Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 547(7661): 49-54, 2017 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-28658207

RESUMEN

Antarctic terrestrial biodiversity occurs almost exclusively in ice-free areas that cover less than 1% of the continent. Climate change will alter the extent and configuration of ice-free areas, yet the distribution and severity of these effects remain unclear. Here we quantify the impact of twenty-first century climate change on ice-free areas under two Intergovernmental Panel on Climate Change (IPCC) climate forcing scenarios using temperature-index melt modelling. Under the strongest forcing scenario, ice-free areas could expand by over 17,000 km2 by the end of the century, close to a 25% increase. Most of this expansion will occur in the Antarctic Peninsula, where a threefold increase in ice-free area could drastically change the availability and connectivity of biodiversity habitat. Isolated ice-free areas will coalesce, and while the effects on biodiversity are uncertain, we hypothesize that they could eventually lead to increasing regional-scale biotic homogenization, the extinction of less-competitive species and the spread of invasive species.


Asunto(s)
Biodiversidad , Cambio Climático/estadística & datos numéricos , Cubierta de Hielo , Animales , Regiones Antárticas , Cambio Climático/historia , Conservación de los Recursos Naturales/métodos , Conservación de los Recursos Naturales/estadística & datos numéricos , Conservación de los Recursos Naturales/tendencias , Ecología/tendencias , Historia del Siglo XXI
2.
Nature ; 535(7612): 411-5, 2016 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-27443743

RESUMEN

Since the 1950s, research stations on the Antarctic Peninsula have recorded some of the largest increases in near-surface air temperature in the Southern Hemisphere. This warming has contributed to the regional retreat of glaciers, disintegration of floating ice shelves and a 'greening' through the expansion in range of various flora. Several interlinked processes have been suggested as contributing to the warming, including stratospheric ozone depletion, local sea-ice loss, an increase in westerly winds, and changes in the strength and location of low-high-latitude atmospheric teleconnections. Here we use a stacked temperature record to show an absence of regional warming since the late 1990s. The annual mean temperature has decreased at a statistically significant rate, with the most rapid cooling during the Austral summer. Temperatures have decreased as a consequence of a greater frequency of cold, east-to-southeasterly winds, resulting from more cyclonic conditions in the northern Weddell Sea associated with a strengthening mid-latitude jet. These circulation changes have also increased the advection of sea ice towards the east coast of the peninsula, amplifying their effects. Our findings cover only 1% of the Antarctic continent and emphasize that decadal temperature changes in this region are not primarily associated with the drivers of global temperature change but, rather, reflect the extreme natural internal variability of the regional atmospheric circulation.


Asunto(s)
Calentamiento Global/estadística & datos numéricos , Temperatura , Regiones Antárticas , Atmósfera/análisis , Cubierta de Hielo , Estaciones del Año , Agua de Mar/análisis , Viento
3.
Glob Chang Biol ; 21(4): 1434-53, 2015 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-25369312

RESUMEN

A quantitative assessment of observed and projected environmental changes in the Southern Ocean (SO) with a potential impact on the marine ecosystem shows: (i) large proportions of the SO are and will be affected by one or more climate change processes; areas projected to be affected in the future are larger than areas that are already under environmental stress, (ii) areas affected by changes in sea-ice in the past and likely in the future are much larger than areas affected by ocean warming. The smallest areas (<1% area of the SO) are affected by glacier retreat and warming in the deeper euphotic layer. In the future, decrease in the sea-ice is expected to be widespread. Changes in iceberg impact resulting from further collapse of ice-shelves can potentially affect large parts of shelf and ephemerally in the off-shore regions. However, aragonite undersaturation (acidification) might become one of the biggest problems for the Antarctic marine ecosystem by affecting almost the entire SO. Direct and indirect impacts of various environmental changes to the three major habitats, sea-ice, pelagic and benthos and their biota are complex. The areas affected by environmental stressors range from 33% of the SO for a single stressor, 11% for two and 2% for three, to <1% for four and five overlapping factors. In the future, areas expected to be affected by 2 and 3 overlapping factors are equally large, including potential iceberg changes, and together cover almost 86% of the SO ecosystem.


Asunto(s)
Cambio Climático , Ecosistema , Cubierta de Hielo , Océanos y Mares , Regiones Antárticas
4.
Philos Trans A Math Phys Eng Sci ; 373(2045)2015 Jul 13.
Artículo en Inglés | MEDLINE | ID: mdl-26032320

RESUMEN

In contrast to the Arctic, total sea ice extent (SIE) across the Southern Ocean has increased since the late 1970s, with the annual mean increasing at a rate of 186×10(3) km(2) per decade (1.5% per decade; p<0.01) for 1979-2013. However, this overall increase masks larger regional variations, most notably an increase (decrease) over the Ross (Amundsen-Bellingshausen) Sea. Sea ice variability results from changes in atmospheric and oceanic conditions, although the former is thought to be more significant, since there is a high correlation between anomalies in the ice concentration and the near-surface wind field. The Southern Ocean SIE trend is dominated by the increase in the Ross Sea sector, where the SIE is significantly correlated with the depth of the Amundsen Sea Low (ASL), which has deepened since 1979. The depth of the ASL is influenced by a number of external factors, including tropical sea surface temperatures, but the low also has a large locally driven intrinsic variability, suggesting that SIE in these areas is especially variable. Many of the current generation of coupled climate models have difficulty in simulating sea ice. However, output from the better-performing IPCC CMIP5 models suggests that the recent increase in Antarctic SIE may be within the bounds of intrinsic/internal variability.

5.
Nat Commun ; 9(1): 4105, 2018 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-30279569

RESUMEN

'In the original HTML version of this Article, ref.12 was incorrectly cited in the first sentence of the first paragraph of the Introduction. The correct citation is ref. 2. This has now been corrected in the HTML version of the Article; the PDF version was correct at the time of publication.'

6.
Nat Commun ; 9(1): 3625, 2018 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-30206222

RESUMEN

The Southern Ocean is a pivotal component of the global climate system yet it is poorly represented in climate models, with significant biases in upper-ocean temperatures, clouds and winds. Combining Atmospheric and Coupled Model Inter-comparison Project (AMIP5/CMIP5) simulations, with observations and equilibrium heat budget theory, we show that across the CMIP5 ensemble variations in sea surface temperature biases in the 40-60°S Southern Ocean are primarily caused by AMIP5 atmospheric model net surface flux bias variations, linked to cloud-related short-wave errors. Equilibration of the biases involves local coupled sea surface temperature bias feedbacks onto the surface heat flux components. In combination with wind feedbacks, these biases adversely modify upper-ocean thermal structure. Most AMIP5 atmospheric models that exhibit small net heat flux biases appear to achieve this through compensating errors. We demonstrate that targeted developments to cloud-related parameterisations provide a route to better represent the Southern Ocean in climate models and projections.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA