Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 57
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Mol Psychiatry ; 26(10): 5715-5732, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-33837271

RESUMEN

Genome-wide association studies (GWAS) have identified polymorphism in the Apolipoprotein E gene (APOE) to be the most prominent risk factor for Alzheimer's disease (AD). Compared to individuals homozygous for the APOE3 variant, individuals with the APOE4 variant have a significantly elevated risk of AD. On the other hand, longitudinal studies have shown that the presence of the APOE2 variant reduces the lifetime risk of developing AD by 40 percent. While there has been significant research that has identified the risk-inducing effects of APOE4, the underlying mechanisms by which APOE2 influences AD onset and progression have not been extensively explored. In this study, we utilize an isogenic human induced pluripotent stem cell (hiPSC)-based system to demonstrate that conversion of APOE3 to APOE2 greatly reduced the production of amyloid-beta (Aß) peptides in hiPSC-derived neural cultures. Mechanistically, analysis of pure populations of neurons and astrocytes derived from these neural cultures revealed that mitigating effects of APOE2 are mediated by cell autonomous and non-autonomous effects. In particular, we demonstrated the reduction in Aß is potentially driven by a mechanism related to non-amyloidogenic processing of amyloid precursor protein (APP), suggesting a gain of the protective function of the APOE2 variant. Together, this study provides insights into the risk-modifying effects associated with the APOE2 allele and establishes a platform to probe the mechanisms by which APOE2 enhances neuroprotection against AD.


Asunto(s)
Enfermedad de Alzheimer , Apolipoproteínas E/genética , Células Madre Pluripotentes Inducidas , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides , Apolipoproteína E2/genética , Apolipoproteína E4/genética , Estudio de Asociación del Genoma Completo , Humanos , Fenotipo
2.
Acta Neuropathol ; 142(5): 807-825, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34453582

RESUMEN

APOE4 is a strong genetic risk factor for Alzheimer's disease and Dementia with Lewy bodies; however, how its expression impacts pathogenic pathways in a human-relevant system is not clear. Here using human iPSC-derived cerebral organoid models, we find that APOE deletion increases α-synuclein (αSyn) accumulation accompanied with synaptic loss, reduction of GBA levels, lipid droplet accumulation and dysregulation of intracellular organelles. These phenotypes are partially rescued by exogenous apoE2 and apoE3, but not apoE4. Lipidomics analysis detects the increased fatty acid utilization and cholesterol ester accumulation in apoE-deficient cerebral organoids. Furthermore, APOE4 cerebral organoids have increased αSyn accumulation compared to those with APOE3. Carrying APOE4 also increases apoE association with Lewy bodies in postmortem brains from patients with Lewy body disease. Our findings reveal the predominant role of apoE in lipid metabolism and αSyn pathology in iPSC-derived cerebral organoids, providing mechanistic insights into how APOE4 drives the risk for synucleinopathies.


Asunto(s)
Apolipoproteínas E/metabolismo , Metabolismo de los Lípidos/fisiología , Organoides/patología , Sinucleinopatías/metabolismo , alfa-Sinucleína/metabolismo , Animales , Humanos , Células Madre Pluripotentes Inducidas , Ratones , Organoides/metabolismo , Isoformas de Proteínas/metabolismo , Sinucleinopatías/patología
3.
Nucleic Acids Res ; 47(19): e120, 2019 11 04.
Artículo en Inglés | MEDLINE | ID: mdl-31428784

RESUMEN

Current approaches to identify cell populations that have been modified with deaminase base editing technologies are inefficient and rely on downstream sequencing techniques. In this study, we utilized a blue fluorescent protein (BFP) that converts to green fluorescent protein (GFP) upon a C-to-T substitution as an assay to report directly on base editing activity within a cell. Using this assay, we optimize various base editing transfection parameters and delivery strategies. Moreover, we utilize this assay in conjunction with flow cytometry to develop a transient reporter for editing enrichment (TREE) to efficiently purify base-edited cell populations. Compared to conventional cell enrichment strategies that employ reporters of transfection (RoT), TREE significantly improved the editing efficiency at multiple independent loci, with efficiencies approaching 80%. We also employed the BFP-to-GFP conversion assay to optimize base editor vector design in human pluripotent stem cells (hPSCs), a cell type that is resistant to genome editing and in which modification via base editors has not been previously reported. At last, using these optimized vectors in the context of TREE allowed for the highly efficient editing of hPSCs. We envision TREE as a readily adoptable method to facilitate base editing applications in synthetic biology, disease modeling, and regenerative medicine.


Asunto(s)
Sistemas CRISPR-Cas/genética , Edición Génica/métodos , ARN Guía de Kinetoplastida/genética , Transfección/métodos , Proteínas Fluorescentes Verdes/genética , Células HEK293 , Humanos , Células Madre Pluripotentes Inducidas/metabolismo
4.
BMC Biol ; 18(1): 193, 2020 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-33317513

RESUMEN

BACKGROUND: Adenine base editors (ABE) enable single nucleotide modifications without the need for double-stranded DNA breaks (DSBs) induced by conventional CRIPSR/Cas9-based approaches. However, most approaches that employ ABEs require inefficient downstream technologies to identify desired targeted mutations within large populations of manipulated cells. In this study, we developed a fluorescence-based method, named "Cas9-mediated adenosine transient reporter for editing enrichment" (CasMAs-TREE; herein abbreviated XMAS-TREE), to facilitate the real-time identification of base-edited cell populations. RESULTS: To establish a fluorescent-based assay able to detect ABE activity within a cell in real time, we designed a construct encoding a mCherry fluorescent protein followed by a stop codon (TGA) preceding the coding sequence for a green fluorescent protein (GFP), allowing translational readthrough and expression of GFP after A-to-G conversion of the codon to "TGG." At several independent loci, we demonstrate that XMAS-TREE can be used for the highly efficient purification of targeted cells. Moreover, we demonstrate that XMAS-TREE can be employed in the context of multiplexed editing strategies to simultaneous modify several genomic loci. In addition, we employ XMAS-TREE to efficiently edit human pluripotent stem cells (hPSCs), a cell type traditionally resistant to genetic modification. Furthermore, we utilize XMAS-TREE to generate clonal isogenic hPSCs at target sites not editable using well-established reporter of transfection (RoT)-based strategies. CONCLUSION: We established a method to detect adenosine base-editing activity within a cell, which increases the efficiency of editing at multiple genomic locations through an enrichment of edited cells. In the future, XMAS-TREE will greatly accelerate the application of ABEs in biomedical research.


Asunto(s)
Adenosina/genética , Proteína 9 Asociada a CRISPR/genética , Edición Génica/métodos , Genes Reporteros , Células Madre Pluripotentes/metabolismo , Adenina/química , Adenosina/metabolismo , Composición de Base , Proteína 9 Asociada a CRISPR/metabolismo , Humanos , Proteínas Luminiscentes/química , Análisis de la Célula Individual , Proteína Fluorescente Roja
5.
Neurobiol Dis ; 138: 104788, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32032733

RESUMEN

Although the biochemical and pathological hallmarks of Alzheimer's disease (AD), such as axonal transport defects, synaptic loss, and selective neuronal death, are well characterized, the underlying mechanisms that cause AD are largely unknown, thereby making it difficult to design effective therapeutic interventions. Genome-wide association studies (GWAS) studies have identified several factors associated with increased AD risk. Of these genetic factors, polymorphisms in the Apolipoprotein E (APOE) gene are the strongest and most prevalent. While it has been established that the ApoE protein modulates the formation of amyloid plaques and neurofibrillary tangles, the precise molecular mechanisms by which various ApoE isoforms enhance or mitigate AD onset and progression in aging adults are yet to be elucidated. Advances in cellular reprogramming to generate disease-in-a-dish models now provide a simplified and accessible system that complements animal and primary cell models to study ApoE in the context of AD. In this review, we will describe the use and manipulation of human induced pluripotent stem cells (hiPSCs) in dissecting the interaction between ApoE and AD. First, we will provide an overview of the proposed roles that ApoE plays in modulating pathophysiology of AD. Next, we will summarize the recent studies that have employed hiPSCs to model familial and sporadic AD. Lastly, we will speculate on how current advances in genome editing technologies and organoid culture systems can be used to improve hiPSC-based tools to investigate ApoE-dependent modulation of AD onset and progression.


Asunto(s)
Enfermedad de Alzheimer/metabolismo , Apolipoproteínas E/metabolismo , Células Madre Pluripotentes Inducidas/metabolismo , Enfermedad de Alzheimer/genética , Péptidos beta-Amiloides/genética , Péptidos beta-Amiloides/metabolismo , Animales , Apolipoproteína E4/metabolismo , Apolipoproteínas E/genética , Estudio de Asociación del Genoma Completo , Humanos
8.
Proc Natl Acad Sci U S A ; 111(4): 1409-14, 2014 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-24474766

RESUMEN

WNT signaling is involved in maintaining stem cells in an undifferentiated state; however, it is often unclear which WNTs and WNT receptors are mediating these activities. Here we examined the role of the WNT receptor FZD7 in maintaining human embryonic stem cells (hESCs) in an undifferentiated and pluripotent state. FZD7 expression is significantly elevated in undifferentiated cells relative to differentiated cell populations, and interfering with its expression or function, either by short hairpin RNA-mediated knockdown or with a fragment antigen binding (Fab) molecule directed against FZD7, disrupts the pluripotent state of hESCs. The FZD7-specific Fab blocks signaling by Wnt3a protein by down-regulating FZD7 protein levels, suggesting that FZD7 transduces Wnt signals to activate Wnt/ß-catenin signaling. These results demonstrate that FZD7 encodes a regulator of the pluripotent state and that hESCs require endogenous WNT/ß-catenin signaling through FZD7 to maintain an undifferentiated phenotype.


Asunto(s)
Células Madre Embrionarias/citología , Receptores Frizzled/fisiología , Células Madre Pluripotentes/citología , Animales , Diferenciación Celular , Línea Celular , Receptores Frizzled/metabolismo , Humanos , Ratones , Transducción de Señal , Proteína Wnt3A/metabolismo
9.
Physiol Genomics ; 45(23): 1123-35, 2013 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-24064536

RESUMEN

Within the adult organism, stem cells reside in defined anatomical microenvironments called niches. These architecturally diverse microenvironments serve to balance stem cell self-renewal and differentiation. Proper regulation of this balance is instrumental to tissue repair and homeostasis, and any imbalance can potentially lead to diseases such as cancer. Within each of these microenvironments, a myriad of chemical and physical stimuli interact in a complex (synergistic or antagonistic) manner to tightly regulate stem cell fate. The in vitro replication of these in vivo microenvironments will be necessary for the application of stem cells for disease modeling, drug discovery, and regenerative medicine purposes. However, traditional reductionist approaches have only led to the generation of cell culture methods that poorly recapitulate the in vivo microenvironment. To that end, novel engineering and systems biology approaches have allowed for the investigation of the biological and mechanical stimuli that govern stem cell fate. In this review, the application of these technologies for the dissection of stem cell microenvironments will be analyzed. Moreover, the use of these engineering approaches to construct in vitro stem cell microenvironments that precisely control stem cell fate and function will be reviewed. Finally, the emerging trend of using high-throughput, combinatorial methods for the stepwise engineering of stem cell microenvironments will be explored.


Asunto(s)
Bioingeniería/métodos , Microambiente Celular/fisiología , Matriz Extracelular/fisiología , Modelos Biológicos , Células Madre/fisiología , Biología de Sistemas/métodos , Fenómenos Biomecánicos , Biofisica , Comunicación Celular/fisiología , Medios de Cultivo/química , Humanos , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Técnicas Analíticas Microfluídicas
10.
Cells ; 12(8)2023 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-37190113

RESUMEN

The evolutionary conserved WNT signaling pathway orchestrates numerous complex biological processes during development and is critical to the maintenance of tissue integrity and homeostasis in the adult. As it relates to the central nervous system, WNT signaling plays several roles as it relates to neurogenesis, synaptic formation, memory, and learning. Thus, dysfunction of this pathway is associated with multiple diseases and disorders, including several neurodegenerative disorders. Alzheimer's disease (AD) is characterized by several pathologies, synaptic dysfunction, and cognitive decline. In this review, we will discuss the various epidemiological, clinical, and animal studies that demonstrate a precise link between aberrant WNT signaling and AD-associated pathologies. In turn, we will discuss the manner in which WNT signaling influences multiple molecular, biochemical, and cellular pathways upstream of these end-point pathologies. Finally, we will discuss how merging tools and technologies can be used to generate next generation cellular models to dissect the relationship between WNT signaling and AD.


Asunto(s)
Enfermedad de Alzheimer , Disfunción Cognitiva , Animales , Enfermedad de Alzheimer/metabolismo , Vía de Señalización Wnt/fisiología , Neurogénesis , Sistema Nervioso Central/metabolismo , Disfunción Cognitiva/complicaciones
11.
Acta Neuropathol Commun ; 11(1): 137, 2023 08 22.
Artículo en Inglés | MEDLINE | ID: mdl-37608352

RESUMEN

Traumatic brain injury (TBI) initiates tissue and cellular damage to the brain that is immediately followed by secondary injury sequalae with delayed and continual damage. This secondary damage includes pathological processes that may contribute to chronic neurodegeneration and permanent functional and cognitive deficits. TBI is also associated with an increased risk of developing neurodegenerative diseases such as Alzheimer's disease (AD), frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS) as indicated by shared pathological features. For example, abnormalities in the TAR DNA-binding Protein 43 (TDP-43) that includes cytoplasmic mislocalization, cytosolic aggregation, and an increase in phosphorylation and ubiquitination are seen in up to 50% of FTD cases, up to 70% of AD cases, and is considered a hallmark pathology of ALS occurring in > 97% of cases. Yet the prevalence of TDP-43 pathology post-TBI has yet to be fully characterized. Here, we employed a non-transgenic murine controlled cortical injury model of TBI and observed injury-induced hallmark TDP-43 pathologies in brain and spinal cord tissue distal to the primary injury site and did not include the focally damaged tissue within the primary cortical injury site. Analysis revealed a temporal-dependent and significant increase in neuronal TDP-43 mislocalization in the cortical forebrain rostral to and distant from the primary injury site up to 180 days post injury (DPI). TDP-43 mislocalization was also detected in neurons located in the ventral horns of the cervical spinal cord following a TBI. Moreover, a cortical layer-dependent affect was identified, increasing from superficial to deeper cortical layers over time from 7 DPI up to 180 DPI. Lastly, RNAseq analysis confirmed an injury-induced misregulation of several key biological processes implicated in neurons that increased over time. Collectively, this study demonstrates a connection between a single moderate TBI event and chronic neurodegenerative processes that are not limited to the primary injury site and broadly distributed throughout the cortex and corticospinal tract.


Asunto(s)
Enfermedad de Alzheimer , Esclerosis Amiotrófica Lateral , Lesiones Traumáticas del Encéfalo , Demencia Frontotemporal , Enfermedad de Pick , Ratones , Animales , Lesiones Traumáticas del Encéfalo/complicaciones , Encéfalo , Proteínas de Unión al ADN/genética
12.
Mol Ther Nucleic Acids ; 33: 483-492, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37588683

RESUMEN

Prime editing technologies enable precise genome editing without the caveats of CRISPR nuclease-based methods. Nonetheless, current approaches to identify and isolate prime-edited cell populations are inefficient. Here, we established a fluorescence-based system, prime-induced nucleotide engineering using a transient reporter for editing enrichment (PINE-TREE), for real-time enrichment of prime-edited cell populations. We demonstrated the broad utility of PINE-TREE for highly efficient introduction of substitutions, insertions, and deletions at various genomic loci. Finally, we employ PINE-TREE to rapidly and efficiently generate clonal isogenic human pluripotent stem cell lines, a cell type recalcitrant to genome editing.

13.
STAR Protoc ; 3(3): 101632, 2022 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-36035791

RESUMEN

Here, we describe a protocol for a microcarrier (MC)-based, large-scale generation and cryopreservation of human-induced pluripotent stem cell (hiPSC)-derived neurons and astrocytes. We also detail steps to isolate these populations with a high degree of purity. Finally, we describe how to cryopreserve these cell types while maintaining high levels of viability and preserving cellular function post-thaw. For complete details on the use and execution of this protocol, please refer to Brookhouser et al. (2021).


Asunto(s)
Células Madre Pluripotentes Inducidas , Astrocitos , Diferenciación Celular , Células Cultivadas , Humanos , Neuronas
14.
Sci Adv ; 8(50): eabq6720, 2022 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-36525500

RESUMEN

Long QT syndrome (LQTS) is a cardiovascular disease characterized by QT interval prolongation that can lead to sudden cardiac death. Many mutations with heterogeneous mechanisms have been identified in KCNH2, the gene that encodes for hERG (Kv11.1), which lead to onset of LQTS type 2 (LQTS2). In this work, we developed a LQTS2-diseased tissue-on-a-chip model, using 3D coculture of isogenic stem cell-derived cardiomyocytes (CMs) and cardiac fibroblasts (CFs) within an organotypic microfluidic chip technology. Primarily, we created a hiPSC line with R531W mutation in KCNH2 using CRISPR-Cas9 gene-editing technique and characterized the resultant differentiated CMs and CFs. A deficiency in hERG trafficking was identified in KCNH2-edited hiPSC-CMs, revealing a possible mechanism of R531W mutation in LQTS2 pathophysiology. Following creation of a 3D LQTS2 tissue-on-a-chip, the tissues were extensively characterized, through analysis of calcium handling and response to ß-agonist. Furthermore, attempted phenotypic rescue via pharmacological intervention of LQTS2 on a chip was investigated.


Asunto(s)
Células Madre Pluripotentes Inducidas , Síndrome de QT Prolongado , Humanos , Canal de Potasio ERG1/genética , Edición Génica , Síndrome de QT Prolongado/genética , Mutación , Dispositivos Laboratorio en un Chip
15.
Front Aging Neurosci ; 13: 813544, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35211003

RESUMEN

Numerous epidemiological studies have demonstrated that individuals who have sustained a traumatic brain injury (TBI) have an elevated risk for developing Alzheimer's disease and Alzheimer's-related dementias (AD/ADRD). Despite these connections, the underlying mechanisms by which TBI induces AD-related pathology, neuronal dysfunction, and cognitive decline have yet to be elucidated. In this review, we will discuss the various in vivo and in vitro models that are being employed to provide more definite mechanistic relationships between TBI-induced mechanical injury and AD-related phenotypes. In particular, we will highlight the strengths and weaknesses of each of these model systems as it relates to advancing the understanding of the mechanisms that lead to TBI-induced AD onset and progression as well as providing platforms to evaluate potential therapies. Finally, we will discuss how emerging methods including the use of human induced pluripotent stem cell (hiPSC)-derived cultures and genome engineering technologies can be employed to generate better models of TBI-induced AD.

16.
Stem Cell Res ; 57: 102586, 2021 Oct 26.
Artículo en Inglés | MEDLINE | ID: mdl-34736039

RESUMEN

In the canonical WNT signaling pathway, active WNT signaling results in the nuclear translocation of ß-catenin where it regulates target gene expression. As a tool to understand these ß-catenin DNA interactions, we used a CRISPR/Cas9 based approach to engineer a human embryonic stem cell line (hESC) harboring a 3X FLAG sequence fused to the C-terminus of ß-catenin. Engineered cells displayed a characteristic hESC morphology, expressed pluripotency-associated markers, retained tri-lineage differentiation potential, and had a normal euploid karyotype. This cell line represents a valuable tool to dissect the transcriptional mechanisms by which WNT signalling regulates pluripotent cell fate.

17.
ACS Synth Biol ; 10(2): 422-427, 2021 02 19.
Artículo en Inglés | MEDLINE | ID: mdl-33464043

RESUMEN

CRISPR-based technologies are paramount in genome engineering and synthetic biology. Prime editing (PE) is a technology capable of installing genomic edits without double-stranded DNA breaks (DSBs) or donor DNA. Prime editing guide RNAs (pegRNAs) simultaneously encode both guide and edit template sequences. They are more design intensive than CRISPR single guide RNAs (sgRNAs). As such, application of PE technology is hindered by the limited throughput of manual pegRNA design. To that end, we designed a software tool, Prime Induced Nucleotide Engineering Creator of New Edits (PINE-CONE), that enables high-throughput automated design of pegRNAs and prime editing strategies. PINE-CONE translates edit coordinates and sequences into pegRNA designs, accessory guides, and oligonucleotides for facile cloning workflows. To demonstrate PINE-CONE's utility in studying disease-relevant genotypes, we rapidly design a library of pegRNAs targeting Alzheimer's Disease single nucleotide polymorphisms (SNPs). Overall, PINE-CONE will accelerate the application of PEs in synthetic biology and biomedical research.


Asunto(s)
Sistemas CRISPR-Cas , Repeticiones Palindrómicas Cortas Agrupadas y Regularmente Espaciadas/genética , Edición Génica/métodos , Edición de ARN/genética , ARN Guía de Kinetoplastida/genética , Programas Informáticos , Animales , Automatización , Caenorhabditis elegans/genética , ADN/genética , Roturas del ADN de Doble Cadena , Drosophila melanogaster/genética , Genoma , Humanos , Ratones , Oligonucleótidos/genética , Polimorfismo de Nucleótido Simple , Saccharomyces cerevisiae/genética , Pez Cebra/genética
18.
Stem Cell Reports ; 16(12): 2852-2860, 2021 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-34767748

RESUMEN

Hundreds of businesses across the United States offer direct-to-consumer stem-cell-based interventions that have not been approved by the Food and Drug Administration. Here, we characterize the types of evidence used on the websites of 59 stem cell businesses in the Southwest United States to market their services. We identify over a dozen forms of evidence, noting that businesses are less likely to rely on "gold-standard" scientific evidence, like randomized clinical trials, and instead draw substantially on forms of evidence that we identify as being "ambiguous." Ambiguous evidence has some scientific or medical basis, but its interpretation is highly context-dependent. These findings highlight the interpretive responsibility placed on prospective patients. We identify actions for regulators and professional societies to assist with evaluating evidence, but caution that focusing on the (in)validity of particular evidence types is unlikely to eliminate demand for stem-cell-based treatments in this complex marketplace.


Asunto(s)
Publicidad Directa al Consumidor , Células Madre/citología , Humanos , Revisión de la Investigación por Pares , Publicaciones Periódicas como Asunto
19.
Nat Protoc ; 16(7): 3596-3624, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34172975

RESUMEN

Deaminase fused-Cas9 base editing technologies have enabled precise single-nucleotide genomic editing without the need for the introduction of damaging double-stranded breaks and inefficient homology-directed repair. However, current methods to isolate base-edited cell populations are ineffective, especially when utilized with human pluripotent stem cells, a cell type resistant to genome modification. Here, we outline a series of methods that employ transient reporters of editing enrichment (TREE) to facilitate the highly efficient single-base editing of human cells at precise genomic loci. Briefly, these transient reporters of editing enrichment based methods employ a transient episomal fluorescent reporter that allows for the real-time, flow-cytometry-based enrichment of cells that have had single nucleotide changes at precise genomic locations. This protocol details how these approaches can enable the rapid (~3-4 weeks) and efficient (clonal editing efficiencies >80%) generation of biallelic or multiplexed edited isogenic hPSC lines using adenosine and cytosine base editors.


Asunto(s)
Adenosina/metabolismo , Citosina/metabolismo , Edición Génica/métodos , Genes Reporteros , Células Madre Pluripotentes Inducidas/metabolismo , Secuencia de Bases , Células Clonales , Criopreservación , Citometría de Flujo , Humanos , Plásmidos/genética , ARN Guía de Kinetoplastida/metabolismo , Reproducibilidad de los Resultados , Análisis de la Célula Individual , Transfección
20.
Biomaterials ; 256: 120195, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32623207

RESUMEN

Despite significant efforts in the study of cardiovascular diseases (CVDs), they persist as the leading cause of mortality worldwide. Considerable research into human pluripotent stem cell-derived cardiomyocytes (hPSC-CMs) has highlighted their immense potential in the development of in vitro human cardiac tissues for broad mechanistic, therapeutic, and patient-specific disease modeling studies in the pursuit of CVD research. However, the relatively immature state of hPSC-CMs remains an obstacle in enhancing clinical relevance ofengineered cardiac tissue models. In this study, we describe development of a microfluidic platform for 3D modeling of cardiac tissues, derived from both rat cells and hPSC-CMs, to better recapitulate the native myocardium through co-culture with interstitial cells (specifically cardiac fibroblasts), biomimetic collagen hydrogel encapsulation, and induction of highly anisotropic tissue architecture. The presented platform is precisely engineered through incorporation of surface topography in the form of staggered microposts to enable long-term culture and maturation of cardiac cells, resulting in formation of physiologically relevant cardiac tissues with anisotropy that mimics native myocardium. After two weeks of culture, hPSC-derived cardiac tissues exhibited well-defined sarcomeric striations, highly synchronous contractions, and upregulation of several maturation genes, including HCN1, KCNQ1, CAV1.2, CAV3.1, PLN, and RYR2. These findings demonstrate the ability of the proposed engineered platform to mature animal- as well as human stem cell-derived cardiac tissues over an extended period of culture, providing a novel microfluidic chip with the capability for cardiac disease modeling and therapeutic testing.


Asunto(s)
Células Madre Pluripotentes , Ingeniería de Tejidos , Animales , Anisotropía , Diferenciación Celular , Humanos , Dispositivos Laboratorio en un Chip , Miocitos Cardíacos , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA