Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Pharm Biol ; 59(1): 1008-1015, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34362288

RESUMEN

CONTEXT: Cucumber (Cucumis sativus Linn. [Cucurbitaceae]) is widely known for its purgative, antidiabetic, antioxidant, and anticancer therapeutic potential. However, its effect on gastrointestinal (GI) disease is unrecognised. OBJECTIVE: This study investigated the effect of C. sativus fruit extract (CCE) on intestinal chloride secretion, motility, and motor function, and the role of TMEM16A chloride channels. MATERIALS AND METHODS: CCE extracts were obtained from commercially available cucumber. Active fractions were then purified by HPLC and analysed by high resolution mass spectrometry. The effect of CCE on intestinal chloride secretion was investigated in human colonic T84 cells, ex vivo mouse intestinal tissue using an Ussing chamber, and the two-electrode voltage-clamp technique to record calcium sensitive TMEM16A chloride currents in Xenopus laevis oocytes. In vivo, intestinal motility was investigated using the loperamide-induced C57BL/6 constipation mouse model. Ex vivo contractility of mouse colonic smooth muscles was assessed by isometric force measurements. RESULTS: CCE increased the short-circuit current (ΔIsc 34.47 ± µA/cm2) and apical membrane chloride conductance (ΔICl 95 ± 8.1 µA/cm2) in intestinal epithelial cells. The effect was dose-dependent, with an EC50 value of 0.06 µg/mL. CCE stimulated the endogenous TMEM16A-induced Cl- current in Xenopus laevis oocytes. Moreover, CCE increased the contractility of smooth muscle in mouse colonic tissue and enhanced small bowel transit in CCE treated mice compared to loperamide controls. Mass spectrometry suggested a cucurbitacin-like analogue with a mass of 512.07 g/mol underlying the bioactivity of CCE. CONCLUSION: A cucurbitacin-like analog present in CCE activates TMEM16A channels, which may have therapeutic potential in cystic fibrosis and intestinal hypodynamic disorders.


Asunto(s)
Anoctamina-1/metabolismo , Cloruros/metabolismo , Cucumis sativus/química , Intestinos/efectos de los fármacos , Canales Iónicos/efectos de los fármacos , Extractos Vegetales/farmacología , Animales , Línea Celular , Estreñimiento/inducido químicamente , Estreñimiento/tratamiento farmacológico , Motilidad Gastrointestinal/efectos de los fármacos , Humanos , Loperamida/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Músculo Liso/efectos de los fármacos , Técnicas de Placa-Clamp , Xenopus laevis
2.
Mar Drugs ; 18(3)2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-32120785

RESUMEN

A new monogalactosyldiacylglycerol (MGDG), a known monogalactosylmonoacylglycerol (MGMG) and a known polyunsaturated fatty acid methyl ester (PUFAME) were isolated from the marine dinoflagellate Karenia mikimotoi. The planar structure of the glycolipids was elucidated using mass spectroscopy (MS) and nuclear magnetic resonance (NMR) analyses and comparisons to the known glycolipid to confirm its structure. The MGDG was characterized as 3-O-ß-D-galactopyranosyl-1-O-3,6,9,12,15-octadecapentaenoyl-2-O-tetradecanoylglycerol 1. The MGMG and PUFAME were characterized as (2S)-3-O-ß-D-galactopyranosyl-1-O-3,6,9,12,15-octadecapentaenoylglycerol 2 and Methyl (3Z,6Z,9Z,12Z,15Z)-octadeca-3,6,9,12,15-pentaenoate 3, respectively. The isolation of the PUFAME strongly supports the polyunsaturated fatty acid (PUFA) fragment of these glycolipids. The relative configuration of the sugar was deduced by comparisons of 3JHH values and proton chemical shifts with those of known glycolipids. All isolated compounds MGDG, MGMG and PUFAME 1-3 were evaluated for their antimicrobial and anti-inflammatory activity. All compounds modulated macrophage responses, with compound 3 exhibiting the greatest anti-inflammatory activity.


Asunto(s)
Antiinflamatorios/farmacología , Dinoflagelados , Ácidos Grasos Insaturados/química , Glucolípidos/química , Macrófagos/efectos de los fármacos , Animales , Ratones , Océanos y Mares , Células RAW 264.7/efectos de los fármacos
3.
Biochemistry ; 56(2): 421-440, 2017 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-28000448

RESUMEN

DNA-alkylating drugs continue to remain an important weapon in the arsenal against cancers. However, they typically suffer from several shortcomings because of the indiscriminate DNA damage that they cause and their inability to specifically target cancer cells. We have developed a strategy for overcoming the deficiencies in current DNA-alkylating chemotherapy drugs by designing a site-specific DNA-methylating agent that can target cancer cells because of its selective uptake via glucose transporters, which are overexpressed in most cancers. The design features of the molecule, its synthesis, its reactivity with DNA, and its toxicity in human glioblastoma cells are reported here. In this molecule, a glucosamine unit, which can facilitate uptake via glucose transporters, is conjugated to one end of a bispyrrole triamide unit, which is known to bind to the minor groove of DNA at A/T-rich regions. A methyl sulfonate moiety is tethered to the other end of the bispyrrole unit to serve as a DNA-methylating agent. This molecule produces exclusively N3-methyladenine adducts upon reaction with DNA and is an order of magnitude more toxic to treatment resistant human glioblastoma cells than streptozotocin is, a Food and Drug Administration-approved, glycoconjugated DNA-methylating drug. Cellular uptake studies using a fluorescent analogue of our molecule provide evidence of uptake via glucose transporters and localization within the nucleus of cells. These results demonstrate the feasibility of our strategy for developing more potent anticancer chemotherapeutics, while minimizing common side effects resulting from off-target damage.


Asunto(s)
Antineoplásicos Alquilantes/síntesis química , Aductos de ADN/biosíntesis , ADN de Neoplasias/antagonistas & inhibidores , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Glicoconjugados/síntesis química , Neuroglía/efectos de los fármacos , Adenina/análogos & derivados , Adenina/química , Adenina/metabolismo , Alcanosulfonatos/química , Antineoplásicos Alquilantes/metabolismo , Antineoplásicos Alquilantes/farmacología , Transporte Biológico , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Aductos de ADN/química , Daño del ADN , Metilación de ADN , ADN de Neoplasias/química , ADN de Neoplasias/metabolismo , Expresión Génica , Glucosamina/química , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Glicoconjugados/metabolismo , Glicoconjugados/farmacología , Humanos , Simulación de Dinámica Molecular , Terapia Molecular Dirigida , Neuroglía/metabolismo , Neuroglía/patología , Conformación de Ácido Nucleico , Pirroles/química , Estreptozocina/farmacología
4.
Mar Drugs ; 13(8): 4682-700, 2015 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-26230704

RESUMEN

During an investigation of new actinomycete species from Caribbean sponges for novel bioactive natural products, frigocyclinone (1), dimethyldehydrorabelomycin (3) and six new angucyclinone derivatives were isolated from Streptomyces sp. strain M7_15 associated with the sponge Scopalina ruetzleri. Of these, monacyclinones A-B (4-5) contain the core ring structure of dehydrorabelomycin (2) with the aminodeoxysugar found in frigocyclinone (1). Monacyclinone C (6) is a hydroxylated variant of frigocyclinone (1) and monacyclinone D (7) is a Baeyer Villiger derivative of (6) which also exists as the open chain hydrolysis product monacyclinone E (8). Monacyclinone F (9) contains two unique epoxide rings attached to the angucyclinone moiety and an additional aminodeoxysugar attached through an angular oxygen bond. All structures were confirmed through spectral analyses. Activity against rhabdomycosarcoma cancer cells (SJCRH30) after 48 h of treatment was observed with frigocyclinone (1; EC50 = 5.2 µM), monacyclinone C (6; 160 µM), monacyclinone E (8; 270 µM), and monacyclinone F (9; 0.73 µM). The strongest bioactivity against rhabdomycosarcoma cancer cells and gram-positive bacteria was exhibited by compound 9, suggesting that the extra aminodeoxysugar subunit is important for biological activity.


Asunto(s)
Antraquinonas/química , Poríferos/microbiología , Streptomyces/química , Animales , Antraquinonas/farmacología , Antibacterianos/química , Antibacterianos/farmacología , Productos Biológicos/química , Productos Biológicos/farmacología , Región del Caribe , Línea Celular Tumoral , Bacterias Grampositivas/efectos de los fármacos , Humanos , Puerto Rico
5.
J Nat Prod ; 77(9): 2014-20, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25226846

RESUMEN

The marine dinoflagellate Karenia brevis produces a family of neurotoxins known as brevetoxins. Brevetoxins elicit their effects by binding to and activating voltage-sensitive sodium channels (VSSCs) in cell membranes. K. brevis also produces brevenal, a brevetoxin antagonist, which is able to inhibit and/or negate many of the detrimental effects of brevetoxins. Brevenal binding to VSSCs has yet to be fully characterized, in part due to the difficulty and expense of current techniques. In this study, we have developed a novel fluorescence binding assay for the brevenal binding site. Several fluorescent compounds were conjugated to brevenal to assess their effects on brevenal binding. The assay was validated against the radioligand assay for the brevenal binding site and yielded comparable equilibrium inhibition constants. The fluorescence-based assay was shown to be quicker and far less expensive and did not generate radioactive waste or need facilities for handling radioactive materials. In-depth studies using the brevenal conjugates showed that, while brevenal conjugates do bind to a binding site in the VSSC protein complex, they are not displaced by known VSSC site specific ligands. As such, brevenal elicits its action through a novel mechanism and/or currently unknown receptor site on VSSCs.


Asunto(s)
Encéfalo/efectos de los fármacos , Dinoflagelados/química , Éteres/farmacología , Polímeros/farmacología , Sinaptosomas/efectos de los fármacos , Canales de Sodio Activados por Voltaje/efectos de los fármacos , Animales , Unión Competitiva , Fluorescencia , Ligandos , Estructura Molecular , Neurotoxinas/farmacología , Ratas
6.
Mar Drugs ; 12(9): 4868-82, 2014 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-25251033

RESUMEN

Brevetoxins are a family of ladder-framed polyether toxins produced during blooms of the marine dinoflagellate, Karenia brevis. Consumption of shellfish or finfish exposed to brevetoxins can lead to the development of neurotoxic shellfish poisoning. The toxic effects of brevetoxins are believed to be due to the activation of voltage-sensitive sodium channels in cell membranes. The traditional cytotoxicity assay for detection of brevetoxins uses the Neuro-2A cell line, which must first be treated with the neurotoxins, ouabain and veratridine, in order to become sensitive to brevetoxins. In this study, we demonstrate several drawbacks of the Neuro-2A assay, which include variability for the EC50 values for brevetoxin and non-linear triphasic dose response curves. Ouabain/ veratridine-treated Neuro-2A cells do not show a typical sigmoidal dose response curve in response to brevetoxin, but rather, have a polynomial shaped curve, which makes calculating EC50 values highly variable. We describe a new fluorescence live cell imaging model, which allows for accurate calculation of cytotoxicity via nuclear staining and additional measurement of other viability parameters depending on which aspect of the cell is stained. In addition, the SJCRH30 cell line shows promise as an alternative to Neuro-2A cells for testing brevetoxins without the need for ouabain and veratridine.


Asunto(s)
Antineoplásicos/toxicidad , Dinoflagelados/química , Dinoflagelados/ultraestructura , Toxinas Marinas/toxicidad , Oxocinas/toxicidad , Animales , Apoptosis/efectos de los fármacos , Cardiotónicos/farmacología , Línea Celular , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Microscopía Fluorescente , Ouabaína/farmacología , Ratas , Veratridina/farmacología
7.
J AOAC Int ; 97(2): 307-15, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24830141

RESUMEN

Brevetoxins are a family of ladder-frame polyether toxins produced during blooms of the marine dinoflagellate Karenia brevis. Consumption of fish exposed to K. brevis blooms can lead to the development of neurotoxic shellfish poisoning. The toxic effects of brevetoxins are due to activation of voltage-sensitive sodium channels (VSSCs) in cell membranes. Binding of toxins has historically been measured using a radioligand competition assay that is fraught with difficulty. In this study, we developed a novel fluorescence-based binding assay for the brevetoxin receptor. Several fluorophores were conjugated to polyether brevetoxin-2 and used as the labeled ligand. Brevetoxin analogs were able to compete for binding with the fluorescent ligands. This assay was qualified against the standard radioligand receptor assay for the brevetoxin receptor. Furthermore, the fluorescence-based assay was used to determine relative concentrations of toxins in raw extracts of K. brevis culture, and to determine ciguatoxin affinity to site 5 of VSSCs. The fluorescence-based assay was quicker, safer, and far less expensive. As such, this assay can be used to replace the current radioligand assay and will be a vital tool for future experiments examining the binding affinity of various ligands for site 5 on sodium channels.


Asunto(s)
Ciguatoxinas/química , Fluoroinmunoensayo/métodos , Toxinas Marinas/química , Oxocinas/química , Agonistas del Canal de Sodio Activado por Voltaje/química , Animales , Encéfalo , Cromatografía Liquida/métodos , Colorantes Fluorescentes , Análisis de los Alimentos , Masculino , Espectrometría de Masas/métodos , Unión Proteica , Ensayo de Unión Radioligante/métodos , Ratas , Ratas Sprague-Dawley , Sinaptosomas
8.
Harmful Algae ; 26: 12-19, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23789024

RESUMEN

Brevetoxins are a family of ladder-frame polyether toxins produced by the marine dinoflagellate Karenia brevis. During blooms of K. brevis, inhalation of brevetoxins aerosolized by wind and wave action can lead to asthma-like symptoms in persons at the beach. Consumption of either shellfish or finfish contaminated by K. brevis blooms can lead to the development of neurotoxic shellfish poisoning. The toxic effects of brevetoxins are due to binding at a defined site on, and subsequent activation of, voltage-sensitive sodium channels (VSSCs) in cell membranes (site 5). In addition to brevetoxins, K. brevis produces several other ladder-frame compounds. One of these compounds, brevenal, has been shown to antagonize the effects of brevetoxin. In an effort to further characterize to effects of brevenal, a radioactive analog ([3H]-brevenol) was produced by reducing the side-chain terminal aldehyde moiety of brevenal to an alcohol using tritiated sodium borohydride. A KD of 67 nM and Bmax of 7.1 pmol/mg protein were obtained for [3H]-brevenol in rat brain synaptosomes, suggesting a 1:1 matching with VSSCs. Brevenal and brevenol competed for [3H]-brevenol binding with Ki values of 75 nM and 56 nM, respectively. However, although both brevenal and brevenol can inhibit brevetoxin binding, brevetoxin was completely ineffective at competition for [3H]-brevenol binding. After examining other site-specific compounds, it was determined that [3H]-brevenol binds to a site that is distinct from the other known sites including the brevetoxin site (site 5) although some interaction with site 5 is apparent.

9.
Harmful Algae ; 19: 85-91, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22984362

RESUMEN

Brevetoxins are a family of ladder-frame polyether toxins produced during blooms of the marine dinoflagellate Karenia brevis. Inhalation of brevetoxins aerosolized by wind and wave action can lead to asthma-like symptoms in beach goers. Consumption of either shellfish or finfish exposed to K. brevis blooms can lead to the development of neurotoxic shellfish poisoning. The toxic effects of brevetoxins are due to activation of voltage-sensitive sodium channels (VSSCs) in cell membranes. Binding of brevetoxin analogs and competitors to site 5 on these channels has historically been measured using a radioligand competition assay that is fraught with difficulty, including slow analysis time, production of radioactive waste, and cumbersome and expensive methods associated with the generation of radioactive labeled ligands. In this study, we describe the development of a novel fluorescent synaptosome binding assay for the brevetoxin receptor. BODIPY(®)-conjugated to PbTx-2 was used as the labeled ligand. The BODIPY(®)-PbTx-2 conjugate was found to displace [(3)H]-PbTx-3 from its binding site on VSSCs on rat brain synaptosomes with an equilibrium inhibition constant of 0.11 nM. We have shown that brevetoxin A and B analogs are all able to compete for binding with the fluorescent ligand. Most importantly, this assay was validated against the current site 5 receptor binding assay standard, the radioligand receptor assay for the brevetoxin receptor using [(3)H]-PbTx-3 as the labeled ligand. The fluorescence based assay yielded equilibrium inhibition constants comparable to the radioligand assay for all brevetoxin analogs. The fluorescence based assay was quicker, far less expensive, and did not generate radioactive waste or need radioactive facilities. As such, this fluorescence-based assay can be used to replace the current radioligand assay for site 5 on voltage-sensitive sodium channels and will be a vital tool for future experiments examining the binding affinity of various ligands for site 5 on sodium channels.

10.
J Toxicol Environ Health A ; 74(5): 313-24, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21240731

RESUMEN

Epidemiological studies demonstrated that the number of emergency-room visits for respiratory indications increases during periods of Florida Red Tides. The purpose of this study was to examine whether or not repeated brevetoxin inhalation, as may occur during a Florida Red Tide, affects pulmonary responses to influenza A. Male F344 rats were divided into four groups: (1) sham aerosol/no influenza; (2) sham aerosol/influenza; (3) brevetoxin/no influenza; and (4) brevetoxin/influenza. Animals were exposed by nose-only inhalation to vehicle or 50 µg brevetoxin-3/m3, 2 h/d for 12 d. On d 6 of aerosol exposure, groups 2 and 4 were administered 10,000 plaque-forming units of influenza A, strain HKX-31 (H3N2), by intratracheal instillation. Subgroups were euthanized at 2, 4, and 7 d post influenza treatment. Lungs were evaluated for viral load, cytokine content, and histopathologic changes. Influenza virus was cleared from the lungs over the 7-d period; however, there was significantly more virus remaining in the group 4 lungs compared to group 2. Influenza virus significantly increased interleukins-1α and -6 and monocyte chemotactic protein-1 in lung; brevetoxin exposure significantly enhanced the influenza-induced response. At 7 d, the severity of perivascular and peribronchiolar inflammatory cell infiltrates was greatest in group 4. Bronchiolitis persisted, with low incidence and severity, only in group 4 at d 7. These results suggest that repeated inhalation exposure to brevetoxin may delay virus particle clearance and recovery from influenza A infection in the rat lung.


Asunto(s)
Subtipo H3N2 del Virus de la Influenza A/crecimiento & desarrollo , Pulmón/efectos de los fármacos , Pulmón/inmunología , Toxinas Marinas/toxicidad , Infecciones por Orthomyxoviridae/inmunología , Infecciones por Orthomyxoviridae/virología , Oxocinas/toxicidad , Administración Intranasal , Animales , Bronquiolitis Viral/inmunología , Bronquiolitis Viral/patología , Bronquiolitis Viral/virología , Citocinas/metabolismo , Susceptibilidad a Enfermedades , Floraciones de Algas Nocivas , Inmunidad Mucosa/efectos de los fármacos , Subtipo H3N2 del Virus de la Influenza A/inmunología , Subtipo H3N2 del Virus de la Influenza A/aislamiento & purificación , Pulmón/patología , Pulmón/virología , Masculino , Toxinas Marinas/administración & dosificación , Infecciones por Orthomyxoviridae/metabolismo , Infecciones por Orthomyxoviridae/patología , Oxocinas/administración & dosificación , Distribución Aleatoria , Ratas , Ratas Endogámicas F344 , Factores de Tiempo , Carga Viral
11.
Harmful Algae ; 10(2): 224-233, 2011 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-21218152

RESUMEN

This paper reviews the literature describing research performed over the past decade on the known and possible exposures and human health effects associated with Florida red tides. These harmful algal blooms are caused by the dinoflagellate, Karenia brevis, and similar organisms, all of which produce a suite of natural toxins known as brevetoxins. Florida red tide research has benefited from a consistently funded, long term research program, that has allowed an interdisciplinary team of researchers to focus their attention on this specific environmental issue-one that is critically important to Gulf of Mexico and other coastal communities. This long-term interdisciplinary approach has allowed the team to engage the local community, identify measures to protect public health, take emerging technologies into the field, forge advances in natural products chemistry, and develop a valuable pharmaceutical product. The Review includes a brief discussion of the Florida red tide organisms and their toxins, and then focuses on the effects of these toxins on animals and humans, including how these effects predict what we might expect to see in exposed people.

12.
J Nat Prod ; 73(4): 536-40, 2010 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-20218657

RESUMEN

Florida red tides occur as the result of blooms of the marine dinoflagellate Karenia brevis. K. brevis is known to produce several families of fused polyether ladder compounds. The most notable compounds are the brevetoxins, potent neurotoxins that activate mammalian sodium channels. Additional fused polyether ladder compounds produced by K. brevis include brevenal, brevisin, and hemibrevetoxin B, all with varying affinities for the same binding site on voltage-sensitive sodium channels. The structure elucidation and biological activity of two additional fused polyether ladder compounds containing seven fused ether rings will be described in this paper. Tamulamide A (MW = 638.30) and tamulamide B (MW = 624.29) were isolated from K. brevis cultures, and their structures elucidated using a combination of NMR spectroscopy and high-resolution mass spectrometry. Tamulamides A and B were both found to compete with tritiated brevetoxin-3 ([(3)H]-PbTx-3) for its binding site on rat brain synaptosomes. However, unlike the brevetoxins, tamulamides A and B showed no toxicity to fish at doses up to 200 nM and did not cause significant bronchoconstriction in sheep pulmonary assays.


Asunto(s)
Dinoflagelados/química , Éteres Cíclicos/aislamiento & purificación , Toxinas Marinas/aislamiento & purificación , Oxocinas/aislamiento & purificación , Compuestos Policíclicos/aislamiento & purificación , Animales , Ciprinodontiformes , Éteres Cíclicos/química , Biología Marina , Toxinas Marinas/química , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Oxocinas/química , Compuestos Policíclicos/química , Ratas , Ovinos
13.
J Nat Prod ; 73(6): 1177-9, 2010 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-20527743

RESUMEN

The discovery of brevisin, the first example of an "interrupted" polycyclic ether, obtained from the dinoflagellate Karenia brevis, posed some important questions regarding the mechanism of the cyclization process. Consequently, we have established absolute configurations of brevisin and its related metabolite brevisamide using a modified Mosher's esterification method. For brevisin, analysis was carried out on both the 31-monokis- and the 10,31-bis-MTPA esters. The results suggest that both metabolites, like other polyethers from K. brevis, result from polyepoxide precursors with uniform (S, S) configurations for all epoxides and provide further support for a universal stereochemical model for dinoflagellate polyether formation.


Asunto(s)
Alcaloides/química , Dinoflagelados/química , Ácidos Grasos Insaturados/química , Alcaloides/aislamiento & purificación , Alcaloides/metabolismo , Ciclización , Éteres Cíclicos , Ácidos Grasos Insaturados/aislamiento & purificación , Ácidos Grasos Insaturados/metabolismo , Estructura Molecular , Resonancia Magnética Nuclear Biomolecular , Compuestos Policíclicos , Piranos , Estereoisomerismo
14.
J Org Chem ; 74(3): 989-94, 2009 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-19123836

RESUMEN

Brevisin is an unprecedented polycyclic ether isolated from the dinoflagellate Karenia brevis, an organism well-known to produce complex polycyclic ethers. The structure of brevisin was determined by detailed analyses of MS and 2D NMR spectra and is remarkable in that it consists of two separate fused polyether ring assemblies linked by a methylene group. One of the polycyclic moieties contains a conjugated aldehyde side chain similar to that recently observed in other K. brevis metabolites, though the "interrupted" polyether structure of brevisin is novel and provides further insight into the biogenesis of such fused-ring polyether systems. On the basis of the unusual structure of brevisin, principles underlying the initiation of polyether assemblies are proposed. Brevisin was found to inhibit the binding of [(3)H]-PbTx-3 to its binding site on the voltage-sensitive sodium channels in rat brain synaptosomes.


Asunto(s)
Éteres Cíclicos/química , Compuestos Policíclicos/química , Polímeros/química , Animales , Dinoflagelados/química , Éteres Cíclicos/aislamiento & purificación , Compuestos Policíclicos/aislamiento & purificación
15.
PeerJ ; 6: e4533, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29632739

RESUMEN

BACKGROUND: The potent neurotoxins produced by the harmful algal bloom species Karenia brevis are activators of sodium voltage-gated channels (VGC) in animals, resulting in altered channel kinetics and membrane hyperexcitability. Recent biophysical and genomic evidence supports widespread presence of homologous sodium (Na+) and calcium (Ca2+) permeable VGCs in unicellular algae, including marine phytoplankton. We therefore hypothesized that VGCs of these phytoplankton may be an allelopathic target for waterborne neurotoxins produced by K. brevis blooms that could lead to ion channel dysfunction and disruption of signaling in a similar manner to animal Na+ VGCs. METHODS: We examined the interaction of brevetoxin-3 (PbTx-3), a K. brevis neurotoxin, with the Na+/Ca2+ VGC of the non-toxic diatom Odontella sinensis using electrophysiology. Single electrode current- and voltage- clamp recordings from O. sinensis in the presence of PbTx-3 were used to examine the toxin's effect on voltage gated Na+/Ca2+ currents. In silico analysis was used to identify the putative PbTx binding site in the diatoms. We identified Na+/Ca2+ VCG homologs from the transcriptomes and genomes of 12 diatoms, including three transcripts from O. sinensis and aligned them with site-5 of Na+ VGCs, previously identified as the PbTx binding site in animals. RESULTS: Up to 1 µM PbTx had no effect on diatom resting membrane potential or membrane excitability. The kinetics of fast inward Na+/Ca2+ currents that underlie diatom action potentials were also unaffected. However, the peak inward current was inhibited by 33%, delayed outward current was inhibited by 25%, and reversal potential of the currents shifted positive, indicating a change in permeability of the underlying channels. Sequence analysis showed a lack of conservation of the PbTx binding site in diatom VGC homologs, many of which share molecular features more similar to single-domain bacterial Na+/Ca2+ VGCs than the 4-domain eukaryote channels. DISCUSSION: Although membrane excitability and the kinetics of action potential currents were unaffected, the permeation of the channels underlying the diatom action potential was significantly altered in the presence of PbTx-3. However, at environmentally relevant concentrations the effects of PbTx- on diatom voltage activated currents and interference of cell signaling through this pathway may be limited. The relative insensitivity of phytoplankton VGCs may be due to divergence of site-5 (the putative PbTx binding site), and in some cases, such as O. sinensis, resistance to toxin effects may be because of evolutionary loss of the 4-domain eukaryote channel, while retaining a single domain bacterial-like VGC that can substitute in the generation of fast action potentials.

16.
PLoS One ; 11(4): e0153348, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27073998

RESUMEN

Ciguatera fish poisoning is an illness suffered by > 50,000 people yearly after consumption of fish containing ciguatoxins (CTXs). One of the current methodologies to detect ciguatoxins in fish is a radiolabeled receptor binding assay (RBA(R)). However, the license requirements and regulations pertaining to radioisotope utilization can limit the applicability of the RBA(R) in certain labs. A fluorescence based receptor binding assay (RBA(F)) was developed to provide an alternative method of screening fish samples for CTXs in facilities not certified to use radioisotopes. The new assay is based on competition binding between CTXs and fluorescently labeled brevetoxin-2 (BODIPY®-PbTx-2) for voltage-gated sodium channel receptors at site 5 instead of a radiolabeled brevetoxin. Responses were linear in fish tissues spiked from 0.1 to 1.0 ppb with Pacific ciguatoxin-3C (P-CTX-3C) with a detection limit of 0.075 ppb. Carribean ciguatoxins were confirmed in Caribbean fish by LC-MS/MS analysis of the regional biomarker (C-CTX-1). Fish (N = 61) of six different species were screened using the RBA(F). Results for corresponding samples analyzed using the neuroblastoma cell-based assay (CBA-N2a) correlated well (R2 = 0.71) with those of the RBA(F), given the low levels of CTX present in positive fish. Data analyses also showed the resulting toxicity levels of P-CTX-3C equivalents determined by CBA-N2a were consistently lower than the RBA(F) affinities expressed as % binding equivalents, indicating that a given amount of toxin bound to the site 5 receptors translates into corresponding lower cytotoxicity. Consequently, the RBA(F), which takes approximately two hours to perform, provides a generous estimate relative to the widely used CBA-N2a which requires 2.5 days to complete. Other RBA(F) advantages include the long-term (> 5 years) stability of the BODIPY®-PbTx-2 and having similar results as the commonly used RBA(R). The RBA(F) is cost-effective, allows high sample throughput, and is well-suited for routine CTX monitoring programs.


Asunto(s)
Intoxicación por Ciguatera/diagnóstico , Ciguatoxinas/aislamiento & purificación , Peces/metabolismo , Animales , Cromatografía Liquida , Unión Proteica , Ratas , Ratas Sprague-Dawley , Sinaptosomas/metabolismo , Espectrometría de Masas en Tándem
17.
Environ Health Perspect ; 113(5): 621-5, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15866774

RESUMEN

Symptoms consistent with inhalation toxicity have long been associated with Florida red tides, and various causal agents have been proposed. Research since 1981 has centered on a group of naturally occurring trans-fused cyclic polyether compounds called brevetoxins that are produced by a marine dinoflagellate known as Karenia brevis. Numerous individual brevetoxins have been identified from cultures as well as from natural bloom events. A spectrum of brevetoxin derivatives produced by chemical modification of the natural toxins has been prepared to examine the effects of functional group modification on physiologic activity. Certain structural features of natural and synthetic derivatives of brevetoxin appear to ascribe specific physiologic consequences to each toxin. Differential physiologic effects have been documented with many of the natural toxins and derivatives, reinforcing the hypothesis that metabolism or modification of toxin structures modulates both the specific toxicity (lethality on a per milligram basis) and potentially the molecular mechanism(s) of action. A series of naturally occurring fused-ring polyether compounds with fewer rings than brevetoxin, known as brevenals, exhibit antagonistic properties and counteract the effects of the brevetoxins in neuronal and pulmonary model systems. Taken together, the inhalation toxicity of Florida red tides would appear to depend on the amount of each toxin present, as well as on the spectrum of molecular activities elicited by each toxin. Toxicity in a bloom is diminished by the amount brevenal present.


Asunto(s)
Dinoflagelados/patogenicidad , Exposición por Inhalación , Toxinas Marinas/efectos adversos , Toxinas Marinas/toxicidad , Oxocinas/toxicidad , Enfermedades Respiratorias/etiología , Tiopental/análogos & derivados , Tiopental/toxicidad , Animales , Eutrofización , Florida , Humanos , Salud Pública , Medición de Riesgo , Relación Estructura-Actividad
18.
Environ Health Perspect ; 113(5): 632-7, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15866776

RESUMEN

During a Florida red tide, brevetoxins produced by the dinoflagellate Karenia brevis become aerosolized and cause airway symptoms in humans, especially in those with pre-existing airway disease (e.g., asthma). To understand these toxin-induced airway effects, we used sheep with airway hypersensitivity to Ascaris suum antigen as a surrogate for asthmatic patients and studied changes in pulmonary airflow resistance (R(L) after inhalation challenge with lysed cultures of K. brevis (crude brevetoxins). Studies were done without and with clinically available drugs to determine which might prevent/reverse these effects. Crude brevetoxins (20 breaths at 100 pg/mL; n = 5) increased R(L) 128 +/- 6% (mean +/- SE) over baseline. This bronchoconstriction was significantly reduced (% inhibition) after pretreatment with the glucocorticosteroid budesonide (49%), the beta(2) adrenergic agent albuterol (71%), the anticholinergic agent atropine (58%), and the histamine H1-antagonist diphenhydramine (47%). The protection afforded by atropine and diphenhydramine suggests that both cholinergic (vagal) and H1-mediated pathways contribute to the bronchoconstriction. The response to cutaneous toxin injection was also histamine mediated. Thus, the airway and skin data support the hypothesis that toxin activates mast cells in vivo. Albuterol given immediately after toxin challenge rapidly reversed the bronchoconstriction. Toxin inhalation increased airway kinins, and the response to inhaled toxin was enhanced after allergen challenge. Both factors could contribute to the increased sensitivity of asthmatic patients to toxin exposure. We conclude that K. brevis aerosols are potent airway constrictors. Clinically available drugs may be used to prevent or provide therapeutic relief for affected individuals.


Asunto(s)
Alérgenos/efectos adversos , Broncoconstricción/efectos de los fármacos , Dinoflagelados/patogenicidad , Exposición por Inhalación , Toxinas Marinas/toxicidad , Oxocinas/toxicidad , Resistencia de las Vías Respiratorias/efectos de los fármacos , Alérgenos/inmunología , Animales , Asma/etiología , Asma/fisiopatología , Eutrofización , Femenino , Ovinos
19.
Environ Health Perspect ; 113(5): 626-31, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-15866775

RESUMEN

Brevetoxins are potent neurotoxins produced by the marine dinoflagellate Karenia brevis. Exposure to brevetoxins may occur during a K. brevis red tide when the compounds become aerosolized by wind and surf. This study assessed possible adverse health effects associated with inhalation exposure to brevetoxin 3, one of the major brevetoxins produced by K. brevis and present in aerosols collected along beaches affected by red tide. Male F344 rats were exposed to brevetoxin 3 at 0, 37, and 237 microg/m3 by nose-only inhalation 2 hr/day, 5 days/week for up to 22 exposure days. Estimated deposited brevetoxin 3 doses were 0.9 and 5.8 microg/kg/day for the low- and high-dose groups, respectively. Body weights of the high-dose group were significantly below control values. There were no clinical signs of toxicity. Terminal body weights of both low- and high-dose-group rats were significantly below control values. Minimal alveolar macrophage hyperplasia was observed in three of six and six of six of the low- and high-dose groups, respectively. No histopathologic lesions were observed in the nose, brain, liver, or bone marrow of any group. Reticulocyte numbers in whole blood were significantly increased in the high-dose group, and mean corpuscular volume showed a significant decreasing trend with increasing exposure concentration. Humoral-mediated immunity was suppressed in brevetoxin-exposed rats as indicated by significant reduction in splenic plaque-forming cells in both low- and high-dose-group rats compared with controls. Results indicate that the immune system is the primary target for toxicity in rats after repeated inhalation exposure to relatively high concentrations of brevetoxins.


Asunto(s)
Formación de Anticuerpos/efectos de los fármacos , Dinoflagelados/patogenicidad , Exposición por Inhalación , Toxinas Marinas/toxicidad , Oxocinas/toxicidad , Aerosoles , Animales , Peso Corporal , Eutrofización , Masculino , Ratas , Ratas Endogámicas F344
20.
Environ Health Perspect ; 110(5): 465-70, 2002 May.
Artículo en Inglés | MEDLINE | ID: mdl-12003749

RESUMEN

Ten fish mortality events, involving primarily Atlantic menhaden, occurred from early July through September 2000 in several bays and creeks in Delaware, USA. Two events involved large mortalities estimated at 1-2.5 million fish in Bald Eagle Creek, Rehoboth Bay. Samples from Indian Inlet (Bethany Beach), open to the Atlantic, as well as from an enclosed area of massive fish kills at nearby Bald Eagle Creek and Torque Canal were collected and sent to our laboratory for analysis. Microscopic examination of samples from the fish kill site revealed the presence of a single-cell Raphidophyte alga Chattonella cf. verruculosa at a maximum density of 1.04 x 10(7) cells/L. Naturally occurring brevetoxins were also detected in the bloom samples. Besides the Chattonella species, no other known brevetoxin-producing phytoplankton were present. Chromatographic, immunochemical, and spectroscopic analyses confirmed the presence of brevetoxin PbTx-2, and PbTx-3 and -9 were confirmed by chromatographic and immunochemical analyses. This is the first confirmed report in the United States of brevetoxins associated with an indigenous bloom in temperate Atlantic estuarine waters and of C. cf. verruculosa as a resident toxic organism implicated in fish kills in this area. The bloom of Chattonella continued throughout September and eventually declined in October. By the end of October C. cf. verruculosa was no longer seen, nor was toxin measurable in the surface waters. The results affirm that to avoid deleterious impacts on human and ecosystem health, increased monitoring is needed for brevetoxins and organism(s) producing them, even in areas previously thought to be unaffected.


Asunto(s)
Eucariontes/química , Eutrofización , Peces , Toxinas Marinas/efectos adversos , Animales , Delaware , Monitoreo del Ambiente , Mortalidad , Neurotoxinas/efectos adversos , Estaciones del Año
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA