a delicate balance between energy production and synthesis of metabolites. Here, we provide evidence that an alternative mitochondrial complex II (CII) assembly, designated as CIIlow, serves as a checkpoint for metabolite biosynthesis under bioenergetic stress, with cells suppressing their energy utilization by modulating DNA synthesis and cell cycle progression. Depletion of CIIlow leads to an imbalance in energy utilization and metabolite synthesis, as evidenced by recovery of the de novo pyrimidine pathway and unlocking cell cycle arrest from the S-phase. In vitro experiments are further corroborated by analysis of paraganglioma tissues from patients with sporadic, SDHA and SDHB mutations. These findings suggest that CIIlow is a core complex inside mitochondria that provides homeostatic control of cellular metabolism depending on the availability of energy.


Asunto(s)
Complejo II de Transporte de Electrones/metabolismo , Metabolismo Energético/fisiología , Mitocondrias/metabolismo , Paraganglioma/patología , Estrés Fisiológico , Animales , Vías Biosintéticas/fisiología , Línea Celular Tumoral , Complejo II de Transporte de Electrones/genética , Técnicas de Inactivación de Genes , Células HEK293 , Humanos , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Mutación , Paraganglioma/genética , ARN Interferente Pequeño/metabolismo , Puntos de Control de la Fase S del Ciclo Celular/fisiología , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
14.
15.
Mol Cancer Ther ; 15(12): 2875-2886, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27765848

RESUMEN

Pancreatic cancer is one of the hardest-to-treat types of neoplastic diseases. Metformin, a widely prescribed drug against type 2 diabetes mellitus, is being trialed as an agent against pancreatic cancer, although its efficacy is low. With the idea of delivering metformin to its molecular target, the mitochondrial complex I (CI), we tagged the agent with the mitochondrial vector, triphenylphosphonium group. Mitochondrially targeted metformin (MitoMet) was found to kill a panel of pancreatic cancer cells three to four orders of magnitude more efficiently than found for the parental compound. Respiration assessment documented CI as the molecular target for MitoMet, which was corroborated by molecular modeling. MitoMet also efficiently suppressed pancreatic tumors in three mouse models. We propose that the novel mitochondrially targeted agent is clinically highly intriguing, and it has a potential to greatly improve the bleak prospects of patients with pancreatic cancer. Mol Cancer Ther; 15(12); 2875-86. ©2016 AACR.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Metformina/farmacología , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patología , Animales , Antimetabolitos Antineoplásicos/química , Apoptosis/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Complejo I de Transporte de Electrón/antagonistas & inhibidores , Complejo I de Transporte de Electrón/química , Complejo I de Transporte de Electrón/metabolismo , Femenino , Humanos , Concentración de Iones de Hidrógeno , Potencial de la Membrana Mitocondrial , Metformina/química , Ratones , Modelos Moleculares , Conformación Molecular , Terapia Molecular Dirigida , Consumo de Oxígeno , Neoplasias Pancreáticas/tratamiento farmacológico , Unión Proteica , Ratas , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Carga Tumoral/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA