Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Circ Res ; 119(3): 450-62, 2016 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-27245171

RESUMEN

RATIONALE: Blood flow-induced shear stress controls endothelial cell (EC) physiology during atherosclerosis via transcriptional mechanisms that are incompletely understood. The mechanosensitive transcription factor TWIST is expressed during embryogenesis, but its role in EC responses to shear stress and focal atherosclerosis is unknown. OBJECTIVE: To investigate whether TWIST regulates endothelial responses to shear stress during vascular dysfunction and atherosclerosis and compare TWIST function in vascular development and disease. METHODS AND RESULTS: The expression and function of TWIST1 was studied in EC in both developing vasculature and during the initiation of atherosclerosis. In zebrafish, twist was expressed in early embryonic vasculature where it promoted angiogenesis by inducing EC proliferation and migration. In adult porcine and murine arteries, TWIST1 was expressed preferentially at low shear stress regions as evidenced by quantitative polymerase chain reaction and en face staining. Moreover, studies of experimental murine carotid arteries and cultured EC revealed that TWIST1 was induced by low shear stress via a GATA4-dependent transcriptional mechanism. Gene silencing in cultured EC and EC-specific genetic deletion in mice demonstrated that TWIST1 promoted atherosclerosis by inducing inflammation and enhancing EC proliferation associated with vascular leakiness. CONCLUSIONS: TWIST expression promotes developmental angiogenesis by inducing EC proliferation and migration. In addition to its role in development, TWIST is expressed preferentially at low shear stress regions of adult arteries where it promotes atherosclerosis by inducing EC proliferation and inflammation. Thus, pleiotropic functions of TWIST control vascular disease and development.


Asunto(s)
Aterosclerosis/metabolismo , Velocidad del Flujo Sanguíneo/fisiología , Endotelio Vascular/metabolismo , Proteínas Nucleares/biosíntesis , Proteína 1 Relacionada con Twist/biosíntesis , Animales , Aterosclerosis/patología , Movimiento Celular/fisiología , Proliferación Celular/fisiología , Células Cultivadas , Células Endoteliales/metabolismo , Células Endoteliales/patología , Endotelio Vascular/patología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Masculino , Ratones , Ratones Noqueados , Ratones Transgénicos , Porcinos , Pez Cebra
2.
Cardiovasc Res ; 118(2): 638-653, 2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-33599243

RESUMEN

AIMS: Pathological arterial remodelling including neointimal hyperplasia and atherosclerosis is the main underlying cause for occluding arterial diseases. Cezanne is a novel deubiquitinating enzyme, functioning as a NF-кB negative regulator, and plays a key role in renal inflammatory response and kidney injury induced by ischaemia. Here we attempted to examine its pathological role in vascular smooth muscle cell (VSMC) pathology and arterial remodelling. METHODS AND RESULTS: Cezanne expression levels were consistently induced by various atherogenic stimuli in VSMCs, and in remodelled arteries upon injury. Functionally, VSMCs over-expressing wild-type Cezanne, but not the mutated catalytically-inactive Cezanne (C209S), had an increased proliferative ability and mobility, while the opposite was observed in VSMCs with Cezanne knockdown. Surprisingly, we observed no significant effects of Cezanne on VSMC apoptosis, NF-κB signalling, or inflammation. RNA-sequencing and biochemical studies showed that Cezanne drives VSMC proliferation by regulating CCN family member 1 (CCN1) by targeting ß-catenin for deubiquitination. Importantly, local correction of Cezanne expression in the injured arteries greatly decreased VSMC proliferation, and prevented arterial inward remodelling. Interestingly, global Cezanne gene deletion in mice led to smaller atherosclerotic plaques, but with a lower level of plaque stability. Translating, we observed a similar role for Cezanne in human VSMCs, and higher expression levels of Cezanne in human atherosclerotic lesions. CONCLUSION: Cezanne is a key regulator of VSMC proliferation and migration in pathological arterial remodelling. Our findings have important implications for therapeutic targeting Cezanne signalling and VSMC pathology in vascular diseases.


Asunto(s)
Aterosclerosis/enzimología , Endopeptidasas/metabolismo , Músculo Liso Vascular/enzimología , Miocitos del Músculo Liso/enzimología , Remodelación Vascular , Vía de Señalización Wnt , beta Catenina/metabolismo , Animales , Aorta/metabolismo , Aorta/patología , Apoptosis , Aterosclerosis/genética , Aterosclerosis/patología , Movimiento Celular , Proliferación Celular , Células Cultivadas , Proteína 61 Rica en Cisteína/genética , Proteína 61 Rica en Cisteína/metabolismo , Modelos Animales de Enfermedad , Endopeptidasas/genética , Humanos , Mediadores de Inflamación/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Músculo Liso Vascular/patología , Miocitos del Músculo Liso/patología , FN-kappa B/metabolismo , Neointima , Ubiquitinación , beta Catenina/genética
3.
Cardiovasc Res ; 114(2): 324-335, 2018 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-29126223

RESUMEN

Objective: Atherosclerosis is a focal disease occurring at arterial sites of disturbed blood flow that generates low oscillating shear stress. Endothelial inflammatory signalling is enhanced at sites of disturbed flow via mechanisms that are incompletely understood. The influence of disturbed flow on endothelial adenosine triphosphate (ATP) receptors and downstream signalling was assessed. Methods and results: Cultured human endothelial cells were exposed to atheroprotective (high uniform) or atheroprone (low oscillatory) shear stress for 72 h prior to assessment of ATP responses. Imaging of cells loaded with a calcium-sensitive fluorescent dye revealed that atheroprone flow enhanced extracellular calcium influx in response to 300 µM 2'(3')-O-(4-Benzoylbenzoyl) adenosine-5'-triphosphate. Pre-treatment with pharmacological inhibitors demonstrated that this process required purinergic P2X7 receptors. The mechanism involved altered expression of P2X7, which was induced by atheroprone flow conditions in cultured cells. Similarly, en face staining of the murine aorta revealed enriched P2X7 expression at an atheroprone site. Functional studies in cultured endothelial cells showed that atheroprone flow induced p38 phosphorylation and up-regulation of E-selectin and IL-8 secretion via a P2X7-dependent mechanism. Moreover, genetic deletion of P2X7 significantly reduced E-selectin at atheroprone regions of the murine aorta. Conclusions: These findings reveal that P2X7 is regulated by shear forces leading to its accumulation at atheroprone sites that are exposed to disturbed patterns of blood flow. P2X7 promotes endothelial inflammation at atheroprone sites by transducing ATP signals into p38 activation. Thus P2X7 integrates vascular mechanical responses with purinergic signalling to promote endothelial dysfunction and may provide an attractive potential therapeutic target to prevent or reduce atherosclerosis.


Asunto(s)
Adenosina Trifosfato/metabolismo , Aterosclerosis/enzimología , Células Endoteliales de la Vena Umbilical Humana/enzimología , Inflamación/enzimología , Mecanotransducción Celular , Receptores Purinérgicos P2X7/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Aterosclerosis/genética , Aterosclerosis/patología , Señalización del Calcio , Células Cultivadas , Modelos Animales de Enfermedad , Selectina E/metabolismo , Femenino , Células Endoteliales de la Vena Umbilical Humana/patología , Humanos , Inflamación/genética , Inflamación/patología , Interleucina-8/metabolismo , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Noqueados , Fosforilación , Placa Aterosclerótica , Receptores Purinérgicos P2X7/genética , Flujo Sanguíneo Regional , Estrés Mecánico , Factores de Tiempo
4.
Thromb Haemost ; 116(1): 181-90, 2016 07 04.
Artículo en Inglés | MEDLINE | ID: mdl-27075869

RESUMEN

Blood flow generates wall shear stress (WSS) which alters endothelial cell (EC) function. Low WSS promotes vascular inflammation and atherosclerosis whereas high uniform WSS is protective. Ivabradine decreases heart rate leading to altered haemodynamics. Besides its cardio-protective effects, ivabradine protects arteries from inflammation and atherosclerosis via unknown mechanisms. We hypothesised that ivabradine protects arteries by increasing WSS to reduce vascular inflammation. Hypercholesterolaemic mice were treated with ivabradine for seven weeks in drinking water or remained untreated as a control. En face immunostaining demonstrated that treatment with ivabradine reduced the expression of pro-inflammatory VCAM-1 (p<0.01) and enhanced the expression of anti-inflammatory eNOS (p<0.01) at the inner curvature of the aorta. We concluded that ivabradine alters EC physiology indirectly via modulation of flow because treatment with ivabradine had no effect in ligated carotid arteries in vivo, and did not influence the basal or TNFα-induced expression of inflammatory (VCAM-1, MCP-1) or protective (eNOS, HMOX1, KLF2, KLF4) genes in cultured EC. We therefore considered whether ivabradine can alter WSS which is a regulator of EC inflammatory activation. Computational fluid dynamics demonstrated that ivabradine treatment reduced heart rate by 20 % and enhanced WSS in the aorta. In conclusion, ivabradine treatment altered haemodynamics in the murine aorta by increasing the magnitude of shear stress. This was accompanied by induction of eNOS and suppression of VCAM-1, whereas ivabradine did not alter EC that could not respond to flow. Thus ivabradine protects arteries by altering local mechanical conditions to trigger an anti-inflammatory response.


Asunto(s)
Arterias/efectos de los fármacos , Arteritis/prevención & control , Benzazepinas/farmacología , Frecuencia Cardíaca/efectos de los fármacos , Animales , Arterias/fisiología , Arteritis/fisiopatología , Fenómenos Biomecánicos , Fármacos Cardiovasculares/farmacología , Células Endoteliales/efectos de los fármacos , Células Endoteliales/metabolismo , Frecuencia Cardíaca/fisiología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Hipercolesterolemia/complicaciones , Hipercolesterolemia/tratamiento farmacológico , Hipercolesterolemia/fisiopatología , Ivabradina , Factor 4 Similar a Kruppel , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Óxido Nítrico Sintasa de Tipo III/metabolismo , Estrés Mecánico , Molécula 1 de Adhesión Celular Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA