Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Plant Dis ; 108(6): 1602-1611, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38127633

RESUMEN

Sudden death syndrome (SDS), caused by Fusarium virguliforme, is an important yield-limiting disease of soybean (Glycine max). From 1996 to 2022, cumulative yield losses attributed to SDS in North America totaled over 25 million metric tons, which was valued at over US $7.8 billion. Seed treatments are widely used to manage SDS by reducing early season soybean root infection by F. virguliforme. Fluopyram (succinate dehydrogenase inhibitor [SDHI] - FRAC 7), a fungicide seed treatment for SDS management, has been registered for use on soybean in the United States since 2014. A baseline sensitivity study conducted in 2014 evaluated 130 F. virguliforme isolates collected from five states to fluopyram in a mycelial growth inhibition assay and reported a mean EC50 of 3.35 mg/liter. This baseline study provided the foundation for the objectives of this research: to detect any statistically significant change in fluopyram sensitivity over time and geographical regions within the United States and to investigate sensitivity to the fungicide pydiflumetofen. We repeated fluopyram sensitivity testing on a panel of 80 historical F. virguliforme isolates collected from 2006 to 2013 (76 of which were used in the baseline study) and conducted testing on 123 contemporary isolates collected from 2016 to 2022 from 11 states. This study estimated a mean absolute EC50 of 3.95 mg/liter in isolates collected from 2006 to 2013 and a mean absolute EC50 of 4.19 mg/liter in those collected in 2016 to 2022. There was no significant change in fluopyram sensitivity (P = 0.1) identified between the historical and contemporary isolates. A subset of 23 isolates, tested against pydiflumetofen under the same conditions, estimated an absolute mean EC50 of 0.11 mg/liter. Moderate correlation was detected between fluopyram and pydiflumetofen sensitivity estimates (R = 0.53; P < 0.001). These findings enable future fluopyram and pydiflumetofen resistance monitoring and inform current soybean SDS management strategies in a regional and national context.


Asunto(s)
Fungicidas Industriales , Fusarium , Glycine max , Enfermedades de las Plantas , Fusarium/efectos de los fármacos , Fusarium/aislamiento & purificación , Fungicidas Industriales/farmacología , Glycine max/microbiología , Estados Unidos , Enfermedades de las Plantas/microbiología , Compuestos de Anilina/farmacología , Farmacorresistencia Fúngica , Benzamidas , Piridinas
2.
Plant Dis ; 108(1): 149-161, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37578368

RESUMEN

Cercospora leaf blight (CLB) of soybean, caused by Cercospora cf. flagellaris, C. kikuchii, and C. cf. sigesbeckiae, is an economically important disease in the southern United States. Cultivar resistance to CLB is inconsistent; therefore, fungicides in the quinone outside inhibitor (QoI) class have been relied on to manage the disease. Approximately 620 isolates from plants exhibiting CLB were collected between 2018 and 2021 from 19 locations in eight southern states. A novel polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) assay based on two genes, calmodulin and histone h3, was developed to differentiate between the dominant species of Cercospora, C. cf. flagellaris, and C. cf. sigesbeckiae. A multilocus phylogenetic analysis of actin, calmodulin, histone h3, ITS rDNA, and transcription elongation factor 1-α was used to confirm PCR-RFLP results and identify remaining isolates. Approximately 80% of the isolates collected were identified as C. cf. flagellaris, while 15% classified as C. cf. sigesbeckiae, 2% as C. kikuchii, and 3% as previously unreported Cercospora species associated with CLB in the United States. PCR-RFLP of cytochrome b (cytb) identified QoI-resistance conferred by the G143A substitution. Approximately 64 to 83% of isolates were determined to be QoI-resistant, and all contained the G143A substitution. Results of discriminatory dose assays using azoxystrobin (1 ppm) were 100% consistent with PCR-RFLP results. To our knowledge, this constitutes the first report of QoI resistance in CLB pathogen populations from Alabama, Arkansas, Kentucky, Mississippi, Missouri, Tennessee, and Texas. In areas where high frequencies of resistance have been identified, QoI fungicides should be avoided, and fungicide products with alternative modes-of-action should be utilized in the absence of CLB-resistant soybean cultivars.


Asunto(s)
Ascomicetos , Fungicidas Industriales , Estados Unidos , Fungicidas Industriales/farmacología , Cercospora , Glycine max , Filogenia , Calmodulina/genética , Histonas/genética , Arkansas , Quinonas
3.
Plant Dis ; 108(6): 1729-1739, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38199961

RESUMEN

As soybean (Glycine max) production continues to expand in the United States and Canada, so do pathogens and pests that directly threaten soybean yield potential and economic returns for farmers. One such pathogen is the soybean cyst nematode (SCN; Heterodera glycines). SCN has traditionally been managed using SCN-resistant cultivars and rotation with nonhost crops, but the interaction of SCN with sudden death syndrome (SDS; caused by Fusarium virguliforme) in the field makes management more difficult. Nematode-protectant seed treatments have become options for SCN and SDS management. The objectives of this study were to evaluate nematode-protectant seed treatments for their effects on (i) early and full season SCN reproduction, (ii) foliar symptoms and root-rot caused by SDS, and (iii) soybean yield across environments accounting for the above factors. Using a standard protocol, field trials were implemented in 13 states and one Canadian province from 2019 to 2021 constituting 51 site-years. Six nematode-protectant seed treatment products were compared with a fungicide + insecticide base treatment and a nontreated check. Initial (at soybean planting) and final (at soybean harvest) SCN egg populations were enumerated, and SCN females were extracted from roots and counted at 30 to 35 days postplanting. Foliar disease index (FDX) and root rot caused by the SDS pathogen were evaluated, and yield data were collected for each plot. No seed treatment offered significant nematode control versus the nontreated check for in-season and full-season nematode response, no matter the initial SCN population or FDX level. Of all treatments, ILEVO (fluopyram) and Saltro (pydiflumetofen) provided more consistent increases in yield over the nontreated check in a broader range of SCN environments, even when FDX level was high.


Asunto(s)
Glycine max , Enfermedades de las Plantas , Semillas , Tylenchoidea , Glycine max/parasitología , Animales , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control , Tylenchoidea/efectos de los fármacos , Tylenchoidea/fisiología , Semillas/microbiología , Semillas/parasitología , Fusarium/fisiología , Fusarium/efectos de los fármacos , Canadá
4.
Plant Dis ; 107(4): 1012-1021, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36410014

RESUMEN

Frogeye leaf spot (FLS) is a foliar disease of soybean (Glycine max) caused by Cercospora sojina. Application of fungicide products that contain quinone outside inhibitor (QoI) active ingredients has been one of the major tools used in the management of this disease, but, since 2010, QoI-resistant C. sojina isolates have been confirmed in over 20 states in the United States, including Indiana. In summer 2019 and 2020, 406 isolates of C. sojina were collected from 32 counties across Indiana and screened for QoI resistance using a PCR-restriction fragment length polymorphism (RFLP) method. An in vitro fungicide sensitivity test was also performed on a subset of isolates to evaluate their sensitivity to three QoI fungicides: azoxystrobin, pyraclostrobin, and picoxystrobin. A discriminatory dose of picoxystrobin was established as 1 µg/ml by testing five concentrations (0.001, 0.01, 0.1, 1, and 10 µg/ml). QoI-resistant isolates were found in 29 counties, and 251 of the 406 isolates (61.8%) were confirmed to be resistant to QoI fungicides based on PCR-RFLP results. Partial nucleotide sequences of the cytochrome b gene from four resistant and four sensitive isolates corroborated the presence and absence, respectively, of the G143A mutation. Results from the sensitivity assays with discriminatory doses of azoxystrobin (1 µg/ml) and pyraclostrobin (0.1 µg/ml) also supported the findings from the PCR-RFLP assay, because all QoI-resistant isolates were inhibited less than 50% relative to a no-fungicide control when exposed to these doses. Resistant isolates harboring the G143A mutation also exhibited resistance to picoxystrobin. The effective concentrations to inhibit mycelial growth by 50% relative to the nonamended control (EC50) in QoI-sensitive isolates ranged from 0.087 to 0.243 µg/ml, with an overall mean of 0.152 µg/ml, while EC50 values in QoI-resistant isolates were established as >10 µg/ml for picoxystrobin. Results from this study indicated that QoI-resistant C. sojina isolates are spread throughout Indiana and exhibit cross-resistance to QoI fungicides.


Asunto(s)
Fungicidas Industriales , Glycine max , Estados Unidos , Indiana , Farmacorresistencia Fúngica/genética , Fungicidas Industriales/farmacología , Quinonas
5.
Plant Dis ; 107(1): 38-45, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35722914

RESUMEN

Stagonospora leaf and glume blotch, caused by Parastagonospora nodorum, is a major disease of winter wheat (Triticum aestivum) in the United States capable of significantly reducing grain yield and quality. Pathogens such as P. nodorum that overwinter in crop residue are often an increased concern in cropping systems that utilize no-till farming. In addition, the lack of wheat cultivars with complete resistance to P. nodorum has led to the reliance on foliar fungicides for disease management. Quinone outside inhibitor (QoI) fungicides (Fungicide Resistance Action Committee group 11) are one of the major classes used to manage foliar diseases in wheat. Use of the QoI class of fungicides tends to select isolates of fungal pathogens with resistance due to mutations in the fungal cytochrome b gene. Isolates of P. nodorum were collected from Illinois in 2014 and Kentucky in 2018, 2019, and 2020. Amplification and sequencing of a segment of the cytochrome b gene from these isolates revealed a mutation at codon 143 that confers a change from glycine to alanine in the amino acid sequence (known as the G143A mutation). In vitro plate assays and greenhouse trials were used to confirm and characterize the QoI resistance caused by the G143A mutation. The frequency of the tested isolates with the G143A mutation was 46% (57 of 123 isolates) and 5% (3 of 60 isolates) for Kentucky and Illinois, respectively. This research is the first to identify the G143A mutation in P. nodorum isolates with resistance to QoI fungicides in Illinois and Kentucky.


Asunto(s)
Fungicidas Industriales , Fungicidas Industriales/farmacología , Kentucky , Citocromos b/genética , Benzoquinonas
6.
Plant Dis ; 107(11): 3422-3429, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37093164

RESUMEN

Frogeye leaf spot (FLS), caused by Cercospora sojina, is an important foliar disease affecting soybean in the United States. A meta-analytic approach including 39 fungicide trials conducted from 2012 to 2021 across eight states (Alabama, Arkansas, Illinois, Iowa, Kentucky, Louisiana, Mississippi, Tennessee) was used to assess the relationship between FLS severity and soybean yield. Correlation and regression analyses were performed separately to determine Fisher's transformation of correlation coefficients (Zr), intercept (ß0) and slope (ß1). Disease pressure (low severity, ≤34.5; high severity, >34.5%) and yield class (low, ≤3,352; high, >3,352 kg/ha) were included as categorical moderators. Pearson's [Formula: see text], obtained from back-transforming the [Formula: see text]r estimated by an overall random-effects model, showed a significant negative linear relationship between FLS severity and yield ([Formula: see text] = -0.60). The [Formula: see text]r was affected by disease pressure (P = 0.0003) but not by yield class (P = 0.8141). A random-coefficient model estimated a slope of -19 kg/ha for each percent severity for a mean attainable yield of 3,719.9 kg/ha. Based on the overall mean (95% CI) of the intercept and slope estimated by the random-coefficients model, the estimated overall relative damage coefficient was 0.51% (0.36 to 0.69), indicating that a percent increase in FLS severity reduced yield by 0.51%. The best model included yield class as a covariate, and population-average intercepts differed significantly between low (3,455.1 kg/ha) and high (3,842.7 kg/ha) yield classes. This highlights the potential impact of FLS on soybean yield if not managed and may help in disease management decisions.


Asunto(s)
Fungicidas Industriales , Glycine max , Estados Unidos , Enfermedades de las Plantas , Illinois , Iowa
7.
Plant Dis ; 107(11): 3487-3496, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37157104

RESUMEN

Frogeye leaf spot (FLS), caused by Cercospora sojina, is an economically important disease of soybean in the United States. Data from 66 uniform fungicide trials (UFTs) conducted from 2012 to 2021 across eight states (Alabama, Arkansas, Illinois, Iowa, Kentucky, Louisiana, Mississippi, and Tennessee) were gathered and analyzed to determine the efficacy and profitability of the following fungicides applied at the beginning pod developmental stage (R3): azoxystrobin + difenoconazole (AZOX + DIFE), difenoconazole + pydiflumetofen (DIFE + PYDI), pyraclostrobin (PYRA), pyraclostrobin + fluxapyroxad + propiconazole (PYRA + FLUX + PROP), tetraconazole (TTRA), thiophanate-methyl (TMET), thiophanate-methyl + tebuconazole (TMET + TEBU), and trifloxystrobin + prothioconazole (TFLX + PROT). A network meta-analytic model was fitted to the log of the means of FLS severity data and to the nontransformed mean yield for each treatment, including the nontreated. The percent reduction in disease severity (%) and the yield response (kg/ha) relative to the nontreated was the lowest for PYRA (11%; 136 kg/ha) and the greatest for DIFE + PYDI (57%; 441 kg/ha). A significant decline in efficacy over time was detected for PYRA (18 percentage points [p.p.]), TTRA (27 p.p.), AZOX + DIFE (18 p.p.), and TMET + TEBU (19 p.p.) by using year as a continuous covariate in the model. Finally, probabilities of breaking even were the greatest (>65%) for the most effective fungicide DIFE + PYDI and the lowest (<55%) for PYRA. Results of this meta-analysis may be useful to support decisions when planning fungicide programs.


Asunto(s)
Fungicidas Industriales , Estados Unidos , Fungicidas Industriales/farmacología , Glycine max , Tiofanato , Kentucky
8.
J Appl Microbiol ; 132(5): 3797-3811, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35226387

RESUMEN

AIMS: To isolate and characterize fungi associated with diseased soybean seedlings in Midwestern soybean production fields and to determine the influence of environmental and edaphic factors on their incidence. METHODS AND RESULTS: Seedlings were collected from fields with seedling disease history in 2012 and 2013 for fungal isolation. Environmental and edaphic data associated with each field was collected. 3036 fungal isolates were obtained and assigned to 76 species. The most abundant genera recovered were Fusarium (73%) and Trichoderma (11.2%). Other genera included Mortierella, Clonostachys, Rhizoctonia, Alternaria, Mucor, Phoma, Macrophomina and Phomopsis. Most recovered species are known soybean pathogens. However, non-pathogenic organisms were also isolated. Crop history, soil density, water source, precipitation and temperature were the main factors influencing the abundance of fungal species. CONCLUSION: Key fungal species associated with soybean seedling diseases occurring in several US production regions were characterized. This work also identified major environment and edaphic factors affecting the abundance and occurrence of these species. SIGNIFICANCE AND IMPACT OF THE STUDY: The identification and characterization of the main pathogens associated with seedling diseases across major soybean-producing areas could help manage those pathogens, and devise more effective and sustainable practices to reduce the damage they cause.


Asunto(s)
Ascomicetos , Fusarium , Fusarium/genética , Rhizoctonia , Plantones , Glycine max
9.
Phytopathology ; 112(3): 663-681, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-34289716

RESUMEN

Phytophthora sojae, the causal agent of Phytophthora root and stem rot of soybean, has been managed with single Rps genes since the 1960s but has subsequently adapted to many of these resistance genes, rendering them ineffective. The objective of this study was to examine the pathotype and genetic diversity of P. sojae from soil samples across Illinois, Indiana, Kentucky, and Ohio by assessing which Rps genes were still effective and identifying possible population clusters. There were 218 pathotypes identified from 473 P. sojae isolates with an average of 6.7 out of 15 differential soybean lines exhibiting a susceptible response for each isolate. Genetic characterization of 103 P. sojae isolates from across Illinois, Indiana, Kentucky, and Ohio with 19 simple sequence repeat markers identified 92 multilocus genotypes. There was a moderate level of population differentiation between these four states, with pairwise FST values ranging from 0.026 to 0.246. There were also moderate to high levels of differentiation between fields, with pairwise FST values ranging from 0.071 to 0.537. Additionally, cluster analysis detected the presence of P. sojae population structure across neighboring states. The level of pathotype and genetic diversity, in addition to the identification of population clusters, supports the hypothesis of occasional outcrossing events that allow an increase in diversity and the potential to select for a loss in avirulence to specific resistance genes within regions. The trend of suspected gene flow among neighboring fields is expected to be an ongoing issue with current agricultural practices.


Asunto(s)
Phytophthora , Resistencia a la Enfermedad/genética , Indiana , Kentucky , Ohio , Phytophthora/fisiología , Enfermedades de las Plantas/genética , Glycine max/genética
10.
Plant Dis ; 106(10): 2631-2637, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35394334

RESUMEN

Brown spot, caused by Septoria glycines, is a common foliar disease of soybean (Glycine max). Applications of fungicide products that contain quinone outside inhibitor (QoI) active ingredients to soybean fields have contributed to the selection and development of QoI-resistant populations of S. glycines. We investigated the molecular mechanisms of QoI-resistance in these populations through targeted analysis of the cytochrome b gene. Isolates of S. glycines collected from several soybean fields over different seasons varied in sensitivity to QoI fungicides. Characterization of the cytochrome b gene revealed a mutation that changed an amino acid from glycine to alanine at codon 143 - one that is generally associated with QoI fungicide resistances. A PCR assay was developed that allowed successful discrimination of QoI-sensitive and -resistant isolates based on the G143A mutation. Results of this study demonstrated that 47.5% of S. glycines isolates tested were resistant to QoI fungicides. Accurate monitoring of this mutation will help slow the spread of QoI resistance and will be important for fungicide resistant management in this pathosystem.


Asunto(s)
Fungicidas Industriales , Alanina , Aminoácidos , Ascomicetos , Citocromos b/genética , Farmacorresistencia Fúngica/genética , Fungicidas Industriales/farmacología , Glicina/farmacología , Quinonas/farmacología , Glycine max
11.
Plant Dis ; 106(9): 2403-2414, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35171634

RESUMEN

Pythium spp. is one of the major groups of pathogens that cause seedling diseases on soybean, leading to both preemergence and postemergence damping-off and root rot. More than 100 species have been identified within this genus, with Pythium irregulare, P. sylvaticum, P. ultimum var ultimum, and P. torulosum being particularly important for soybean production given their aggressiveness, prevalence, and abundance in production fields. This study investigated the antagonistic activity of potential biological control agents (BCAs) native to the U.S. Midwest against Pythium spp. First, in vitro screening identified BCAs that inhibit P. ultimum var. ultimum growth. Scanning electron microscopy demonstrated evidence of mycoparasitism of all potential biocontrol isolates against P. ultimum var. ultimum and P. torulosum, with the formation of appressorium-like structures, short hyphal branches around host hyphae, hook-shaped structures, coiling, and parallel growth of the mycoparasite along the host hyphae. Based on these promising results, selected BCAs were tested under field conditions against six different Pythium spp. Trichoderma afroharzianum 26 used alone and a mix of T. hamatum 16 + T. afroharzianum 19 used as seed treatments protected soybean seedlings from Pythium spp. infection, as BCA-treated plots had on average 15 to 20% greater plant stand and vigor than control plots. Our results also indicate that some of these potential BCAs could be added with a fungicide seed treatment with minimum inhibition occurring, depending on the fungicide active ingredient. This research highlights the need to develop tools incorporating biological control as a facet of soybean seedling disease management programs. The harnessing of native BCAs could be integrated with other management strategies to provide efficient control of seedling diseases.


Asunto(s)
Fungicidas Industriales , Pythium , Fungicidas Industriales/farmacología , Enfermedades de las Plantas/parasitología , Enfermedades de las Plantas/prevención & control , Pythium/fisiología , Plantones , Semillas , Glycine max
12.
Plant Dis ; 105(1): 156-163, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33118875

RESUMEN

Goss's bacterial wilt and leaf blight of corn (Zea mays), caused by Clavibacter nebraskensis, is a reemerging disease in the Midwestern United States. From 2011 to 2013, field studies and a greenhouse study were conducted to assess the University of Illinois maize inbred collection for putative sources of resistance to Goss's bacterial wilt and leaf blight. This inbred collection consisted of over 2,000 diverse inbred corn lines that have been collected from all over the world. An initial field screen of over 1,000 inbred lines from the collection was conducted in Urbana, IL in 2011. These lines were inoculated with a C. nebraskensis cell suspension and rated for Goss's bacterial wilt and leaf blight severity using a 1-to-9 scale, with a score of 1 being most resistant. Means for Goss's bacterial wilt and leaf blight ratings ranged from 1 to 8.5. The initial screen identified over 150 lines that had high levels of resistance (severity score of ≤2.5). In total, 177 lines were used in the second stage of field screening. In the second stage, average Goss's bacterial wilt and leaf blight severity ranged from 1.1 to 7.4. Nine lines with high levels of resistance in 2011 and 2012 were advanced to the third stage of field screening. The mean Goss's bacterial wilt and leaf blight severity rating of the resistant lines in the last stage was 1.9, while the susceptible check had a mean score of 6.4. These nine lines were also used in the greenhouse to assess whether resistance varied based on inoculating roots, stems, or leaves. Disease severity was significantly (P ≤ 0.05) less when roots were inoculated compared with both leaf and stem inoculations, which were not significantly different from each other. Lines having high levels of field resistance were also found to be resistant in greenhouse screening regardless of inoculation method. Clustering of pedigree distance of the 34 resistant lines (severity score of ≤2.5) with known pedigree information found that 21 clustered with the Lancaster heterotic family, 4 were related to the Iowa Stiff Stalk Synthetic family, and 9 did not cluster with an identifiable heterotic family. These results show that the Lancaster family is an excellent source of Goss's wilt resistance, and that fewer sources of resistance were found in other families. The most resistant lines identified from this research are potential sources of resistance to Goss's bacterial wilt and leaf blight, and their lineage can be used in corn breeding programs to develop resistant hybrids.


Asunto(s)
Clavibacter , Zea mays , Iowa , Medio Oeste de Estados Unidos , Enfermedades de las Plantas/genética , Zea mays/genética
13.
Plant Dis ; 105(5): 1382-1389, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33245257

RESUMEN

Random-effect meta-analyses were performed on data from 240 field trials conducted between 2005 and 2018 across nine U.S. states and Ontario, Canada, to quantify the yield response of soybean after application of foliar fungicides at beginning pod (R3) stage. Meta-analysis showed that the overall mean yield response when fungicide was used compared with not applying a fungicide was 2.7% (110 kg/ha). Moderator variables were also investigated and included fungicide group, growing season, planting date, and base yield, which all significantly influenced the yield response. There was also evidence that precipitation from the time of planting to the R3 growth stage influenced yield when fungicide was used (P = 0.059). Fungicides containing a premix of active ingredients from multiple groups (either two or three ingredients) increased the yield by 3.0% over not applying a fungicide. The highest and lowest yield responses were observed in 2005 and 2007, respectively. Better yield response to fungicides (a 3.0% increase) occurred when soybean crops were planted not later than 21 May and when total precipitation between planting and the R3 application date was above historic averages. Temperatures during the season did not influence the yield response. Yield response to fungicide was higher (a 4.7% increase) in average yield category (no spray control yield 2,878 to 3,758 kg/ha) and then gradually decreased with increasing base yield. Partial economic analyses indicated that use of foliar fungicides is less likely to be profitable when foliar diseases are absent or at low levels.


Asunto(s)
Fungicidas Industriales , Productos Agrícolas , Fungicidas Industriales/farmacología , Ontario , Enfermedades de las Plantas , Glycine max , Estados Unidos
14.
Appl Environ Microbiol ; 86(5)2020 02 18.
Artículo en Inglés | MEDLINE | ID: mdl-31836576

RESUMEN

Despite glyphosate's wide use for weed control in agriculture, questions remain about the herbicide's effect on soil microbial communities. The existing scientific literature contains conflicting results, from no observable effect of glyphosate to the enrichment of agricultural pathogens such as Fusarium spp. We conducted a comprehensive field-based study to compare the microbial communities on the roots of plants that received a foliar application of glyphosate to adjacent plants that did not. The 2-year study was conducted in Beltsville, MD, and Stoneville, MS, with corn and soybean crops grown in a variety of organic and conventional farming systems. By sequencing environmental metabarcode amplicons, the prokaryotic and fungal communities were described, along with chemical and physical properties of the soil. Sections of corn and soybean roots were plated to screen for the presence of plant pathogens. Geography, farming system, and season were significant factors determining the composition of fungal and prokaryotic communities. Plots treated with glyphosate did not differ from untreated plots in overall microbial community composition after controlling for other factors. We did not detect an effect of glyphosate treatment on the relative abundance of organisms such as Fusarium spp.IMPORTANCE Increasing the efficiency of food production systems while reducing negative environmental effects remains a key societal challenge to successfully meet the needs of a growing global population. The herbicide glyphosate has become a nearly ubiquitous component of agricultural production across the globe, enabling an increasing adoption of no-till agriculture. Despite this widespread use, there remains considerable debate on the consequences of glyphosate exposure. In this paper, we examine the effect of glyphosate on soil microbial communities associated with the roots of glyphosate-resistant crops. Using metabarcoding techniques, we evaluated prokaryotic and fungal communities from agricultural soil samples (n = 768). No effects of glyphosate were found on soil microbial communities associated with glyphosate-resistant corn and soybean varieties across diverse farming systems.


Asunto(s)
Bacterias/aislamiento & purificación , Hongos/aislamiento & purificación , Glicina/análogos & derivados , Herbicidas/administración & dosificación , Microbiota , Raíces de Plantas/microbiología , Microbiología del Suelo , Glicina/administración & dosificación , Maryland , Microbiota/efectos de los fármacos , Mississippi , Micobioma , Glycine max/crecimiento & desarrollo , Zea mays/crecimiento & desarrollo , Glifosato
15.
Plant Dis ; 104(3): 634-648, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31967505

RESUMEN

The main techniques for minimizing Fusarium head blight (FHB, or scab) and deoxynivalenol in wheat and barley are well established and generally available: planting of moderately FHB-resistant cultivars, risk monitoring, and timely use of the most effective fungicides. Yet the adoption of these techniques remains uneven across the FHB-prone portions of the U.S. cereal production area. A national survey was undertaken by the U.S. Wheat and Barley Scab Initiative in 17 states where six market classes of wheat and barley are grown. In 2014, 5,107 usable responses were obtained. The highest percentages reporting losses attributable to FHB in the previous 5 years were in North Dakota, Maryland, Kentucky, and states bordering the Great Lakes but across all states, ≥75% of respondents reported no FHB-related losses in the previous 5 years. Adoption of cultivar resistance was uneven by state and market class and was low except among hard red spring wheat growers. In 13 states, a majority of respondents had not applied an FHB-targeted fungicide in the previous 5 years. Although the primary FHB information source varied by state, crop consultants were considered to be an important source or their primary source of information on risk or management of FHB by the largest percentage of respondents. Use of an FHB risk forecasting website was about twice as high in North Dakota as the 17-state average of 6%. The most frequently cited barriers to adopting FHB management practices were weather or logistics preventing timely fungicide application, difficulty in determining flowering timing for fungicide applications, and the impracticality of FHB-reducing rotations. The results highlight the challenges of managing an episodically damaging crop disease and point to specific areas for improvement.


Asunto(s)
Fusarium , Hordeum , Kentucky , Maryland , North Dakota , Enfermedades de las Plantas , Encuestas y Cuestionarios , Triticum
16.
Plant Dis ; 104(6): 1736-1743, 2020 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-32289247

RESUMEN

In total, 52 uniform field experiments were conducted in Illinois, Indiana, Iowa, Michigan, South Dakota, and Wisconsin in the United States and Ontario, Canada from 2013 to 2017 comparing crop protection products against sudden death syndrome (SDS) of soybean. Data were analyzed using meta-analytic models to summarize the relationship between foliar disease index (FDX) and yield. For each study, correlation and regression analyses were performed separately to determine three effect sizes: Fisher's transformation of correlation coefficients (Z r ), intercept (ß0), and slope (ß1). Random- and mixed-effect meta-analyses were used to summarize the effect sizes. Study- and location-specific moderator variables FDX (low < 10% and high ≥ 10%), date of planting (early = prior to 7 May, conventional = 7 to 21 May, and late = after 21 May) cultivar (susceptible and partially resistant to SDS), study location, and growing season were used as fixed effects. The overall mean effect sizes of transformed correlation coefficient [Formula: see text] r was -0.41 and different from zero (P < 0.001), indicating that yield was negatively correlated with FDX. The [Formula: see text] r was affected by disease level (P < 0.01) and cultivar (P = 0.02), with a greater effect at higher disease levels and with susceptible cultivars. The mean [Formula: see text] 0 was 4,121 kg/ha and mean [Formula: see text] 1 was -21 kg/ha/% FDX and were different from zero (P < 0.01). Results from these data indicate that, for every unit of FDX increase, yield was decreased by 0.5%. Study locations and year affected the [Formula: see text] 0 , whereas none of the moderator variables significantly affected [Formula: see text] 1.


Asunto(s)
Fusarium , Muerte Súbita , Humanos , Illinois , Iowa , Michigan , Ontario , Enfermedades de las Plantas , Glycine max , Estados Unidos , Wisconsin
17.
Phytopathology ; 109(12): 2132-2141, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31381483

RESUMEN

Rhizoctonia solani AG-2-2IIIB is an important seedling pathogen of soybean in North America and other soybean-growing regions around the world. There is no information regarding the population genetics of field populations of R. solani associated with soybean seedling disease. More specifically, information regarding genetic diversity, the mode of reproduction, and the evolutionary factors that shape different R. solani populations separated in time and space are lacking. We exploited genotyping by sequencing as a tool to assess the genetic structure of R. solani AG-2-2IIIB populations from Illinois, Ohio, and Ontario and investigate the reproductive mode of this subgroup. Our results revealed differences in genotypic diversity among three populations, with the Ontario population having greatest diversity. An overrepresentation of multilocus genotypes (MLGs) and a rejection of the null hypothesis of random mating in all three populations suggested clonality within each population. However, phylogenetic analysis revealed long terminal multifurcating branches for most members of the Ontario population, suggesting a mixed reproductive mode for this population. Analysis of molecular variance revealed low levels of population differentiation, and sharing of similar MLGs among populations highlights the role of genotype flow as an evolutionary force shaping population structure of this subgroup.


Asunto(s)
Variación Genética , Glycine max , Rhizoctonia , Genotipo , América del Norte , Filogenia , Enfermedades de las Plantas/microbiología , Rhizoctonia/genética , Glycine max/microbiología
18.
Phytopathology ; 109(7): 1157-1170, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30860431

RESUMEN

As complete host resistance in soybean has not been achieved, Sclerotinia stem rot (SSR) caused by Sclerotinia sclerotiorum continues to be of major economic concern for farmers. Thus, chemical control remains a prevalent disease management strategy. Pesticide evaluations were conducted in Illinois, Iowa, Michigan, Minnesota, New Jersey, and Wisconsin from 2009 to 2016, for a total of 25 site-years (n = 2,057 plot-level data points). These studies were used in network meta-analyses to evaluate the impact of 10 popular pesticide active ingredients, and seven common application timings on SSR control and yield benefit, compared with not treating with a pesticide. Boscalid and picoxystrobin frequently offered the best reductions in disease severity and best yield benefit (P < 0.0001). Pesticide applications (one- or two-spray programs) made during the bloom period provided significant reductions in disease severity index (DIX) (P < 0.0001) and led to significant yield benefits (P = 0.0009). Data from these studies were also used in nonlinear regression analyses to determine the effect of DIX on soybean yield. A three-parameter logistic model was found to best describe soybean yield loss (pseudo-R2 = 0.309). In modern soybean cultivars, yield loss due to SSR does not occur until 20 to 25% DIX, and considerable yield loss (-697 kg ha-1 or -10 bu acre-1) is observed at 68% DIX. Further analyses identified several pesticides and programs that resulted in greater than 60% probability for return on investment under high disease levels.


Asunto(s)
Ascomicetos , Glycine max/crecimiento & desarrollo , Plaguicidas , Ascomicetos/crecimiento & desarrollo , Illinois , Iowa , Michigan , Minnesota , Enfermedades de las Plantas/microbiología , Wisconsin
19.
Plant Dis ; 103(4): 677-684, 2019 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-30742552

RESUMEN

One hundred fifty-two Diaporthe isolates were recovered from symptomatic soybean (Glycine max) stems sampled from the U.S. states of Iowa, Indiana, Kentucky, Michigan, and South Dakota. Using morphology and DNA sequencing, isolates were identified as D. aspalathi (8.6%), D. caulivora (24.3%), and D. longicolla (67.1%). Aggressiveness of five isolates each of the three pathogens was studied on cultivars Hawkeye (D. caulivora and D. longicolla) and Bragg (D. aspalathi) using toothpick, stem-wound, mycelium contact, and spore injection inoculation methods in the greenhouse. For D. aspalathi, methods significantly affected disease severity (P < 0.001) and pathogen recovery (P < 0.001). The relative treatment effects (RTE) of stem-wound and toothpick methods were significantly greater than for the other methods. For D. caulivora and D. longicolla, a significant isolate × method interaction affected disease severity (P < 0.05) and pathogen recovery (P < 0.001). Significant differences in RTEs were observed among D. caulivora and D. longicolla isolates only when the stem-wound and toothpick methods were used. Our study has determined that the stem-wound and toothpick methods are reliable to evaluate the three pathogens; however, the significant isolate × method interactions for D. caulivora and D. longicolla indicate that multiple isolates should also be considered for future pathogenicity studies.


Asunto(s)
Ascomicetos , Microbiología de Alimentos , Glycine max , Ascomicetos/fisiología , Medio Oeste de Estados Unidos , Glycine max/microbiología
20.
Plant Dis ; 103(7): 1712-1720, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31059383

RESUMEN

Sudden death syndrome (SDS), caused by Fusarium virguliforme, is an important soilborne disease of soybean. Risk of SDS increases when cool and wet conditions occur soon after planting. Recently, multiple seed treatment and foliar products have been registered and advertised for management of SDS but not all have been tested side by side in the same field experiment at multiple field locations. In 2015 and 2016, seed treatment fungicides fluopyram and thiabendazole; seed treatment biochemical pesticides citric acid and saponins extract of Chenopodium quinoa; foliar fungicides fluoxastrobin + flutriafol; and an herbicide, lactofen, were evaluated in Illinois, Indiana, Iowa, Michigan, South Dakota, Wisconsin, and Ontario for SDS management. Treatments were tested on SDS-resistant and -susceptible cultivars at each location. Overall, fluopyram provided the highest level of control of root rot and foliar symptoms of SDS among all the treatments. Foliar application of lactofen reduced foliar symptoms in some cases but produced the lowest yield. In 2015, fluopyram reduced the foliar disease index (FDX) by over 50% in both resistant and susceptible cultivars and provided 8.9% yield benefit in susceptible cultivars and 3.5% yield benefit in resistant cultivars compared with the base seed treatment (control). In 2016, fluopyram reduced FDX in both cultivars by over 40% compared with the base seed treatment. For yield in 2016, treatment effect was not significant in the susceptible cultivar while, in the resistant cultivar, fluopyram provided 3.5% greater yield than the base seed treatment. In this study, planting resistant cultivars and using fluopyram seed treatment were the most effective tools for SDS management. However, plant resistance provided an overall better yield-advantage than using fluopyram seed treatment alone. Effective seed treatments can be an economically viable consideration to complement resistant cultivars for managing SDS.


Asunto(s)
Protección de Cultivos , Fungicidas Industriales , Fusarium , Glycine max , Protección de Cultivos/métodos , Fungicidas Industriales/farmacología , Fusarium/efectos de los fármacos , Ontario , Enfermedades de las Plantas/prevención & control , Semillas/química , Glycine max/crecimiento & desarrollo , Estados Unidos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA