RESUMEN
Until recently, the general 5'-3' mRNA decay was placed in the cytosol after the mRNA was released from ribosomes. However, the discovery of an additional 5' to 3' pathway, the Co-Translational mRNA Decay (CTRD), changed this paradigm. Up to date, defining the real contribution of CTRD in the general mRNA turnover has been hardly possible as the enzyme involved in this pathway is also involved in cytosolic decay. Here we overcame this obstacle and created an Arabidopsis line specifically impaired for CTRD called XRN4ΔCTRD. Through a genome-wide analysis of mRNA decay rate in shoot and root, we tested the importance of CTRD in mRNA turnover. First, we observed that mRNAs tend to be more stable in root than in shoot. Next, using XRN4ΔCTRD line, we demonstrated that CTRD is a major determinant in mRNA turnover. In shoot, the absence of CTRD leads to the stabilization of thousands of transcripts while in root its absence is highly compensated resulting in faster decay rates. We demonstrated that this faster decay rate is partially due to the XRN4-dependent cytosolic decay. Finally, we correlated this organ-specific effect with XRN4ΔCTRD line phenotypes revealing a crucial role of CTRD in mRNA homeostasis and proper organ development.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Regulación de la Expresión Génica de las Plantas , Raíces de Plantas , Brotes de la Planta , Estabilidad del ARN , ARN Mensajero , Arabidopsis/genética , Arabidopsis/metabolismo , Raíces de Plantas/metabolismo , Raíces de Plantas/genética , Estabilidad del ARN/genética , ARN Mensajero/metabolismo , ARN Mensajero/genética , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Brotes de la Planta/metabolismo , Brotes de la Planta/genética , Genoma de Planta , Exorribonucleasas/metabolismo , Exorribonucleasas/genética , Biosíntesis de Proteínas , ARN de Planta/metabolismo , ARN de Planta/genética , Citosol/metabolismoRESUMEN
Increasing evidence suggests that posttranscriptional regulation is a key player in the transition between mature pollen and the progamic phase (from pollination to fertilization). Nonetheless, the actors in this messenger RNA (mRNA)-based gene expression reprogramming are poorly understood. We demonstrate that the evolutionarily conserved RNA-binding protein LARP6C is necessary for the transition from dry pollen to pollen tubes and the guided growth of pollen tubes towards the ovule in Arabidopsis thaliana. In dry pollen, LARP6C binds to transcripts encoding proteins that function in lipid synthesis and homeostasis, vesicular trafficking, and polarized cell growth. LARP6C also forms cytoplasmic granules that contain the poly(A) binding protein and possibly represent storage sites for translationally silent mRNAs. In pollen tubes, the loss of LARP6C negatively affects the quantities and distribution of storage lipids, as well as vesicular trafficking. In Nicotiana benthamiana leaf cells and in planta, analysis of reporter mRNAs designed from the LARP6C target MGD2 provided evidence that LARP6C can shift from a repressor to an activator of translation when the pollen grain enters the progamic phase. We propose that LARP6C orchestrates the timely posttranscriptional regulation of a subset of mRNAs in pollen during the transition from the quiescent to active state and along the progamic phase to promote male fertilization in plants.
Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Tubo Polínico/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Regiones no Traducidas 5' , Arabidopsis/citología , Arabidopsis/crecimiento & desarrollo , Sitios de Unión , Gránulos Citoplasmáticos/genética , Gránulos Citoplasmáticos/metabolismo , Regulación de la Expresión Génica de las Plantas , Lípidos/biosíntesis , Lípidos/genética , Plantas Modificadas Genéticamente , Tubo Polínico/citología , Tubo Polínico/crecimiento & desarrollo , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/metabolismo , Nicotiana/genéticaRESUMEN
The m6A epitranscriptomic mark is the most abundant and widespread internal RNA chemical modification, which through the control of RNA acts as an important factor of eukaryote reproduction, growth, morphogenesis and stress response. The main m6A readers constitute a super family of proteins with hundreds of members that share a so-called YTH RNA binding domain. The majority of YTH proteins carry no obvious additional domain except for an Intrinsically Disordered Region (IDR). In Arabidopsis thaliana IDRs are important for the functional specialization among the different YTH proteins, known as Evolutionarily Conserved C-Terminal region, ECT 1 to 12. Here by studying the ECT2 protein and using an in vitro biochemical characterization, we show that full-length ECT2 and its YTH domain alone have a distinct ability to bind m6A, conversely to previously characterized YTH readers. We identify peptide regions outside of ECT2 YTH domain, in the N-terminal IDR, that regulate its binding to m6A-methylated RNA. Furthermore, we show that the selectivity of ECT2 binding for m6A is enhanced by a high uridine content within its neighbouring sequence, where ECT2 N-terminal IDR is believed to contact the target RNA in vivo. Finally, we also identify small structural elements, located next to ECT2 YTH domain and conserved in a large set of YTH proteins, that enhance its binding to m6A-methylated RNA. We propose from these findings that some of these regulatory regions are not limited to ECT2 or YTH readers of flowering plants but may be widespread among eukaryotic YTH readers.
Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Unión Proteica , Proteínas de Unión al ARN , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/genética , Dominios Proteicos , ARN de Planta/metabolismo , ARN de Planta/química , ARN de Planta/genética , Adenosina/metabolismo , Secuencia de Aminoácidos , Metilación , Proteínas Intrínsecamente Desordenadas/metabolismo , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/genética , Sitios de Unión , Péptidos y Proteínas de Señalización IntracelularRESUMEN
RNA binding proteins, through control of mRNA fate and expression, are key players of organism development. The LARP family of RBPs sharing the La motif, are largely present in eukaryotes. They classify into five subfamilies which members acquired specific additional domains, including the RRM1 moiety which teams up with the La motif to form a versatile RNA binding unit. The LARP6 subfamily has had a peculiar history during plant evolution. While containing a single LARP6 in algae and non-vascular plants, they expanded and neofunctionalized into three subclusters in vascular plants. Studies from Arabidopsis thaliana, support that they acquired specific RNA binding properties and physiological roles. In particular LARP6C participates, through spatiotemporal control of translation, to male fertilization, a role seemingly conserved in maize. Interestingly, human LARP6 also acts in translation control and mRNA transport and similarly to LARP6C which is required for pollen tube guided elongation, is necessary to cell migration, through protrusion extension. This opens the possibility that some cellular and molecular functions of LARP6 were retained across eukaryote evolution. With their peculiar evolutionary history, plants provide a unique opportunity to uncover how La-module RNA binding properties evolved and identify species specific and basal roles of the LARP6 function. Deciphering of how LARP6, in particular LARP6C, acts at the molecular level, will foster novel knowledge on translation regulation and dynamics in changing cellular contexts. Considering the seemingly conserved function of LARP6C in male reproduction, it should fuel studies aimed at deriving crop species with improved seed yields.
Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión al ARN/química , Proteínas de Unión al ARN/metabolismo , Transducción de Señal/fisiología , Arabidopsis/metabolismo , Autoantígenos/metabolismo , Evolución Molecular , Fertilización/fisiología , Humanos , Unión Proteica , Dominios Proteicos , ARN Mensajero/metabolismo , Ribonucleoproteínas/metabolismo , Zea mays/metabolismo , Antígeno SS-BRESUMEN
RNA turnover is a general process that maintains appropriate mRNA abundance at the posttranscriptional level. Although long thought to be antagonistic to translation, discovery of the 5' to 3' cotranslational mRNA decay pathway demonstrated that both processes are intertwined. Cotranslational mRNA decay globally shapes the transcriptome in different organisms and in response to stress; however, the dynamics of this process during plant development is poorly understood. In this study, we used a multiomics approach to reveal the global landscape of cotranslational mRNA decay during Arabidopsis (Arabidopsis thaliana) seedling development. We demonstrated that cotranslational mRNA decay is regulated by developmental cues. Using the EXORIBONUCLEASE4 (XRN4) loss-of-function mutant, we showed that XRN4 poly(A+) mRNA targets are largely subject to cotranslational decay during plant development. As cotranslational mRNA decay is interconnected with translation, we also assessed its role in translation efficiency. We discovered that clusters of transcripts were specifically subjected to cotranslational decay in a developmental-dependent manner to modulate their translation efficiency. Our approach allowed the determination of a cotranslational decay efficiency that could be an alternative to other methods to assess transcript translation efficiency. Thus, our results demonstrate the prevalence of cotranslational mRNA decay in plant development and its role in translational control.
Asunto(s)
Arabidopsis/crecimiento & desarrollo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Biosíntesis de Proteínas/fisiología , Estabilidad del ARN/fisiología , ARN de Planta/fisiología , Variación Genética , Genotipo , Mutación , Estabilidad del ARN/genética , Plantones/genética , Plantones/crecimiento & desarrolloRESUMEN
Methylations at position N6 of internal adenosines (m6As) are the most abundant and widespread mRNA modifications. These modifications play crucial roles in reproduction, growth, and development by controlling gene expression patterns at the posttranscriptional level. Their function is decoded by readers that share the YTH domain, which forms a hydrophobic pocket that directly accommodates the m6A residues. While the physiological and molecular functions of YTH readers have been extensively studied in animals, little is known about plant readers, even though m6As are crucial for plant survival and development. Viridiplantae contains high numbers of YTH domain proteins. Here, we performed comprehensive evolutionary analysis of YTH domain proteins and demonstrated that they are highly likely to be actual readers with redundant as well as specific functions. We also show that the ECT2 protein from Arabidopsis thaliana binds to m6A-containing RNAs in vivo and that this property relies on the m6A binding pocket carried by its YTH domain. ECT2 is cytoplasmic and relocates to stress granules upon heat exposure, suggesting that it controls mRNA fate in the cytosol. Finally, we demonstrate that ECT2 acts to decode the m6A signal in the trichome and is required for their normal branching through controlling their ploidy levels.
Asunto(s)
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Tricomas/genética , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Unión ProteicaRESUMEN
ALBA DNA/RNA-binding proteins form an ancient family, which in eukaryotes diversified into two Rpp25-like and Rpp20-like subfamilies. In most studied model organisms, their function remains unclear, but they are usually associated with RNA metabolism, mRNA translatability and stress response. In plants, the enriched number of ALBA family members remains poorly understood. Here, we studied ALBA dynamics during reproductive development in Arabidopsis at the levels of gene expression and protein localization, both under standard conditions and following heat stress. In generative tissues, ALBA proteins showed the strongest signal in mature pollen where they localized predominantly in cytoplasmic foci, particularly in regions surrounding the vegetative nucleus and sperm cells. Finally, we demonstrated the involvement of two Rpp25-like subfamily members ALBA4 and ALBA6 in RNA metabolism in mature pollen supported by their co-localization with poly(A)-binding protein 3 (PABP3). Collectively, we demonstrated the engagement of ALBA proteins in male reproductive development and the heat stress response, highlighting the involvement of ALBA4 and ALBA6 in RNA metabolism, storage and/or translational control in pollen upon heat stress. Such dynamic re-localization of ALBA proteins in a controlled, developmentally and environmentally regulated manner, likely reflects not only their redundancy but also their possible functional diversification in plants.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/embriología , Polen/embriología , Proteínas de Unión al ARN/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Flores/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/genética , Respuesta al Choque Térmico/fisiología , Microscopía Confocal , Proteínas de Unión a Poli(A)/metabolismo , Regiones Promotoras Genéticas/genética , Proteínas de Unión al ARN/genética , Estrés Fisiológico/genéticaRESUMEN
Heat shock (HS) is known to have a profound impact on gene expression at different levels, such as inhibition of protein synthesis, in which HS blocks translation initiation and induces the sequestration of mRNAs into stress granules (SGs) or P-bodies for storage and/or decay. SGs prevent the degradation of the stored mRNAs, which can be reengaged into translation in the recovery period. However, little is known on the mRNAs stored during the stress, how these mRNAs are released from SGs afterward, and what the functional importance is of this process. In this work, we report that Arabidopsis HEAT SHOCK PROTEIN101 (HSP101) knockout mutant (hsp101) presented a defect in translation recovery and SG dissociation after HS Using RNA sequencing and RNA immunoprecipitation approaches, we show that mRNAs encoding ribosomal proteins (RPs) were preferentially stored during HS and that these mRNAs were released and translated in an HSP101-dependent manner during recovery. By 15N incorporation and polysome profile analyses, we observed that these released mRNAs contributed to the production of new ribosomes to enhance translation. We propose that, after HS, HSP101 is required for the efficient release of RP mRNAs from SGs resulting in a rapid restoration of the translation machinery by producing new RPs.
Asunto(s)
Respuesta al Choque Térmico/genética , Proteínas de Plantas/metabolismo , Proteínas Ribosómicas/genética , Factores de Transcripción/metabolismo , Gránulos Citoplasmáticos/metabolismo , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Mutación/genética , Polirribosomas/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Ribosómicas/metabolismo , Ribosomas/metabolismo , Transcripción GenéticaRESUMEN
The genetic alphabet consists of the four letters: C, A, G, and T in DNA and C,A,G, and U in RNA. Triplets of these four letters jointly encode 20 different amino acids out of which proteins of all organisms are built. This system is universal and is found in all kingdoms of life. However, bases in DNA and RNA can be chemically modified. In DNA, around 10 different modifications are known, and those have been studied intensively over the past 20 years. Scientific studies on DNA modifications and proteins that recognize them gave rise to the large field of epigenetic and epigenomic research. The outcome of this intense research field is the discovery that development, ageing, and stem-cell dependent regeneration but also several diseases including cancer are largely controlled by the epigenetic state of cells. Consequently, this research has already led to the first FDA approved drugs that exploit the gained knowledge to combat disease. In recent years, the ~150 modifications found in RNA have come to the focus of intense research. Here we provide a perspective on necessary and expected developments in the fast expanding area of RNA modifications, termed epitranscriptomics.
Asunto(s)
ADN de Neoplasias , Epigénesis Genética , Epigenómica/normas , Perfilación de la Expresión Génica/normas , Regulación Neoplásica de la Expresión Génica , Neoplasias , ARN Neoplásico , Transcriptoma , ADN de Neoplasias/genética , ADN de Neoplasias/metabolismo , Europa (Continente) , Perfilación de la Expresión Génica/métodos , Humanos , Neoplasias/genética , Neoplasias/metabolismo , ARN Neoplásico/genética , ARN Neoplásico/metabolismoRESUMEN
La-related protein 1 (LARP1) regulates the stability of many mRNAs. These include 5'TOPs, mTOR-kinase responsive mRNAs with pyrimidine-rich 5' UTRs, which encode ribosomal proteins and translation factors. We determined that the highly conserved LARP1-specific C-terminal DM15 region of human LARP1 directly binds a 5'TOP sequence. The crystal structure of this DM15 region refined to 1.86 Å resolution has three structurally related and evolutionarily conserved helix-turn-helix modules within each monomer. These motifs resemble HEAT repeats, ubiquitous helical protein-binding structures, but their sequences are inconsistent with consensus sequences of known HEAT modules, suggesting this structure has been repurposed for RNA interactions. A putative mTORC1-recognition sequence sits within a flexible loop C-terminal to these repeats. We also present modelling of pyrimidine-rich single-stranded RNA onto the highly conserved surface of the DM15 region. These studies lay the foundation necessary for proceeding toward a structural mechanism by which LARP1 links mTOR signalling to ribosome biogenesis.
Asunto(s)
Regiones no Traducidas 5' , Autoantígenos/química , Ribonucleoproteínas/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Autoantígenos/metabolismo , Secuencia Conservada , Secuencias Hélice-Giro-Hélice , Humanos , Modelos Moleculares , ARN Mensajero/metabolismo , Secuencias Repetitivas de Aminoácido , Ribonucleoproteínas/metabolismo , Electricidad Estática , Antígeno SS-BRESUMEN
The reprogramming of gene expression in heat stress is a key determinant to organism survival. Gene expression is downregulated through translation initiation inhibition and release of free mRNPs that are rapidly degraded or stored. In mammals, heat also triggers 5'-ribosome pausing preferentially on transcripts coding for HSC/HSP70 chaperone targets, but the impact of such phenomenon on mRNA fate remains unknown. Here, we provide evidence that, in Arabidopsis thaliana, heat provokes 5'-ribosome pausing leading to the XRN4-mediated 5'-directed decay of translating mRNAs. We also show that hindering HSC/HSP70 activity at 20°C recapitulates heat effects by inducing ribosome pausing and co-translational mRNA turnover. Strikingly, co-translational decay targets encode proteins with high HSC/HSP70 binding scores and hydrophobic N-termini, two characteristics that were previously observed for transcripts most prone to pausing in animals. This work suggests for the first time that stress-induced variation of translation elongation rate is an evolutionarily conserved process leading to the polysomal degradation of thousands of 'non-aberrant' mRNAs.
Asunto(s)
Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Calor , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Ribosomas/metabolismo , Estrés Fisiológico/genética , Arabidopsis/metabolismo , Regulación hacia Abajo , Exorribonucleasas/metabolismo , Proteínas HSP70 de Choque Térmico/metabolismo , Proteínas de Plantas/metabolismo , Polirribosomas/metabolismo , Estabilidad del ARNRESUMEN
In this work, we retrace the evolutionary history of plant double-stranded RNA binding proteins (DRBs), a group of non-catalytic factors containing one or more double-stranded RNA binding motif (dsRBM) that play important roles in small RNA biogenesis and functions. Using a phylogenetic approach, we show that multiple dsRBM DRBs are systematically composed of two different types of dsRBMs evolving under different constraints and likely fulfilling complementary functions. In vascular plants, four distinct clades of multiple dsRBM DRBs are always present with the exception of Brassicaceae species, that do not possess member of the newly identified clade we named DRB6. We also identified a second new and highly conserved DRB family (we named DRB7) whose members possess a single dsRBM that shows concerted evolution with the most C-terminal dsRBM domain of the Dicer-like 4 (DCL4) proteins. Using a BiFC approach, we observed that Arabidopsis thaliana DRB7.2 (AtDRB7.2) can directly interact with AtDRB4 but not with AtDCL4 and we provide evidence that both AtDRB7.2 and AtDRB4 participate in the epigenetically activated siRNAs pathway.
Asunto(s)
Evolución Biológica , Plantas/metabolismo , ARN Bicatenario/metabolismo , ARN de Planta/metabolismo , ARN Interferente Pequeño/metabolismo , Proteínas de Unión al ARN/metabolismo , Regulación de la Expresión Génica de las Plantas/fisiología , Filogenia , Plantas/clasificación , Plantas/genética , Unión Proteica , ARN de Planta/genética , ARN Interferente Pequeño/genética , Proteínas de Unión al ARN/genética , Especificidad de la EspecieRESUMEN
BACKGROUND: In plants and animals, a large number of double-stranded RNA binding proteins (DRBs) have been shown to act as non-catalytic cofactors of DICERs and to participate in the biogenesis of small RNAs involved in RNA silencing. We have previously shown that the loss of Arabidopsis thaliana's DRB2 protein results in a significant increase in the population of RNA polymerase IV (p4) dependent siRNAs, which are involved in the RNA-directed DNA methylation (RdDM) process. RESULTS: Surprisingly, despite this observation, we show in this work that DRB2 is part of a high molecular weight complex that does not involve RdDM actors but several chromatin regulator proteins, such as MSI4, PRMT4B and HDA19. We show that DRB2 can bind transposable element (TE) transcripts in vivo but that drb2 mutants do not have a significant variation in TE DNA methylation. CONCLUSION: We propose that DRB2 is part of a repressive epigenetic regulator complex involved in a negative feedback loop, adjusting epigenetic state to transcription level at TE loci, in parallel of the RdDM pathway. Loss of DRB2 would mainly result in an increased production of TE transcripts, readily converted in p4-siRNAs by the RdDM machinery.
Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Metilación de ADN/genética , Elementos Transponibles de ADN/genética , Regulación de la Expresión Génica de las Plantas , ARN de Planta/metabolismo , Proteínas de Unión al ARN/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Espectrometría de Masas , Modelos Biológicos , Peso Molecular , Unión Proteica , ARN Mensajero/genética , ARN Mensajero/metabolismo , ARN de Planta/genéticaRESUMEN
La-related proteins (LARPs) are largely uncharacterized factors, well conserved throughout evolution. Recent reports on the function of human LARP4 and LARP6 suggest that these proteins fulfill key functions in mRNA metabolism and/or translation. We report here a detailed evolutionary history of the LARP4 and 6 families in eukaryotes. Genes coding for LARP4 and 6 were duplicated in the common ancestor of the vertebrate lineage, but one LARP6 gene was subsequently lost in the common ancestor of the eutherian lineage. The LARP6 gene was also independently duplicated several times in the vascular plant lineage. We observed that vertebrate LARP4 and plant LARP6 duplication events were correlated with the acquisition of a PABP-interacting motif 2 (PAM2) and with a significant reorganization of their RNA-binding modules. Using isothermal titration calorimetry (ITC) and immunoprecipitation methods, we show that the two plant PAM2-containing LARP6s (LARP6b and c) can, indeed, interact with the major plant poly(A)-binding protein (PAB2), while the third plant LARP6 (LARP6a) is unable to do so. We also analyzed the RNA-binding properties and the subcellular localizations of the two types of plant LARP6 proteins and found that they display nonredundant characteristics. As a whole, our results support a model in which the acquisition by LARP4 and LARP6 of a PAM2 allowed their targeting to mRNA 3' UTRs and led to their neofunctionalization.
Asunto(s)
Autoantígenos/química , Autoantígenos/clasificación , Evolución Molecular , Proteínas de Unión a Poli(A)/química , Proteínas de Unión a Poli(A)/clasificación , Ribonucleoproteínas/química , Ribonucleoproteínas/clasificación , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/genética , Autoantígenos/genética , Secuencia Conservada/genética , Humanos , Modelos Genéticos , Modelos Moleculares , Filogenia , Proteínas de Unión a Poli(A)/genética , Ribonucleoproteínas/genética , Alineación de Secuencia , Antígeno SS-BRESUMEN
Degradation of mRNAs is usually initiated by deadenylation, the shortening of long poly(A) tails to oligo(A) tails of 12-15 As. Deadenylation leads to decapping and to subsequent 5' to 3' degradation by XRN proteins, or alternatively 3' to 5' degradation by the exosome. Decapping can also be induced by uridylation as shown for the non-polyadenylated histone mRNAs in humans and for several mRNAs in Schizosaccharomyces pombe and Aspergillus nidulans. Here we report a novel role for uridylation in preventing 3' trimming of oligoadenylated mRNAs in Arabidopsis. We show that oligo(A)-tailed mRNAs are uridylated by the cytosolic UTP:RNA uridylyltransferase URT1 and that URT1 has no major impact on mRNA degradation rates. However, in absence of uridylation, oligo(A) tails are trimmed, indicating that uridylation protects oligoadenylated mRNAs from 3' ribonucleolytic attacks. This conclusion is further supported by an increase in 3' truncated transcripts detected in urt1 mutants. We propose that preventing 3' trimming of oligo(A)-tailed mRNAs by uridylation participates in establishing the 5' to 3' directionality of mRNA degradation. Importantly, uridylation prevents 3' shortening of mRNAs associated with polysomes, suggesting that a key biological function of uridylation is to confer 5' to 3' polarity in case of co-translational mRNA decay.
Asunto(s)
Nucleótidos de Adenina/metabolismo , Proteínas de Arabidopsis/metabolismo , Oligorribonucleótidos/metabolismo , Procesamiento de Término de ARN 3' , ARN Nucleotidiltransferasas/metabolismo , ARN Mensajero/metabolismo , Uridina Monofosfato/metabolismo , Arabidopsis/enzimología , Proteínas de Arabidopsis/genética , Mutación , Polirribosomas/metabolismo , ARN Nucleotidiltransferasas/genética , Estabilidad del ARN , Uridina/metabolismoRESUMEN
The current agriculture main challenge is to maintain food production while facing multiple threats such as increasing world population, temperature increase, lack of agrochemicals due to health issues and uprising of weeds resistant to herbicides. Developing novel, alternative, and safe methods is hence of paramount importance. Here, we show that complementary peptides (cPEPs) from any gene can be designed to target specifically plant coding genes. External application of synthetic peptides increases the abundance of the targeted protein, leading to related phenotypes. Moreover, we provide evidence that cPEPs can be powerful tools in agronomy to improve plant traits, such as growth, resistance to pathogen or heat stress, without the needs of genetic approaches. Finally, by combining their activity they can also be used to reduce weed growth.
Asunto(s)
Agroquímicos , Control de Malezas , Agroquímicos/farmacología , Resistencia a los Herbicidas/genética , Malezas/genética , Péptidos , Productos Agrícolas/genéticaRESUMEN
Heat stress (HS) induces a cellular response leading to profound changes in gene expression. Here, we show that human YTHDC1, a reader of N6-methyladenosine (m6A) RNA modification, mostly associates to the chromatin fraction and that HS induces a redistribution of YTHDC1 across the genome, including to heat-induced heat shock protein (HSP) genes. YTHDC1 binding to m6A-modified HSP transcripts co-transcriptionally promotes expression of HSPs. In parallel, hundreds of the genes enriched in YTHDC1 during HS have their transcripts undergoing YTHDC1- and m6A-dependent intron retention. Later, YTHDC1 concentrates within nuclear stress bodies (nSBs) where it binds to m6A-modified SATIII non-coding RNAs, produced in an HSF1-dependent manner upon HS. These findings reveal that YTHDC1 plays a central role in a chromatin-associated m6A-based reprogramming of gene expression during HS. Furthermore, they support the model where the subsequent and temporary sequestration of YTHDC1 within nSBs calibrates the timing of this YTHDC1-dependent gene expression reprogramming.
Asunto(s)
Cromatina , Respuesta al Choque Térmico , Humanos , Respuesta al Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Expresión Génica , Factores de Empalme de ARN/metabolismo , Proteínas del Tejido Nervioso/metabolismoRESUMEN
The extremely well-conserved La motif (LAM), in synergy with the immediately following RNA recognition motif (RRM), allows direct binding of the (genuine) La autoantigen to RNA polymerase III primary transcripts. This motif is not only found on La homologs, but also on La-related proteins (LARPs) of unrelated function. LARPs are widely found amongst eukaryotes and, although poorly characterized, appear to be RNA-binding proteins fulfilling crucial cellular functions. We searched the fully sequenced genomes of 83 eukaryotic species scattered along the tree of life for the presence of LAM-containing proteins. We observed that these proteins are absent from archaea and present in all eukaryotes (except protists from the Plasmodium genus), strongly suggesting that the LAM is an ancestral motif that emerged early after the archaea-eukarya radiation. A complete evolutionary and structural analysis of these proteins resulted in their classification into five families: the genuine La homologs and four LARP families. Unexpectedly, in each family a conserved domain representing either a classical RRM or an RRM-like motif immediately follows the LAM of most proteins. An evolutionary analysis of the LAM-RRM/RRM-L regions shows that these motifs co-evolved and should be used as a single entity to define the functional region of interaction of LARPs with their substrates. We also found two extremely well conserved motifs, named LSA and DM15, shared by LARP6 and LARP1 family members, respectively. We suggest that members of the same family are functional homologs and/or share a common molecular mode of action on different RNA baits.
Asunto(s)
Autoantígenos/química , Proteínas de Unión al ARN/química , Ribonucleoproteínas/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Animales , Autoantígenos/genética , Autoantígenos/metabolismo , Humanos , Datos de Secuencia Molecular , Filogenia , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Ribonucleoproteínas/genética , Ribonucleoproteínas/metabolismo , Alineación de Secuencia , Antígeno SS-BRESUMEN
The recent development of high-throughput technologies based on RNA sequencing has allowed a better description of the role of post-transcriptional regulation in gene expression. In particular, the development of degradome approaches based on the capture of 5'monophosphate decay intermediates allows the discovery of a new decay pathway called co-translational mRNA decay. Thanks to these approaches, ribosome dynamics could now be revealed by analysis of 5'P reads accumulation. However, library preparation could be difficult to set-up for non-specialists. Here, we present a fast and efficient 5'P degradome library preparation for Arabidopsis samples. Our protocol was designed without commercial kit and gel purification and can be easily done in one working day. We demonstrated the robustness and the reproducibility of our protocol. Finally, we present the bioinformatic reads-outs necessary to assess library quality control.