Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Blood ; 144(3): 308-322, 2024 Jul 18.
Artículo en Inglés | MEDLINE | ID: mdl-38657197

RESUMEN

ABSTRACT: Thrombotic microangiopathy (TMA) is characterized by immunothrombosis and life-threatening organ failure but the precise underlying mechanism driving its pathogenesis remains elusive. In this study, we hypothesized that gasdermin D (GSDMD), a pore-forming protein that serves as the final downstream effector of the pyroptosis/interleukin-1ß (IL-1ß) pathway, contributes to TMA and its consequences by amplifying neutrophil maturation and subsequent necrosis. Using a murine model of focal crystalline TMA, we found that Gsdmd deficiency ameliorated immunothrombosis, acute tissue injury, and failure. Gsdmd-/- mice exhibited a decrease in mature IL-1ß, as well as in neutrophil maturation, ß2-integrin activation, and recruitment to TMA lesions, in which they formed reduced neutrophil extracellular traps in both arteries and interstitial tissue. The GSDMD inhibitor disulfiram dose-dependently suppressed human neutrophil pyroptosis in response to cholesterol crystals. Experiments with GSDMD-deficient, human-induced, pluripotent stem cell-derived neutrophils confirmed the involvement of GSDMD in neutrophil ß2-integrin activation, maturation, and pyroptosis. Both prophylactic and therapeutic administration of disulfiram protected the mice from focal TMA, acute tissue injury, and failure. Our data identified GSDMD as a key mediator of focal crystalline TMA and its consequences, including ischemic tissue infarction and organ failure. GSDMD could potentially serve as a therapeutic target for the systemic forms of TMA.


Asunto(s)
Péptidos y Proteínas de Señalización Intracelular , Ratones Noqueados , Neutrófilos , Proteínas de Unión a Fosfato , Microangiopatías Trombóticas , Animales , Proteínas de Unión a Fosfato/metabolismo , Proteínas de Unión a Fosfato/genética , Ratones , Microangiopatías Trombóticas/patología , Microangiopatías Trombóticas/metabolismo , Microangiopatías Trombóticas/inmunología , Microangiopatías Trombóticas/etiología , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Humanos , Neutrófilos/inmunología , Neutrófilos/metabolismo , Neutrófilos/patología , Piroptosis , Interleucina-1beta/metabolismo , Trampas Extracelulares/metabolismo , Trampas Extracelulares/inmunología , Inflamación/patología , Inflamación/metabolismo , Ratones Endogámicos C57BL , Antígenos CD18/metabolismo , Antígenos CD18/genética , Modelos Animales de Enfermedad , Gasderminas
2.
Arterioscler Thromb Vasc Biol ; 43(8): 1339-1348, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37345523

RESUMEN

Blood flow-induced hemodynamic changes result in mechanical stress on blood cells and vessel walls. Increased shear stress can activate platelets and other circulating cells, triggering the rapid activation of receptors, calcium channels, and related signaling mechanisms. Shear stress can also modify the folding of extracellular molecules and directly activate mechanosensitive receptors and calcium channels. The mechanical movement of the extracellular matrix and the intracellular cortical actin cytoskeleton can change the conformation of platelet receptors and gate channel pores in the plasma membrane. Mechanosensitive platelet receptors and their downstream signaling events and metabolic products can also indirectly activate calcium channels. While the molecular composite of mechanotransduction pathways has been described in mammals, shear stress-induced platelet receptors and their cross talk with calcium channels have been incompletely characterized. In this review, we discuss current knowledge about the role of mechanosensitive platelet receptors and calcium channels in shear-dependent platelet activation and arterial thrombus formation.


Asunto(s)
Plaquetas , Canales de Calcio , Animales , Plaquetas/metabolismo , Canales de Calcio/metabolismo , Mecanotransducción Celular/fisiología , Activación Plaquetaria , Transducción de Señal , Calcio/metabolismo , Estrés Mecánico , Mamíferos/metabolismo
3.
Arterioscler Thromb Vasc Biol ; 43(8): 1494-1509, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37381987

RESUMEN

BACKGROUND: MAGT1 (magnesium transporter 1) is a subunit of the oligosaccharide protein complex with thiol-disulfide oxidoreductase activity, supporting the process of N-glycosylation. MAGT1 deficiency was detected in human patients with X-linked immunodeficiency with magnesium defect syndrome and congenital disorders of glycosylation, resulting in decreased cation responses in lymphocytes, thereby inhibiting the immune response against viral infections. Curative hematopoietic stem cell transplantation of patients with X-linked immunodeficiency with magnesium defect causes fatal bleeding and thrombotic complications. METHODS: We studied the role of MAGT1 deficiency in platelet function in relation to arterial thrombosis and hemostasis using several in vitro experimental settings and in vivo models of arterial thrombosis and transient middle cerebral artery occlusion model of ischemic stroke. RESULTS: MAGT1-deficient mice (Magt1-/y) displayed accelerated occlusive arterial thrombus formation in vivo, a shortened bleeding time, and profound brain damage upon focal cerebral ischemia. These defects resulted in increased calcium influx and enhanced second wave mediator release, which further reinforced platelet reactivity and aggregation responses. Supplementation of MgCl2 or pharmacological blockade of TRPC6 (transient receptor potential cation channel, subfamily C, member 6) channel, but not inhibition of store-operated calcium entry, normalized the aggregation responses of Magt1-/y platelets to the control level. GP (glycoprotein) VI activation of Magt1-/y platelets resulted in hyperphosphorylation of Syk (spleen tyrosine kinase), LAT (linker for activation of T cells), and PLC (phospholipase C) γ2, whereas the inhibitory loop regulated by PKC (protein kinase C) was impaired. A hyperaggregation response to the GPVI agonist was confirmed in human platelets isolated from a MAGT1-deficient (X-linked immunodeficiency with magnesium defect) patient. Haploinsufficiency of TRPC6 in Magt1-/y mice could normalize GPVI signaling, platelet aggregation, and thrombus formation in vivo. CONCLUSIONS: These results suggest that MAGT1 and TRPC6 are functionally linked. Therefore, deficiency or impaired functionality of MAGT1 could be a potential risk factor for arterial thrombosis and stroke.


Asunto(s)
Proteínas de Transporte de Catión , Homeostasis , Infarto de la Arteria Cerebral Media , Accidente Cerebrovascular Isquémico , Trombosis , Animales , Humanos , Ratones , Plaquetas/metabolismo , Calcio/metabolismo , Cationes/metabolismo , Accidente Cerebrovascular Isquémico/genética , Accidente Cerebrovascular Isquémico/complicaciones , Accidente Cerebrovascular Isquémico/metabolismo , Magnesio/metabolismo , Activación Plaquetaria , Agregación Plaquetaria , Glicoproteínas de Membrana Plaquetaria/metabolismo , Trombosis/genética , Trombosis/metabolismo , Canal Catiónico TRPC6/metabolismo , Proteínas de Transporte de Catión/deficiencia
4.
Kidney Int ; 104(1): 139-150, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37001603

RESUMEN

Kidney cholesterol crystal embolism (CCE) occurs in advanced atherosclerosis and induces a thrombotic (micro)angiopathy, a drop in the glomerular filtration rate (GFR), and an ischemic kidney infarction with necroinflammation. We speculated that common metabolic comorbidities such as diabetes or hyperuricemia would independently modulate each of these distinct pathophysiological processes. To test this, experimental CCE was induced by injecting cholesterol crystals into the left kidney artery of mice and thrombotic angiopathy, GFR drop, and infarct size were analyzed after 24 hours in the presence of hyperglycemia (about 500 mg/dL) or hyperuricemia (about 8 mg/dL) or their absence. In healthy mice, unilateral CCE caused diffuse thrombotic angiopathy in interlobar, arcuate and interlobular arteries, followed by a 50% or less drop in GFR compared to baseline and a variable degree of ischemic kidney necrosis. Hyperglycemia but not hyperuricemia aggravated thrombotic angiopathy although both caused a GFR decline, albeit via different mechanisms. Hyperglycemia aggravated GFR loss by increasing necroinflammation and infarct size, while the antioxidative effects of hyperuricemia reasonably attenuated necroinflammation and infarct size but induced a diffuse vasoconstriction in affected and unaffected kidney tissue. Thus, both hyperglycemia or hyperuricemia aggravate CCE-induced acute kidney failure despite having opposite effects on ischemic necroinflammation and infarction.


Asunto(s)
Lesión Renal Aguda , Embolia por Colesterol , Hiperglucemia , Hiperuricemia , Humanos , Riñón , Hiperuricemia/complicaciones , Hiperglucemia/complicaciones , Lesión Renal Aguda/etiología , Embolia por Colesterol/complicaciones , Isquemia , Tasa de Filtración Glomerular , Colesterol , Infarto/etiología
5.
Blood ; 135(14): 1146-1160, 2020 04 02.
Artículo en Inglés | MEDLINE | ID: mdl-32040544

RESUMEN

Increasing evidence suggests that platelets play a predominant role in colon and breast cancer metastasis, but the underlying molecular mechanisms remain elusive. Glycoprotein VI (GPVI) is a platelet-specific receptor for collagen and fibrin that triggers platelet activation through immunoreceptor tyrosine-based activation motif (ITAM) signaling and thereby regulates diverse functions, including platelet adhesion, aggregation, and procoagulant activity. GPVI has been proposed as a safe antithrombotic target, because its inhibition is protective in models of arterial thrombosis, with only minor effects on hemostasis. In this study, the genetic deficiency of platelet GPVI in mice decreased experimental and spontaneous metastasis of colon and breast cancer cells. Similar results were obtained with mice lacking the spleen-tyrosine kinase Syk in platelets, an essential component of the ITAM-signaling cascade. In vitro and in vivo analyses supported that mouse, as well as human GPVI, had platelet adhesion to colon and breast cancer cells. Using a CRISPR/Cas9-based gene knockout approach, we identified galectin-3 as the major counterreceptor of GPVI on tumor cells. In vivo studies demonstrated that the interplay between platelet GPVI and tumor cell-expressed galectin-3 uses ITAM-signaling components in platelets and favors the extravasation of tumor cells. Finally, we showed that JAQ1 F(ab')2-mediated inhibition of GPVI efficiently impairs platelet-tumor cell interaction and tumor metastasis. Our study revealed a new mechanism by which platelets promote the metastasis of colon and breast cancer cells and suggests that GPVI represents a promising target for antimetastatic therapies.


Asunto(s)
Plaquetas/patología , Neoplasias de la Mama/patología , Neoplasias del Colon/patología , Galectina 3/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo , Animales , Plaquetas/metabolismo , Neoplasias de la Mama/metabolismo , Línea Celular Tumoral , Movimiento Celular , Neoplasias del Colon/metabolismo , Femenino , Humanos , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/secundario , Masculino , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Metástasis de la Neoplasia/patología , Activación Plaquetaria , Glicoproteínas de Membrana Plaquetaria/genética , Mapas de Interacción de Proteínas
6.
Circ Res ; 126(8): e37-e52, 2020 04 10.
Artículo en Inglés | MEDLINE | ID: mdl-32089086

RESUMEN

RATIONALE: Cholesterol crystal embolism can be a life-threatening complication of advanced atherosclerosis. Pathophysiology and molecular targets for treatment are largely unknown. OBJECTIVE: We aimed to develop a new animal model of cholesterol crystal embolism to dissect the molecular mechanisms of cholesterol crystal (CC)-driven arterial occlusion, tissue infarction, and organ failure. METHODS AND RESULTS: C57BL/6J mice were injected with CC into the left kidney artery. Primary end point was glomerular filtration rate (GFR). CC caused crystal clots occluding intrarenal arteries and a dose-dependent drop in GFR, followed by GFR recovery within 4 weeks, that is, acute kidney disease. In contrast, the extent of kidney infarction was more variable. Blocking necroptosis using mixed lineage kinase domain-like deficient mice or necrostatin-1s treatment protected from kidney infarction but not from GFR loss because arterial obstructions persisted, identifying crystal clots as a primary target to prevent organ failure. CC involved platelets, neutrophils, fibrin, and extracellular DNA. Neutrophil depletion or inhibition of the release of neutrophil extracellular traps had little effects, but platelet P2Y12 receptor antagonism with clopidogrel, fibrinolysis with urokinase, or DNA digestion with recombinant DNase I all prevented arterial occlusions, GFR loss, and kidney infarction. The window-of-opportunity was <3 hours after CC injection. However, combining Nec-1s (necrostatin-1s) prophylaxis given 1 hour before and DNase I 3 hours after CC injection completely prevented kidney failure and infarcts. In vitro, CC did not directly induce plasmatic coagulation but induced neutrophil extracellular trap formation and DNA release mainly from kidney endothelial cells, neutrophils, and few from platelets. CC induced ATP release from aggregating platelets, which increased fibrin formation in a DNase-dependent manner. CONCLUSIONS: CC embolism causes arterial obstructions and organ failure via the formation of crystal clots with fibrin, platelets, and extracellular DNA as critical components. Therefore, our model enables to unravel the pathogenesis of the CC embolism syndrome as a basis for both prophylaxis and targeted therapy.


Asunto(s)
Colesterol/toxicidad , Embolia por Colesterol/patología , Riñón/irrigación sanguínea , Riñón/patología , Insuficiencia Renal/patología , Animales , Embolia por Colesterol/inducido químicamente , Células Endoteliales/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Insuficiencia Renal/inducido químicamente
7.
Proc Natl Acad Sci U S A ; 116(10): 4706-4715, 2019 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-30770447

RESUMEN

Zn2+, Mg2+, and Ca2+ are essential minerals required for a plethora of metabolic processes and signaling pathways. Different categories of cation-selective channels and transporters are therefore required to tightly control the cellular levels of individual metals in a cell-specific manner. However, the mechanisms responsible for the organismal balance of these essential minerals are poorly understood. Herein, we identify a central and indispensable role of the channel-kinase TRPM7 for organismal mineral homeostasis. The function of TRPM7 was assessed by single-channel analysis of TRPM7, phenotyping of TRPM7-deficient cells in conjunction with metabolic profiling of mice carrying kidney- and intestine-restricted null mutations in Trpm7 and animals with a global "kinase-dead" point mutation in the gene. The TRPM7 channel reconstituted in lipid bilayers displayed a similar permeability to Zn2+ and Mg2+ Consistently, we found that endogenous TRPM7 regulates the total content of Zn2+ and Mg2+ in cultured cells. Unexpectedly, genetic inactivation of intestinal rather than kidney TRPM7 caused profound deficiencies specifically of Zn2+, Mg2+, and Ca2+ at the organismal level, a scenario incompatible with early postnatal growth and survival. In contrast, global ablation of TRPM7 kinase activity did not affect mineral homeostasis, reinforcing the importance of the channel activity of TRPM7. Finally, dietary Zn2+ and Mg2+ fortifications significantly extended the survival of offspring lacking intestinal TRPM7. Hence, the organismal balance of divalent cations critically relies on one common gatekeeper, the intestinal TRPM7 channel.


Asunto(s)
Mucosa Intestinal/metabolismo , Minerales/metabolismo , Canales Catiónicos TRPM/metabolismo , Animales , Calcio/metabolismo , Técnicas de Inactivación de Genes , Homeostasis , Riñón/metabolismo , Magnesio/metabolismo , Ratones , Ratones Noqueados , Canales Catiónicos TRPM/genética , Zinc/metabolismo
8.
BMC Genomics ; 21(1): 897, 2020 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-33353544

RESUMEN

BACKGROUND: Understanding the molecular mechanisms of platelet activation and aggregation is of high interest for basic and clinical hemostasis and thrombosis research. The central platelet protein interaction network is involved in major responses to exogenous factors. This is defined by systemsbiological pathway analysis as the central regulating signaling cascade of platelets (CC). RESULTS: The CC is systematically compared here between mouse and human and major differences were found. Genetic differences were analysed comparing orthologous human and mouse genes. We next analyzed different expression levels of mRNAs. Considering 4 mouse and 7 human high-quality proteome data sets, we identified then those major mRNA expression differences (81%) which were supported by proteome data. CC is conserved regarding genetic completeness, but we observed major differences in mRNA and protein levels between both species. Looking at central interactors, human PLCB2, MMP9, BDNF, ITPR3 and SLC25A6 (always Entrez notation) show absence in all murine datasets. CC interactors GNG12, PRKCE and ADCY9 occur only in mice. Looking at the common proteins, TLN1, CALM3, PRKCB, APP, SOD2 and TIMP1 are higher abundant in human, whereas RASGRP2, ITGB2, MYL9, EIF4EBP1, ADAM17, ARRB2, CD9 and ZYX are higher abundant in mouse. Pivotal kinase SRC shows different regulation on mRNA and protein level as well as ADP receptor P2RY12. CONCLUSIONS: Our results highlight species-specific differences in platelet signaling and points of specific fine-tuning in human platelets as well as murine-specific signaling differences.


Asunto(s)
Activación Plaquetaria , Trombosis , Animales , Plaquetas , Factores de Intercambio de Guanina Nucleótido , Humanos , Ratones , Proteoma , Transducción de Señal
9.
Blood ; 141(4): 330-331, 2023 01 26.
Artículo en Inglés | MEDLINE | ID: mdl-36701170
10.
Haematologica ; 105(6): 1667-1676, 2020 06.
Artículo en Inglés | MEDLINE | ID: mdl-31582545

RESUMEN

Platelet aggregate formation is a multistep process involving receptor-mediated, as well as biomechanical, signaling cascades, which are highly dependent on actin dynamics. We have previously shown that actin depolymerizing factor (ADF)/n-cofilin and Twinfilin 2a, members of the ADF homology (ADF-H) protein family, have distinct roles in platelet formation and function. Coactosin-like 1 (Cotl1) is another ADF-H protein that binds actin and was also shown to enhance biosynthesis of pro-inflammatory leukotrienes (LT) in granulocytes. Here, we generated mice lacking Cotl1 in the megakaryocyte lineage (Cotl1-/- ) to investigate its role in platelet production and function. Absence of Cotl1 had no impact on platelet counts, platelet activation or cytoskeletal reorganization under static conditions in vitro In contrast, Cotl1 deficiency markedly affected platelet aggregate formation on collagen and adhesion to immobilized von Willebrand factor at high shear rates in vitro, pointing to an impaired function of the platelet mechanoreceptor glycoprotein (GP) Ib. Furthermore, Cotl1 -/-platelets exhibited increased deformability at high shear rates, indicating that the GPIb defect may be linked to altered biomechanical properties of the deficient cells. In addition, we found that Cotl1 deficiency markedly affected platelet LT biosynthesis. Strikingly, exogenous LT addition restored defective aggregate formation of Cotl1-/- platelets at high shear in vitro, indicating a critical role of platelet-derived LT in thrombus formation. In vivo, Cotl1 deficiency translated into prolonged tail bleeding times and protection from occlusive arterial thrombus formation. Together, our results show that Cotl1 in platelets is an integrator of biomechanical and LT signaling in hemostasis and thrombosis.


Asunto(s)
Plaquetas , Proteínas de Microfilamentos/genética , Trombosis , Animales , Ratones , Ratones Noqueados , Activación Plaquetaria , Complejo GPIb-IX de Glicoproteína Plaquetaria , Trombosis/genética , Factor de von Willebrand
11.
J Immunol ; 200(8): 2529-2534, 2018 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-29581357

RESUMEN

Cation homeostasis, in relation to various immune-suppressive diseases, is a novel field of investigation. Recently, patients with a loss-of-function mutation in magnesium transporter 1 (MAGT1) were reported to present a dysregulated Mg2+ homeostasis in T lymphocytes. Using Magt1-knockout mice (Magt1-/y ), we show that Mg2+ homeostasis was impaired in Magt1-/y B cells and Ca2+ influx was increased after BCR stimulation, whereas T and NK cell function was unaffected. Consequently, mutant B cells displayed an increased phosphorylation of BCR-related proteins differentially affecting protein kinase C activation. These in vitro findings translated into increased frequencies of CD19+ B cells and marginal zone B cells and decreased frequencies of plasma cells among CD45+ splenocytes in vivo. Altogether, our study demonstrates for the first time, to our knowledge, that abolished MAGT1 function causes imbalanced cation homeostasis and developmental responses in B cells. Therefore, this study might contribute to a further understanding of B cell-related pathologies.


Asunto(s)
Linfocitos B/metabolismo , Linfocitos B/fisiología , Proteínas de Transporte de Catión/metabolismo , Cationes/metabolismo , Hematopoyesis/fisiología , Homeostasis/fisiología , Animales , Antígenos CD19/metabolismo , Calcio/metabolismo , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/fisiología , Antígenos Comunes de Leucocito/metabolismo , Activación de Linfocitos/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína Quinasa C/metabolismo , Transducción de Señal/fisiología , Linfocitos T/metabolismo , Linfocitos T/fisiología
12.
Int J Mol Sci ; 21(16)2020 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-32781578

RESUMEN

N-glycans are covalently linked to an asparagine residue in a simple acceptor sequence of proteins, called a sequon. This modification is important for protein folding, enhancing thermodynamic stability, and decreasing abnormal protein aggregation within the endoplasmic reticulum (ER), for the lifetime and for the subcellular localization of proteins besides other functions. Hypoglycosylation is the hallmark of a group of rare genetic diseases called congenital disorders of glycosylation (CDG). These diseases are due to defects in glycan synthesis, processing, and attachment to proteins and lipids, thereby modifying signaling functions and metabolic pathways. Defects in N-glycosylation and O-glycosylation constitute the largest CDG groups. Clotting and anticlotting factor defects as well as a tendency to thrombosis or bleeding have been described in CDG patients. However, N-glycosylation of platelet proteins has been poorly investigated in CDG. In this review, we highlight normal and deficient N-glycosylation of platelet-derived molecules and discuss the involvement of platelets in the congenital disorders of N-glycosylation.


Asunto(s)
Plaquetas/metabolismo , Animales , Calcio/metabolismo , Metabolismo Energético , Glicosilación , Homeostasis , Humanos , Modelos Biológicos
13.
Stroke ; 50(11): 3238-3245, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31551038

RESUMEN

Background and Purpose- Ischemic stroke is one of the leading causes of disability and death. The principal goal of acute stroke treatment is the recanalization of the occluded cerebral arteries, which is, however, only effective in a very narrow time window. Therefore, neuroprotective treatments that can be combined with recanalization strategies are needed. Calcium overload is one of the major triggers of neuronal cell death. We have previously shown that capacitative Ca2+ entry, which is triggered by the depletion of intracellular calcium stores, contributes to ischemia-induced calcium influx in neurons, but the responsible Ca2+ channel is not known. Methods- Here, we have generated mice lacking the calcium channel subunit Orai2 and analyzed them in experimental stroke. Results- Orai2-deficient mice were protected from ischemic neuronal death both during acute ischemia under vessel occlusion and during ischemia/reperfusion upon successful recanalization. Calcium signals induced by calcium store depletion or oxygen/glucose deprivation were significantly diminished in Orai2-deficient neurons demonstrating that Orai2 is a central mediator of neuronal capacitative Ca2+ entry and is involved in calcium overload during ischemia. Conclusions- Our experimental data identify Orai2 as an attractive target for pharmaceutical intervention in acute stroke.


Asunto(s)
Isquemia Encefálica , Señalización del Calcio , Calcio/metabolismo , Neuroprotección , Proteína ORAI2/deficiencia , Accidente Cerebrovascular , Enfermedad Aguda , Animales , Isquemia Encefálica/genética , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patología , Isquemia Encefálica/prevención & control , Muerte Celular , Ratones , Ratones Noqueados , Neuronas/metabolismo , Neuronas/patología , Proteína ORAI2/metabolismo , Accidente Cerebrovascular/genética , Accidente Cerebrovascular/metabolismo , Accidente Cerebrovascular/patología , Accidente Cerebrovascular/prevención & control
14.
Blood ; 130(15): 1746-1756, 2017 10 12.
Artículo en Inglés | MEDLINE | ID: mdl-28743718

RESUMEN

Regulated reorganization of the actin cytoskeleton is a prerequisite for proper platelet production and function. Consequently, defects in proteins controlling actin dynamics have been associated with platelet disorders in humans and mice. Twinfilin 2a (Twf2a) is a small actin-binding protein that inhibits actin filament assembly by sequestering actin monomers and capping filament barbed ends. Moreover, Twf2a binds heterodimeric capping proteins, but the role of this interaction in cytoskeletal dynamics has remained elusive. Even though Twf2a has pronounced effects on actin dynamics in vitro, only little is known about its function in vivo. Here, we report that constitutive Twf2a-deficient mice (Twf2a-/-) display mild macrothrombocytopenia due to a markedly accelerated platelet clearance in the spleen. Twf2a-/- platelets showed enhanced integrin activation and α-granule release in response to stimulation of (hem) immunoreceptor tyrosine-based activation motif (ITAM) and G-protein-coupled receptors, increased adhesion and aggregate formation on collagen I under flow, and accelerated clot retraction and spreading on fibrinogen. In vivo, Twf2a deficiency resulted in shortened tail bleeding times and faster occlusive arterial thrombus formation. The hyperreactivity of Twf2a-/- platelets was attributed to enhanced actin dynamics, characterized by an increased activity of n-cofilin and profilin 1, leading to a thickened cortical cytoskeleton and hence sustained integrin activation by limiting calpain-mediated integrin inactivation. In summary, our results reveal the first in vivo functions of mammalian Twf2a and demonstrate that Twf2a-controlled actin rearrangements dampen platelet activation responses in a n-cofilin- and profilin 1-dependent manner, thereby indirectly regulating platelet reactivity and half-life in mice.


Asunto(s)
Plaquetas/metabolismo , Proteínas de Microfilamentos/metabolismo , Citoesqueleto de Actina/metabolismo , Animales , Apoptosis , Arterias/patología , Integrinas/metabolismo , Ratones , Trombocitopenia/metabolismo , Trombocitopenia/patología , Trombosis/patología
15.
Toxicol Appl Pharmacol ; 364: 106-113, 2019 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-30592962

RESUMEN

Collagen and convulxin induce platelet aggregation through glycoprotein VI (GPVI)-FcRγ-Syk signaling pathway. In addition, fibrinogen induces platelet activation through integrin αIIbß3-FcγRIIa-Syk signaling pathway. We previously reported that high concentrations of selective serotonin reuptake inhibitors (SSRI) reduce platelet aggregation induced by collagen. We further investigated the effects of SSRI on GPVI- and αIIbß3-mediated signaling pathway. Citalopram and escitalopram, two relatively pure SSRI, were used in this study. Both citalopram and escitalopram concentration-dependently inhibited convulxin-induced platelet aggregation, serotonin (5-HT) release and the activation of αIIbß3. 5-HT concentration in washed platelets was unchanged after short-term treatment with citalopram. The additional 5-HT failed to fully rescue the inhibitory effect of citalopram on convulxin-induced aggregation. Convulxin-induced phosphorylation of Syk, LAT, and Akt was inhibited by citalopram and escitalopram. Citalopram inhibited the interaction between FcRγ and Syk, whereas the phosphorylation of FcRγ in response to convulxin remained unaltered. Further, citalopram inhibited the increase of the interaction between serotonin transporter and Syk induced by convulxin. In the presence of Mn2+, escitalopram inhibited the formation of lamellipodia on immobilized fibrinogen. Escitalopram did not influence the binding of fibrinogen to platelets. It inhibited the phosphorylation of Syk and PAK triggered by the adhesion on fibrinogen. Our data demonstrate that micromolar concentrations of citalopram and escitalopram inhibit GPVI- and αIIbß3-mediated platelet functions. The mechanism of the inhibitory effect of citalopram or escitalopram is not the influence on the activation of GPVI or the interaction between fibrinogen and αIIbß3, but the interaction between Syk and its upstream molecules.


Asunto(s)
Plaquetas/efectos de los fármacos , Citalopram/farmacología , Inhibidores de Agregación Plaquetaria/farmacología , Agregación Plaquetaria/efectos de los fármacos , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/antagonistas & inhibidores , Glicoproteínas de Membrana Plaquetaria/antagonistas & inhibidores , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Plaquetas/enzimología , Venenos de Crotálidos/farmacología , Relación Dosis-Respuesta a Droga , Fibrinógeno/metabolismo , Humanos , Lectinas Tipo C , Proteínas de la Membrana/metabolismo , Fosforilación , Adhesividad Plaquetaria/efectos de los fármacos , Complejo GPIIb-IIIa de Glicoproteína Plaquetaria/metabolismo , Glicoproteínas de Membrana Plaquetaria/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Seudópodos/efectos de los fármacos , Seudópodos/enzimología , Receptores de IgG/metabolismo , Serotonina/metabolismo , Transducción de Señal/efectos de los fármacos , Quinasa Syk/metabolismo , Quinasas p21 Activadas/metabolismo
16.
Arterioscler Thromb Vasc Biol ; 38(2): 344-352, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29146750

RESUMEN

OBJECTIVE: TRPM7 (transient receptor potential cation channel, subfamily M, member 7) is a ubiquitously expressed bifunctional protein comprising a transient receptor potential channel segment linked to a cytosolic α-type serine/threonine protein kinase domain. TRPM7 forms a constitutively active Mg2+ and Ca2+ permeable channel, which regulates diverse cellular processes in both healthy and diseased conditions, but the physiological role of TRPM7 kinase remains largely unknown. APPROACH AND RESULTS: Here we show that point mutation in TRPM7 kinase domain deleting the kinase activity in mice (Trpm7R/R ) causes a marked signaling defect in platelets. Trpm7R/R platelets showed an impaired PIP2 (phosphatidylinositol-4,5-bisphosphate) metabolism and consequently reduced Ca2+ mobilization in response to stimulation of the major platelet receptors GPVI (glycoprotein VI), CLEC-2 (C-type lectin-like receptor), and PAR (protease-activated receptor). Altered phosphorylation of Syk (spleen tyrosine kinase) and phospholipase C γ2 and ß3 accounted for these global platelet activation defects. In addition, direct activation of STIM1 (stromal interaction molecule 1) with thapsigargin revealed a defective store-operated Ca2+ entry mechanism in the mutant platelets. These defects translated into an impaired platelet aggregate formation under flow and protection of the mice from arterial thrombosis and ischemic stroke in vivo. CONCLUSIONS: Our results identify TRPM7 kinase as a key modulator of phospholipase C signaling and store-operated Ca2+ entry in platelets. The protection of Trpm7R/R mice from acute ischemic disease without developing intracranial hemorrhage indicates that TRPM7 kinase might be a promising antithrombotic target.


Asunto(s)
Arteriopatías Oclusivas/sangre , Plaquetas/metabolismo , Señalización del Calcio , Calcio/sangre , Infarto de la Arteria Cerebral Media/sangre , Canales Catiónicos TRPM/sangre , Trombosis/sangre , Animales , Arteriopatías Oclusivas/genética , Arteriopatías Oclusivas/patología , Modelos Animales de Enfermedad , Infarto de la Arteria Cerebral Media/genética , Infarto de la Arteria Cerebral Media/patología , Lectinas Tipo C/sangre , Ratones Mutantes , Fosfatidilinositol 4,5-Difosfato/sangre , Fosfolipasa C beta/sangre , Fosfolipasa C gamma/sangre , Fosforilación , Glicoproteínas de Membrana Plaquetaria/metabolismo , Mutación Puntual , Receptores Proteinasa-Activados/sangre , Molécula de Interacción Estromal 1/sangre , Sinaptofisina/sangre , Canales Catiónicos TRPM/deficiencia , Canales Catiónicos TRPM/genética , Trombosis/genética , Trombosis/patología
17.
Int J Mol Sci ; 20(21)2019 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-31652790

RESUMEN

Zn2+ deficiency in the human population is frequent in underdeveloped countries. Worldwide, approximatively 2 billion people consume Zn2+-deficient diets, accounting for 1-4% of deaths each year, mainly in infants with a compromised immune system. Depending on the severity of Zn2+ deficiency, clinical symptoms are associated with impaired wound healing, alopecia, diarrhea, poor growth, dysfunction of the immune and nervous system with congenital abnormalities and bleeding disorders. Poor nutritional Zn2+ status in patients with metastatic squamous cell carcinoma or with advanced non-Hodgkin lymphoma, was accompanied by cutaneous bleeding and platelet dysfunction. Forcing Zn2+ uptake in the gut using different nutritional supplementation of Zn2+ could ameliorate many of these pathological symptoms in humans. Feeding adult rodents with a low Zn2+ diet caused poor platelet aggregation and increased bleeding tendency, thereby attracting great scientific interest in investigating the role of Zn2+ in hemostasis. Storage protein metallothionein maintains or releases Zn2+ in the cytoplasm, and the dynamic change of this cytoplasmic Zn2+ pool is regulated by the redox status of the cell. An increase of labile Zn2+ pool can be toxic for the cells, and therefore cytoplasmic Zn2+ levels are tightly regulated by several Zn2+ transporters located on the cell surface and also on the intracellular membrane of Zn2+ storage organelles, such as secretory vesicles, endoplasmic reticulum or Golgi apparatus. Although Zn2+ is a critical cofactor for more than 2000 transcription factors and 300 enzymes, regulating cell differentiation, proliferation, and basic metabolic functions of the cells, the molecular mechanisms of Zn2+ transport and the physiological role of Zn2+ store in megakaryocyte and platelet function remain elusive. In this review, we summarize the contribution of extracellular or intracellular Zn2+ to megakaryocyte and platelet function and discuss the consequences of dysregulated Zn2+ homeostasis in platelet-related diseases by focusing on thrombosis, ischemic stroke and storage pool diseases.


Asunto(s)
Plaquetas/metabolismo , Enfermedades por Almacenamiento Lisosomal/metabolismo , Accidente Cerebrovascular/metabolismo , Trombosis/metabolismo , Zinc/metabolismo , Animales , Plaquetas/fisiología , Hemostasis , Homeostasis , Humanos , Enfermedades por Almacenamiento Lisosomal/sangre , Accidente Cerebrovascular/sangre , Trombosis/sangre
18.
Blood ; 137(13): 1708-1709, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33792677
19.
Haematologica ; 103(3): 540-549, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29242293

RESUMEN

In patients with dysfunctions of the Ca2+ channel ORAI1, stromal interaction molecule 1 (STIM1) or integrin-regulating kindlin-3 (FERMT3), severe immunodeficiency is frequently linked to abnormal platelet activity. In this paper, we studied platelet responsiveness by multiparameter assessment of whole blood thrombus formation under high-shear flow conditions in 9 patients, including relatives, with confirmed rare genetic mutations of ORAI1, STIM1 or FERMT3. In platelets isolated from 5 out of 6 patients with ORAI1 or STIM1 mutations, store-operated Ca2+ entry (SOCE) was either completely or partially defective compared to control platelets. Parameters of platelet adhesion and aggregation on collagen microspots were impaired for 4 out of 6 patients, in part related to a low platelet count. For 4 patients, platelet adhesion/aggregation and procoagulant activity on von Willebrand Factor (VWF)/rhodocytin and VWF/fibrinogen microspots were impaired independently of platelet count, and were partly correlated with SOCE deficiency. Measurement of thrombus formation at low shear rate confirmed a greater impairment of platelet functionality in the ORAI1 patients than in the STIM1 patient. For 3 patients/relatives with a FERMT3 mutation, all parameters of thrombus formation were strongly reduced regardless of the microspot. Bone marrow transplantation, required by 2 patients, resulted in overall improvement of platelet function. We concluded that multiparameter assessment of whole blood thrombus formation in a surface-dependent way can detect: i) additive effects of low platelet count and impaired platelet functionality; ii) aberrant ORAI1-mediated Ca2+ entry; iii) differences in platelet activation between patients carrying the same ORAI1 mutation; iv) severe platelet function impairment linked to a FERMT3 mutation and bleeding history.


Asunto(s)
Síndromes de Inmunodeficiencia/sangre , Activación Plaquetaria/genética , Calcio/metabolismo , Humanos , Síndromes de Inmunodeficiencia/genética , Proteínas de la Membrana/genética , Mutación , Proteínas de Neoplasias/genética , Proteína ORAI1/genética , Adhesividad Plaquetaria , Agregación Plaquetaria , Pruebas de Función Plaquetaria , Molécula de Interacción Estromal 1/genética , Trombosis/etiología
20.
Platelets ; 29(6): 541-548, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29863942

RESUMEN

Platelets serotonin (5-hydroxytrytamine, 5-HT) uptake and storage in dense granules is tightly regulated by the serotonergic transport system in the blood. Several 5-HT transporters (5-HTTs) have been identified in the vasculature and blood cells, beyond them 5-HTT is the major 5-HT transporter in platelets. Abnormal 5-HT concentrations in the blood plasma or increased platelet 5-HT uptake or abnormal release contribute to the development of various diseases in the vasculature. Consequently, several clinical trials suggested the positive therapeutic effects of 5-HTT blockade in the circulation. Inhibition of 5-HT strongly attenuates autocrine and paracrine functions of platelets, influencing platelet aggregation, vascular contraction, permeability, tissue repair, wound healing, immunity and cancer. Here, we highlight the current state of basic biological research regarding the hemostatic and non-hemostatic functions of platelet-derived 5-HT in normal and disease conditions. We also describe the physiological consequences of targeting platelet 5-HT functions in thrombosis, stroke, inflammation and cancer to overcome common health problems.


Asunto(s)
Comunicación Autocrina/genética , Plaquetas/metabolismo , Comunicación Paracrina/genética , Serotonina/sangre , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA