Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Mol Ecol ; 27(23): 4775-4786, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30346079

RESUMEN

Thalassohaline ecosystems are hypersaline environments originating from seawater in which sodium chloride is the most abundant salt and the pH is alkaline. Studies focusing on microbial diversity in thalassohaline lakes are still scarce compared with those on athalassohaline lakes such as soda lakes that have no marine origin. In this work, we investigated multiple facets of bacterial, archaeal and eukaryotic diversity in the thalassohaline Lake Dziani Dzaha using a metabarcoding approach. We showed that bacterial and archaeal diversity were mainly affected by contrasting physicochemical conditions retrieved at different depths. While photosynthetic microorganisms were dominant in surface layers, chemotrophic phyla (Firmicutes or Bacteroidetes) and archaeal methanogens dominated deeper layers. In contrast, eukaryotic diversity was constant regardless of depth and was affected by seasonality. A detailed focus on eukaryotic communities showed that this constant diversity profile was the consequence of the high predominance of Picocystis salinarum, while nondominant eukaryotic groups displayed seasonal diversity turnover. Altogether, our results provided an extensive description of the diversity of the three domains of life in an unexplored extreme environment and showed clear differences in the responses of prokaryotic and eukaryotic communities to environmental conditions.


Asunto(s)
Archaea/clasificación , Bacterias/clasificación , Biodiversidad , Lagos/microbiología , Microbiología del Agua , Comoras , Eucariontes/clasificación , Ambientes Extremos , Fotosíntesis , Salinidad , Estaciones del Año , Análisis Espacio-Temporal
2.
Microb Ecol ; 71(2): 304-14, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26358721

RESUMEN

The importance of heterotrophic bacteria relative to phytoplankton in the uptake of ammonium and nitrate was studied in Mediterranean coastal waters (Thau Lagoon) during autumn, when the Mediterranean Sea received the greatest allochthonous nutrient loads. Specific inhibitors and size-fractionation methods were used in combination with isotopic (15)N tracers. NO3 (-) and NH4 (+) uptake was dominated by phytoplankton (60 % on average) during the study period, which included a flood event. Despite lower biomass specific NH4 (+) and NO3 uptake rates, free-living heterotrophic bacteria contributed significantly (>30 %) to total microbial NH4 (+) and NO3 (-) uptake rates in low chlorophyll waters. Under these conditions, heterotrophic bacteria may be responsible for more than 50 % of primary production, using very little freshly produced phytoplankton exudates. In low chlorophyll coastal waters as reported during the present 3-month study, the heterotrophic bacteria seemed to depend to a greater extent on allochthonous N and C substrates than on autochthonous substrates derived from phytoplankton.


Asunto(s)
Bacterias/metabolismo , Nitrógeno/metabolismo , Agua de Mar/microbiología , Bacterias/clasificación , Bacterias/genética , Biomasa , Región Mediterránea , Nitrógeno/análisis , Fitoplancton/clasificación , Fitoplancton/metabolismo , Estaciones del Año , Agua de Mar/análisis
3.
BMC Microbiol ; 12: 202, 2012 Sep 11.
Artículo en Inglés | MEDLINE | ID: mdl-22966751

RESUMEN

BACKGROUND: Small size eukaryotes play a fundamental role in the functioning of coastal ecosystems, however, the way in which these micro-organisms respond to combined effects of water temperature, UVB radiations (UVBR) and nutrient availability is still poorly investigated. RESULTS: We coupled molecular tools (18S rRNA gene sequencing and fingerprinting) with microscope-based identification and counting to experimentally investigate the short-term responses of small eukaryotes (<6 µm; from a coastal Mediterranean lagoon) to a warming treatment (+3°C) and UVB radiation increases (+20%) at two different nutrient levels. Interestingly, the increase in temperature resulted in higher pigmented eukaryotes abundances and in community structure changes clearly illustrated by molecular analyses. For most of the phylogenetic groups, some rearrangements occurred at the OTUs level even when their relative proportion (microscope counting) did not change significantly. Temperature explained almost 20% of the total variance of the small eukaryote community structure (while UVB explained only 8.4%). However, complex cumulative effects were detected. Some antagonistic or non additive effects were detected between temperature and nutrients, especially for Dinophyceae and Cryptophyceae. CONCLUSIONS: This multifactorial experiment highlights the potential impacts, over short time scales, of changing environmental factors on the structure of various functional groups like small primary producers, parasites and saprotrophs which, in response, can modify energy flow in the planktonic food webs.


Asunto(s)
Biodiversidad , Eucariontes/crecimiento & desarrollo , Eucariontes/efectos de la radiación , Rayos Ultravioleta , ADN Ribosómico/química , ADN Ribosómico/genética , Eucariontes/citología , Eucariontes/genética , Región Mediterránea , Microscopía , Datos de Secuencia Molecular , ARN Ribosómico 18S/genética , Agua de Mar/microbiología , Análisis de Secuencia de ADN , Temperatura
4.
Mar Pollut Bull ; 174: 113218, 2022 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-34952405

RESUMEN

Ecological baselines for the structure and functioning of ecosystems in the absence of human activity can provide essential information on their health status. The Glorieuses islands are located in the Western Indian Ocean (WIO) and can be considered as "pristine" ecosystems that have not been subjected to anthropogenic pressure. Their nutrient context and the microbial assemblages were assessed by determining the abundance of heterotrophic prokaryotes (archaea and bacteria), picocyanobacteria, picoeukaryotes, microphytoplankton and protozooplankton communities in five stations, during two contrasted periods (November 2015 and May 2016). Chlorophyll-a concentrations were always under 1 µg/L and associated to very low levels in orthophosphates, nitrate and dissolved organic carbon, revealing an ultra-oligotrophic status for the Glorieuses waters. Picocyanobacteria confirmed the ultra-oligotrophic status with a predominance of Synechococcus. Zeaxanthin associated with the presence of picocyanobacteria represented the major pigment in both surveys. Three indices of diversity (species richness, Shannon and Pielou indexes) from microscopy observations highlighted the difference of diversity in microphytoplankton between the surveys. A focus on a 16S metabarcoding approach showed a high dominance of picocyanobacteria, Alpha- and Gammaproteobacteria, regardless of station or period. Multivariate analyses (co-inertia analyses) revealed a strong variability of ecological conditions between the two periods, with (i) high nutrient concentrations and heterotrophic nanoflagellate abundance in November 2015, and (ii) high heterotrophic prokaryote and picoeukaryote abundance in May 2016. The impact of a category 5 tropical cyclone (Fantala) on the regional zone in April 2016 is also advanced to explain these contrasted situations. Relative importance of top-down factors between bacterial and heterotrophic nanoflagellates was observed in November 2015 with an active microbial food web. All the results indicate that three microbial indexes potentially can be considered to assess the ecological change in Glorieuses marine waters.


Asunto(s)
Microbiota , Synechococcus , Efectos Antropogénicos , Arrecifes de Coral , Materia Orgánica Disuelta , Humanos , Océano Índico , Plancton
5.
Microbiologyopen ; 11(2): e1278, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35478289

RESUMEN

Given the increasing eutrophication of water bodies in Africa due to increasing anthropogenic pressures, data are needed to better understand the responses of phytoplankton communities to these changes in tropical lakes. These ecosystems are used by local human populations for multiple purposes, including fish and drinking water production, potentially exposing these populations to health threats if, for example, an increase in toxic cyanobacterial blooms is associated with increasing eutrophication. To test the short-term response of the phytoplankton community to the addition of nutrients (phosphorus and nitrogen, alone or in combination) and Nile tilapia, we developed an in situ mesocosm experiment in a freshwater lagoon located near Abidjan (Ivory Coast). We found that phytoplankton growth (estimated by chlorophyll-a quantification) was highly stimulated when both nitrogen and phosphorus were added, while there was no clear evidence for such colimitation by these two nutrients when considering their concentrations in the lagoon. Phytoplankton growth was accompanied by significant changes in the diversity and composition of this community and did not lead to an increase in the proportions of cyanobacteria. However, the addition of fish to some mesocosms resulted in a drastic decrease in phytoplankton biomass and a dominance of chlorophytes in this community. Finally, these experiments showed that the addition of nitrogen, alone or combined with phosphorus, stimulated microcystin production by cyanobacteria. In addition, no evidence of microcystin accumulation in the fish was found. Taken together, these data allow us to discuss strategies for controlling cyanobacterial blooms in this tropical ecosystem.


Asunto(s)
Cianobacterias , Fitoplancton , Animales , Côte d'Ivoire , Ecosistema , Peces , Lagos , Microcistinas , Nitrógeno , Nutrientes , Fósforo
6.
Chemosphere ; 278: 130457, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34126687

RESUMEN

Bacteria and phytoplankton are key players in aquatic ecosystem functioning. Their interactions mediate carbon transfer through the trophic web. Chemical contamination can alter the function and diversity of phytoplankton and bacterioplankton, with important consequences for ecosystem functioning. The aim of the present study was to assess the impact of chemical contamination on the interactions between both biological compartments. Two contrasting marine coastal ecosystems, offshore waters and lagoon waters, were exposed to chemical contamination (artificial or produced from resuspension of contaminated sediment) in microcosms in four seasons characterized by distinct phytoplankton communities. Offshore waters were characterized by a complex phytoplankton-bacterioplankton network with a predominance of positive interactions between both compartments, especially with Haptophyta, Cryptophyta, and dinoflagellates. In contrast, for lagoon waters, the phytoplankton-bacterioplankton network was simpler with a prevalence of negative interactions with Ochrophyta, Cryptophyta, and flagellates. Contamination with an artificial mix of pesticides and trace metal elements resulted in a decrease in the number of interactions between phytoplankton and bacterioplankton, especially for offshore waters. Resuspension of contaminated sediment also altered the interactions between both compartments. The release of nutrients stored in the sediment allowed the growth of nutrient limited phytoplankton species with marked consequences for the interactions with bacterioplankton, with a predominance of positive interactions, whereas in lagoon waters, negative interactions were mostly observed. Overall, this study showed that chemical contamination and sediment resuspension resulted in significant effects on phytoplankton-bacterioplankton interactions that can alter the functioning of anthropogenic coastal ecosystems.


Asunto(s)
Fitoplancton , Oligoelementos , Bacterias , Ecosistema , Agua de Mar
7.
Mar Pollut Bull ; 168: 112478, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33993043

RESUMEN

Libreville, the largest city in Gabon, adversely impacts the Komo Estuary and the Akanda National Park aquatic ecosystems through discharge of domestic and industrial waste. Fecal Indicator Bacteria (FIB: Escherichia coli and fecal streptococci) were enumerated using culture-based methods in water from 40 sites between 2017 and 2019 including coastal outlets, mangrove channels, open bays and littoral rivers. Contamination levels were high in discharge waters from small urban rivers in Libreville agglomeration, frequently exceeding international safety guidelines, whereas FIB concentrations decreased downstream from the city in main mangrove channels. Littoral forest rivers were significantly impacted by fecal contamination despite the absence of settlements in the watersheds. Protected areas are not effective in avoiding FIB contamination, indicating inefficient waste management. Dedicated management policies should be implemented to reduce both the sanitary concern and global pollution, poorly assessed in a context of demographic increase in tropical littoral zones.


Asunto(s)
Ecosistema , Microbiología del Agua , África Occidental , Bacterias , Ciudades , Monitoreo del Ambiente , Heces , Gabón
8.
PLoS One ; 16(5): e0251065, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33956828

RESUMEN

The supply of drinking water is a vital challenge for the people who live on the African continent, as this continent is experiencing strong demographic growth and therefore increasing water demands. To meet these needs, surface water resources are becoming increasingly mobilized because underground resources are not always available or have already been overexploited. This situation is the case in the region of Abidjan in the Ivory Coast, where the drinking water deficit is a growing problem and it is therefore necessary to mobilize new water resources to ensure the supply of drinking water. Among the potential resources, local managers have identified a freshwater lagoon, Lagoon Aghien, That is in close proximity to the city of Abidjan. With the aim of enhancing knowledge on the ecological functioning of the lagoon and contributing to the assessment of its ability to provide drinking water, several physical and chemical parameters of the water and the phytoplankton community of the lagoon were monitored for 17 months (December 2016-April 2018) at six sampling stations. Our findings show that the lagoon is eutrophic, as evidenced by the high concentrations of total phosphorus (>140 µg L-1), nitrogen (1.36 mg L-1) and average chlorophyll-a (26 to 167 µg L-1) concentrations. The phytoplankton community in the lagoon is dominated by genera typical of eutrophic environments including mixotrophic genera such as Peridinium and by cyanobacteria such as Cylindrospermopsis/Raphidiopsis, Microcystis and Dolichospermum that can potentially produce cyanotoxins. The two rainfall peaks that occur in June and October appeared to be major events in terms of nutrient flows entering the lagoon, and the dynamics of these flows are complex. Significant differences were also found in the nutrient concentrations and to a lesser extent in the phytoplankton communities among the different stations, especially during the rainfall peaks. Overall, these results reveal that the quality of the lagoon's water is already severely degraded, and this degradation could increase in future years due to increasing urbanization in the watershed. These results therefore raise questions about the potential use of the lagoon as a source of drinking water if measures are not taken very quickly to protect this lagoon from increasing eutrophication and other pollution sources.


Asunto(s)
Ecología , Lagos , Clorofila A/análisis , Côte d'Ivoire , Agua Dulce , Lagos/química , Lagos/microbiología , Nutrientes/análisis , Fitoplancton , Estaciones del Año , Análisis Espacio-Temporal
9.
Protist ; 171(6): 125770, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33166717

RESUMEN

Dziani Dzaha is a hypersaline lake (Mayotte island), whose microbial community is dominated by photosynthetic microorganisms. Here, we describe two new free-living heteroloboseans. One belonging to the Pharyngomonas genus and the other, whose 18S rRNA gene sequence shares only 85% homology to its closest relatives Euplaesiobystra hypersalinica, was proposed as a new species of this genus being called Euplaesiobystra dzianiensis. Both strains were salt tolerant to 75‰ and grew between 25 and 37°C. Their distribution patterns varied seasonally and depended also on depth. Noticeably, both free-living amoebae isolates were able to graze on Arthrospira filaments, which are found within the same water layer. In conclusion, we document for the first time the presence and ecology of free-living amoebae in the thalassohaline lake Dziani Dzaha, and describe a new species of the Euplaesiobystra genus.


Asunto(s)
Amoeba/clasificación , Amoeba/citología , Lagos/parasitología , Amoeba/genética , Lagos/química , ARN Ribosómico 18S/genética , Tolerancia a la Sal/fisiología , Estaciones del Año , Especificidad de la Especie
10.
Chemosphere ; 257: 127165, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32480088

RESUMEN

Phytoplankton and bacterioplankton are the key components of the organic matter cycle in aquatic ecosystems, and their interactions can impact the transfer of carbon and ecosystem functioning. The aim of this work was to assess the consequences of chemical contamination on the coupling between phytoplankton and bacterioplankton in two contrasting marine coastal ecosystems: lagoon waters and offshore waters. Bacterial carbon demand was sustained by primary carbon production in the offshore situation, suggesting a tight coupling between both compartments. In contrast, in lagoon waters, due to a higher nutrient and organic matter availability, bacteria could rely on allochthonous carbon sources to sustain their carbon requirements, decreasing so the coupling between both compartments. Exposure to chemical contaminants, pesticides and metal trace elements, resulted in a significant inhibition of the metabolic activities (primary production and bacterial carbon demand) involved in the carbon cycle, especially in offshore waters during spring and fall, inducing a significant decrease of the coupling between primary producers and heterotrophs. This coupling loss was even more evident upon sediment resuspension for both ecosystems due to the important release of nutrients and organic matter. Resulting enrichment alleviated the toxic effects of contaminants as indicated by the stimulation of phytoplankton biomass and carbon production, and modified the composition of the phytoplankton community, impacting so the interactions between phytoplankton and bacterioplankton.


Asunto(s)
Fitoplancton/fisiología , Contaminantes Químicos del Agua/toxicidad , Bacterias/metabolismo , Biomasa , Carbono/metabolismo , Ecosistema , Plaguicidas/metabolismo , Estaciones del Año , Agua de Mar/química , Oligoelementos/metabolismo
11.
Environ Microbiol ; 11(9): 2339-50, 2009 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-19508336

RESUMEN

We used a partial 16S rRNA sequencing approach to compare the structure and composition of the bacterial communities in three large, deep subalpine lakes in France with those of communities in six shallow tropical reservoirs in Burkina Faso. Despite the very different characteristics of these ecosystems, we found that their bacterial communities share the same composition in regard to the relative proportions of the different phyla, suggesting that freshwater environmental conditions lead to convergence in this composition. In the same way, we found no significant difference in the richness and diversity of the bacterial communities in France and Burkina Faso. We defined core and satellite operational taxonomic units (OTUs) (sequences sharing at least 98% identity) on the basis of their abundance and their geographical distribution. The core OTUs were found either ubiquitously or only in temperate or tropical and subtropical areas, and they contained more than 70% of all the sequences retrieved in this study. In contrast, satellite OTUs were characterized by having a more restricted geographical distribution and by lower abundance. Finally, the bacterial community composition of these freshwater ecosystems in France and Burkina Faso was markedly different, showing that the history of these ecosystems and regional environmental parameters have a greater impact on the relative abundances of the different OTUs in each bacterial community than the local environmental conditions.


Asunto(s)
Bacterias/clasificación , Agua Dulce/microbiología , Biodiversidad , Burkina Faso , Francia , Geografía , Filogenia , ARN Ribosómico 16S/análisis , Temperatura , Clima Tropical
12.
Appl Environ Microbiol ; 75(10): 3304-13, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19346359

RESUMEN

The bivalve Codakia orbicularis, hosting sulfur-oxidizing gill endosymbionts, was starved (in artificial seawater filtered through a 0.22-mum-pore-size membrane) for a long-term experiment (4 months). The effects of starvation were observed using transmission electron microscopy, fluorescence in situ hybridization and catalyzed reporter deposition (CARD-FISH), and flow cytometry to monitor the anatomical and physiological modifications in the gill organization of the host and in the symbiotic population housed in bacteriocytes. The abundance of the symbiotic population decreased through starvation, with a loss of one-third of the bacterial population each month, as shown by CARD-FISH. At the same time, flow cytometry revealed significant changes in the physiology of symbiotic cells, with a decrease in cell size and modifications to the nucleic acid content, while most of the symbionts maintained a high respiratory activity (measured using the 5-cyano-2,3-ditolyl tetrazolium chloride method). Progressively, the number of symbiont subpopulations was reduced, and the subsequent multigenomic state, characteristic of this symbiont in freshly collected clams, turned into one and five equivalent genome copies for the two remaining subpopulations after 3 months. Concomitant structural modifications appeared in the gill organization. Lysosymes became visible in the bacteriocytes, while large symbionts disappeared, and bacteriocytes were gradually replaced by granule cells throughout the entire lateral zone. Those data suggested that host survival under these starvation conditions was linked to symbiont digestion as the main nutritional source.


Asunto(s)
Bacterias/crecimiento & desarrollo , Bivalvos/microbiología , Branquias/microbiología , Branquias/ultraestructura , Inanición , Animales , Bacterias/metabolismo , Recuento de Colonia Microbiana , Microscopía Electrónica de Transmisión
13.
Arch Environ Contam Toxicol ; 56(1): 39-51, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18427708

RESUMEN

This study focused on the effects of two pesticides, paraquat (herbicide) and deltamethrin (insecticide), which are two common molecules used intensively in Burkina Faso. Natural bacterial populations, phytoplankton cultures (one cyanobacterium, Cylindrospermopsis raciborskii, and one chlorophycea, Monoraphidium sp.), and two species of zooplankton (Diaphanosoma excisum and Moina micrura) were isolated from aquatic communities and were used as biological targets in the experimental protocols. Paraquat was moderately toxic to bacteria and phytoplankton, whereas deltamethrin was significantly toxic only to the zooplankton species. Paradoxically, the chlorophycea Monoraphidium sp. exhibited a significant increase of in vitro fluorescence after 48 h at the highest doses. Preliminary tests were also performed from natural water extract of the main drinking water supply of the country (Loumbila Reservoir) by using solid-phase extraction. Obviously, the natural extract proved to be toxic to the same biological targets. Despite the absence of any determination of pesticides in the natural extract, the question of contamination and toxicity of these waters affects concerns about the safety of water supply and the effect of human pressure on the dynamics of planktonic communities of freshwater reservoirs in arid regions of western Africa.


Asunto(s)
Nitrilos/toxicidad , Paraquat/toxicidad , Plaguicidas/toxicidad , Fitoplancton/efectos de los fármacos , Piretrinas/toxicidad , Contaminantes Químicos del Agua/toxicidad , Abastecimiento de Agua/análisis , Zooplancton/efectos de los fármacos , África Occidental , Animales , Monitoreo del Ambiente/métodos , Fitoplancton/crecimiento & desarrollo , Zooplancton/crecimiento & desarrollo
14.
Harmful Algae ; 73: 58-71, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29602507

RESUMEN

Phylogenetic relationships among heterocytous genera (the Nostocales order) have been profoundly modified since the use of polyphasic approaches that include molecular data. There is nonetheless still ample scope for improving phylogenetic delineations of genera with broad ecological distributions, particularly by integrating specimens from specific or up-to-now poorly sampled habitats. In this context, we studied 36 new isolates belonging to Chrysosporum, Dolichospermum, Anabaena, Anabaenopsis, and Cylindrospermopsis from freshwater ecosystems of Burkina-Faso, Senegal, and Mayotte Island. Studying strains from these habitats is of particular interest as we suspected different range of salt variations during underwent periods of drought in small ponds and lakes. Such salt variation may cause different adaptation to salinity. We then undertook a polyphasic approach, combining molecular phylogenies, morphological analyses, and physiological measurements of tolerance to salinity. Molecular phylogenies of 117 Nostocales sequences showed that the 36 studied strains were distributed in seven lineages: Dolichospermum, Chrysosporum, Cylindrospermopsis/Raphidiopsis, Anabaenopsis, Anabaena sphaerica var tenuis/Sphaerospermopsis, and two independent Anabaena sphaerica lineages. Physiological data were congruent with molecular results supporting the separation into seven lineages. In an evolutionary context, salinity tolerance can be used as an integrative marker to reinforce the delineation of some cyanobacterial lineages. The history of this physiological trait contributes to a better understanding of processes leading to the divergence of cyanobacteria. In this study, most of the cyanobacterial strains isolated from freshwater environments were salt-tolerant, thus suggesting this trait constituted an ancestral trait of the heterocytous cyanobacteria and that it was probably lost two times secondarily and independently in the ancestor of Dolichospermum and of Cylindrospermopsis.


Asunto(s)
Cianobacterias/efectos de los fármacos , Cianobacterias/genética , Agua Dulce/microbiología , Filogenia , Tolerancia a la Sal , Secuencia de Bases , Agua Dulce/química , ARN Bacteriano , ARN Ribosómico 16S/genética , Cloruro de Sodio/química , Cloruro de Sodio/toxicidad
15.
PLoS One ; 12(1): e0168879, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28045976

RESUMEN

This study describes, for the first time, the water chemistry and microbial diversity in Dziani Dzaha, a tropical crater lake located on Mayotte Island (Comoros archipelago, Western Indian Ocean). The lake water had a high level of dissolved matter and high alkalinity (10.6-14.5 g L-1 eq. CO32-, i.e. 160-220 mM compare to around 2-2.5 in seawater), with salinity up to 52 psu, 1.5 higher than seawater. Hierarchical clustering discriminated Dziani Dzaha water from other alkaline, saline lakes, highlighting its thalassohaline nature. The phytoplankton biomass was very high, with a total chlorophyll a concentration of 524 to 875 µg chl a L-1 depending on the survey, homogeneously distributed from surface to bottom (4 m). Throughout the whole water column the photosynthetic biomass was dominated (>97% of total biovolume) by the filamentous cyanobacteria Arthrospira sp. with a straight morphotype. In situ daily photosynthetic oxygen production ranged from 17.3 to 22.2 g O2 m-2 d-1, consistent with experimental production / irradiance measurements and modeling. Heterotrophic bacterioplankton was extremely abundant, with cell densities up to 1.5 108 cells mL-1 in the whole water column. Isolation and culture of 59 Eubacteria strains revealed the prevalence of alkaliphilic and halophilic organisms together with taxa unknown to date, based on 16S rRNA gene analysis. A single cloning-sequencing approach using archaeal 16S rDNA gene primers unveiled the presence of diverse extremophilic Euryarchaeota. The water chemistry of Dziani Dzaha Lake supports the hypothesis that it was derived from seawater and strongly modified by geological conditions and microbial activities that increased the alkalinity. Dziani Dzaha has a unique consortium of cyanobacteria, phytoplankton, heterotrophic Eubacteria and Archaea, with very few unicellular protozoa, that will deserve further deep analysis to unravel its uncommon diversity. A single taxon, belonging to the genus Arthrospira, was found responsible for almost all photosynthetic primary production.


Asunto(s)
Biodiversidad , Cianobacterias , Lagos/microbiología , Microbiología del Agua , Biomasa , Carbono/química , Clorofila/metabolismo , Clorofila A , Análisis por Conglomerados , Comoras , Geografía , Concentración de Iones de Hidrógeno , Islas , Modelos Estadísticos , Nitrógeno/química , Oxígeno/análisis , Oxígeno/química , Fotosíntesis , Fitoplancton , Análisis de Componente Principal , ARN Ribosómico 16S/metabolismo , Temperatura
16.
FEMS Microbiol Ecol ; 57(3): 355-66, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16907750

RESUMEN

Cylindrospermopsis raciborskii is a toxic bloom-forming cyanobacterium that occurs at tropical and temperate latitudes. Despite several reports from Africa, no data were previously available about its dynamics or toxic potential there. We therefore carried out a 1-year survey of the dynamics of C. raciborskii in the main water reservoir in Senegal, Lake Guiers. Cylindrospermopsis raciborskii never formed a bloom in this lake during the period studied, but was dominant during the dry season. The only observed bloom-forming species was a diatom, Fragilaria sp., which displayed a seasonal pattern contrary to that exhibited by C. raciborskii. Principal component analysis applied to environmental and phytoplankton data showed that high C. raciborskii biomasses were mainly related to high temperature and water column stability. Tests for C. raciborskii species-related toxicity and/or toxin synthesis were performed on 21 isolated clones. All the strains isolated tested negative in mouse toxicity bioassays, toxin analysis (MS/MS) and tests for known cylindrospermopsin genes (ps, pks). The limited number of isolates studied, and the occurrence of toxic and nontoxic clones in natural cyanobacterial populations, mean that we cannot conclude that there is no C. raciborskii-associated health risk in this drinking water reservoir.


Asunto(s)
Toxinas Bacterianas/metabolismo , Cylindrospermopsis/crecimiento & desarrollo , Fitoplancton/crecimiento & desarrollo , Clorofila/metabolismo , Clorofila A , Cylindrospermopsis/metabolismo , Ambiente , Agua Dulce , Humanos , Fitoplancton/metabolismo , Estaciones del Año , Senegal , Microbiología del Agua , Abastecimiento de Agua
17.
Mar Environ Res ; 116: 18-31, 2016 May.
Artículo en Inglés | MEDLINE | ID: mdl-26970685

RESUMEN

Coral reef and atoll lagoons are among the most diversified marine ecosystems but also the most affected by the combined effects of climate change and human activities. The Iles Eparses (Scattered Islands) in the Western Indian Ocean have been little affected by human pressure and can be considered to be "pristine" ecosystems. Metazooplankton plays a major role in the functioning and productivity of aquatic ecosystems, and this study was undertaken: (i) to determine the spatial abundance, distribution and species composition of metazooplankton, (ii) to assess the effect of metazooplankton grazing on pico- and nanophytoplankton and (iii) to analyze the trophic positions of metazooplankton by using the stable isotope signatures of a wide variety of taxa and particulate organic matter from the Iles Eparses and Mayotte. Tromelin Island (which is not located in the Mozambique Channel) had the lowest metazooplankton abundance with no cyanobacteria Trichodesmium spp. or mollusks (pteropods) presence, and with δ(15)N signatures of organisms that were higher than for the islands in the Mozambique Channel. Trichodesmium spp. was found in the Mozambique Channel and the plankton food web was probably based preferentially on these cyanobacteria with lower δ(15)N signatures indicating direct or indirect trophic transfer of diazotrophic nitrogen to metazooplankton. Three of the islands were distinct: Europa had the highest proportion of copepods, with oithonids being dominant, which is typical of rich mangrove systems, while Juan de Nova and Mayotte seemed to be the sites most affected by human activity with a high abundance of appendicularians and distinct particulate organic matter ∂(13)C signatures. Grazing experiments showed that food could be a limiting factor for metazooplankton in the Iles Eparses. However, the effect of metazooplankton grazing on phytoplankton appeared to be very low (0.01-2.32% of the total phytoplankton per day).


Asunto(s)
Cadena Alimentaria , Plancton/fisiología , Zooplancton/fisiología , Animales , Océano Índico , Islas
18.
Chemosphere ; 144: 1060-73, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26451655

RESUMEN

Contamination of coastal environments is often due to a complex mixture of pollutants, sometimes in trace levels, that may have significant effects on diversity and function of organisms. The aim of this study was to evaluate the short-term dynamics of bacterioplankton exposed to natural and artificial mixtures of contaminants. Bacterial communities from a southwestern Mediterranean ecosystem, lagoon and the bay (offshore) of Bizerte were exposed to i) elutriate from resuspension of contaminated sediment, and ii) an artificial mixture of metals and herbicides mimicking the contamination observed during sediment resuspension. Elutriate incubation as well as artificial spiking induced strong enrichments in nutrients (up to 18 times), metals (up to six times) and herbicides (up to 20 times) relative to the in situ concentrations in the offshore station, whereas the increases in contaminants were less marked in the lagoon station. In the offshore waters, the artificial mixture of pollutants provoked a strong inhibition of bacterial abundance, production and respiration and significant modifications of the potential functional diversity of bacterioplankton with a strong decrease of the carbohydrate utilization. In contrast, incubation with elutriate resulted in a stimulation of bacterial activities and abundances, suggesting that the toxic effects of pollutants were modified by the increase in nutrient and DOM concentrations due to the sediment resuspension. The effects of elutriate and the artificial mixture of pollutants on bacterial dynamics and the functional diversity were less marked in the lagoon waters, than in offshore waters, suggesting a relative tolerance of lagoon bacteria against contaminants.


Asunto(s)
Bacterias/efectos de los fármacos , Ecosistema , Monitoreo del Ambiente/métodos , Plancton/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Bacterias/crecimiento & desarrollo , Biodiversidad , Cinética , Mar Mediterráneo , Plancton/crecimiento & desarrollo , Agua de Mar/química , Agua de Mar/microbiología , Contaminantes Químicos del Agua/análisis
19.
Environ Sci Pollut Res Int ; 22(18): 13638-53, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25408076

RESUMEN

Spatial increases and temporal shifts in outbreaks of gelatinous plankton have been observed over the past several decades in many estuarine and coastal ecosystems. The effects of these blooms on marine ecosystem functioning and particularly on the dynamics of the heterotrophic bacteria are still unclear. The response of the bacterial community from a Mediterranean coastal lagoon to the addition of dissolved organic matter (DOM) from the jellyfish Aurelia aurita, corresponding to an enrichment of dissolved organic carbon (DOC) by 1.4, was assessed for 22 days in microcosms (8 l). The high bioavailability of this material led to (i) a rapid mineralization of the DOC and dissolved organic nitrogen from the jellyfish and (ii) the accumulation of high concentrations of ammonium and orthophosphate in the water column. DOM from jellyfish greatly stimulated heterotrophic prokaryotic production and respiration rates during the first 2 days; then, these activities showed a continuous decay until reaching those measured in the control microcosms (lagoon water only) at the end of the experiment. Bacterial growth efficiency remained below 20%, indicating that most of the DOM was respired and a minor part was channeled to biomass production. Changes in bacterial diversity were assessed by tag pyrosequencing of partial bacterial 16S rRNA genes, DNA fingerprints, and a cultivation approach. While bacterial diversity in control microcosms showed little changes during the experiment, the addition of DOM from the jellyfish induced a rapid growth of Pseudoalteromonas and Vibrio species that were isolated. After 9 days, the bacterial community was dominated by Bacteroidetes, which appeared more adapted to metabolize high-molecular-weight DOM. At the end of the experiment, the bacterial community shifted toward a higher proportion of Alphaproteobacteria. Resilience of the bacterial community after the addition of DOM from the jellyfish was higher for metabolic functions than diversity, suggesting that jellyfish blooms can induce durable changes in the bacterial community structure in coastal lagoons.


Asunto(s)
Microbiología del Agua , Alphaproteobacteria/genética , Alphaproteobacteria/crecimiento & desarrollo , Alphaproteobacteria/metabolismo , Animales , Ecosistema , Mar Mediterráneo , Nitratos/química , Nitrógeno/metabolismo , Filogenia , Pseudoalteromonas/genética , Pseudoalteromonas/crecimiento & desarrollo , Pseudoalteromonas/metabolismo , ARN Ribosómico 16S/genética , Escifozoos/química , Escifozoos/microbiología , Agua de Mar/microbiología , Soluciones , Vibrio/genética , Vibrio/crecimiento & desarrollo , Vibrio/metabolismo
20.
FEMS Microbiol Ecol ; 87(3): 757-69, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24741704

RESUMEN

The effects of grazing pressure and inorganic nutrient availability on the direct carbon transfer from freshly produced phytoplankton exudates to heterotrophic bacteria biomass production were studied in Mediterranean coastal waters. The short-term incorporation of ¹³C (H¹³CO3) in phytoplankton and bacterial lipid biomarkers was measured as well as the total bacterial carbon production (BP), viral lysis and the microbial community structure under three experimental conditions: (1) High inorganic Nutrient and High Grazing (HN + HG), (2) High inorganic Nutrient and Low Grazing (HN + LG) and (3) under natural in situ conditions with Low inorganic Nutrient and High Grazing (LN + HG) during spring. Under phytoplankton bloom conditions (HN + LG), the bacterial use of freshly produced phytoplankton exudates as a source of carbon, estimated from ¹³C enrichment of bacterial lipids, contributed more than half of the total bacterial production. However, under conditions of high grazing pressure on phytoplankton with or without the addition of inorganic nutrients (HN + HG and LN + HG), the ¹³C enrichment of bacterial lipids was low compared with the high total bacterial production. BP therefore seems to depend mainly on freshly produced phytoplankton exudates during the early phase of phytoplankton bloom period. However, BP seems mainly relying on recycled carbon from viral lysis and predators under high grazing pressure.


Asunto(s)
Bacterias/metabolismo , Carbono/metabolismo , Procesos Heterotróficos , Fitoplancton/crecimiento & desarrollo , Agua de Mar/microbiología , Biomasa , Isótopos de Carbono/análisis , Cadena Alimentaria , Francia , Lípidos/análisis , Mar Mediterráneo , Fitoplancton/química , Estaciones del Año , Agua de Mar/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA