Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 78
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 175(2): 530-543.e24, 2018 10 04.
Artículo en Inglés | MEDLINE | ID: mdl-30220458

RESUMEN

The occurrence of a spontaneous nephropathy with intranuclear inclusions in laboratory mice has puzzled pathologists for over 4 decades, because its etiology remains elusive. The condition is more severe in immunodeficient animals, suggesting an infectious cause. Using metagenomics, we identify the causative agent as an atypical virus, termed "mouse kidney parvovirus" (MKPV), belonging to a divergent genus of Parvoviridae. MKPV was identified in animal facilities in Australia and North America, is transmitted via a fecal-oral or urinary-oral route, and is controlled by the adaptive immune system. Detailed analysis of the clinical course and histopathological features demonstrated a stepwise progression of pathology ranging from sporadic tubular inclusions to tubular degeneration and interstitial fibrosis and culminating in renal failure. In summary, we identify a widely distributed pathogen in laboratory mice and establish MKPV-induced nephropathy as a new tool for elucidating mechanisms of tubulointerstitial fibrosis that shares molecular features with chronic kidney disease in humans.


Asunto(s)
Nefritis Intersticial/virología , Parvovirus/aislamiento & purificación , Parvovirus/patogenicidad , Animales , Australia , Progresión de la Enfermedad , Femenino , Fibrosis/patología , Fibrosis/virología , Humanos , Riñón/metabolismo , Riñón/fisiología , Masculino , Ratones , Ratones Endogámicos C57BL , Nefritis Intersticial/fisiopatología , América del Norte , Infecciones por Parvoviridae/metabolismo
2.
Genes Dev ; 33(19-20): 1381-1396, 2019 10 01.
Artículo en Inglés | MEDLINE | ID: mdl-31488579

RESUMEN

Short telomere syndromes manifest as familial idiopathic pulmonary fibrosis; they are the most common premature aging disorders. We used genome-wide linkage to identify heterozygous loss of function of ZCCHC8, a zinc-knuckle containing protein, as a cause of autosomal dominant pulmonary fibrosis. ZCCHC8 associated with TR and was required for telomerase function. In ZCCHC8 knockout cells and in mutation carriers, genomically extended telomerase RNA (TR) accumulated at the expense of mature TR, consistent with a role for ZCCHC8 in mediating TR 3' end targeting to the nuclear RNA exosome. We generated Zcchc8-null mice and found that heterozygotes, similar to human mutation carriers, had TR insufficiency but an otherwise preserved transcriptome. In contrast, Zcchc8-/- mice developed progressive and fatal neurodevelopmental pathology with features of a ciliopathy. The Zcchc8-/- brain transcriptome was highly dysregulated, showing accumulation and 3' end misprocessing of other low-abundance RNAs, including those encoding cilia components as well as the intronless replication-dependent histones. Our data identify a novel cause of human short telomere syndromes-familial pulmonary fibrosis and uncover nuclear exosome targeting as an essential 3' end maturation mechanism that vertebrate TR shares with replication-dependent histones.


Asunto(s)
Proteínas Portadoras/genética , Fibrosis Pulmonar Idiopática/genética , Mutación con Pérdida de Función , Proteínas Nucleares/genética , ARN/metabolismo , Telomerasa/metabolismo , Animales , Encéfalo/enzimología , Encéfalo/fisiopatología , Línea Celular , Cilios/genética , Femenino , Ligamiento Genético , Células HCT116 , Humanos , Fibrosis Pulmonar Idiopática/enzimología , Fibrosis Pulmonar Idiopática/fisiopatología , Masculino , Ratones , Ratones Noqueados , Trastornos del Neurodesarrollo/genética , Linaje , Procesamiento Postranscripcional del ARN/genética , Acortamiento del Telómero/genética
3.
Am J Pathol ; 192(2): 195-207, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34767812

RESUMEN

To catalyze severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) research, including development of novel interventive and preventive strategies, the progression of disease was characterized in a robust coronavirus disease 2019 (COVID-19) animal model. In this model, male and female golden Syrian hamsters were inoculated intranasally with SARS-CoV-2 USA-WA1/2020. Groups of inoculated and mock-inoculated uninfected control animals were euthanized at 2, 4, 7, 14, and 28 days after inoculation to track multiple clinical, pathology, virology, and immunology outcomes. SARS-CoV-2-inoculated animals consistently lost body weight during the first week of infection, had higher lung weights at terminal time points, and developed lung consolidation per histopathology and quantitative image analysis measurements. High levels of infectious virus and viral RNA were reliably present in the respiratory tract at days 2 and 4 after inoculation, corresponding with widespread necrosis and inflammation. At day 7, when the presence of infectious virus was rare, interstitial and alveolar macrophage infiltrates and marked reparative epithelial responses (type II hyperplasia) dominated in the lung. These lesions resolved over time, with only residual epithelial repair evident by day 28 after inoculation. The use of quantitative approaches to measure cellular and morphologic alterations in the lung provides valuable outcome measures for developing therapeutic and preventive interventions for COVID-19 using the hamster COVID-19 model.


Asunto(s)
COVID-19/patología , Animales , COVID-19/virología , Cricetinae , Modelos Animales de Enfermedad , Femenino , Pulmón/patología , Masculino , Mesocricetus , SARS-CoV-2
4.
Eur J Nucl Med Mol Imaging ; 49(13): 4369-4381, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-35965291

RESUMEN

PURPOSE: We developed a theranostic radiopharmaceutical that engages two key cell surface proteases, fibroblast activation protein alpha (FAP) and prostate-specific membrane antigen (PSMA), each frequently overexpressed within the tumor microenvironment (TME). The latter is also expressed in most prostate tumor epithelium. To engage a broader spectrum of cancers for imaging and therapy, we conjugated small-molecule FAP and PSMA-targeting moieties using an optimized linker to provide 64Cu-labeled compounds. METHODS: We synthesized FP-L1 and FP-L2 using two linker constructs attaching the FAP and PSMA-binding pharmacophores. We determined in vitro inhibition constants (Ki) for FAP and PSMA. Cell uptake assays and flow cytometry were conducted in human glioma (U87), melanoma (SK-MEL-24), prostate cancer (PSMA + PC3 PIP and PSMA - PC3 flu), and clear cell renal cell carcinoma lines (PSMA + /PSMA - 786-O). Quantitative positron emission tomography/computed tomography (PET/CT) and tissue biodistribution studies were performed using U87, SK-MEL-24, PSMA + PC3 PIP, and PSMA + 786-O experimental xenograft models and the KPC genetically engineered mouse model of pancreatic cancer. RESULTS: 64Cu-FP-L1 and 64Cu-FP-L2 were produced in high radiochemical yields (> 98%) and molar activities (> 19 MBq/nmol). Ki values were in the nanomolar range for both FAP and PSMA. PET imaging and biodistribution studies revealed high and specific targeting of 64Cu-FP-L1 and 64Cu-FP-L2 for FAP and PSMA. 64Cu-FP-L1 displayed more favorable pharmacokinetics than 64Cu-FP-L2. In the U87 tumor model at 2 h post-injection, tumor uptake of 64Cu-FP-L1 (10.83 ± 1.02%ID/g) was comparable to 64Cu-FAPI-04 (9.53 ± 2.55%ID/g). 64Cu-FP-L1 demonstrated high retention 5.34 ± 0.29%ID/g at 48 h in U87 tumor. Additionally, 64Cu-FP-L1 showed high retention in PSMA + PC3 PIP tumor (12.06 ± 0.78%ID/g at 2 h and 10.51 ± 1.82%ID/g at 24 h). CONCLUSIONS: 64Cu-FP-L1 demonstrated high and specific tumor targeting of FAP and PSMA. This compound should enable imaging of lesions expressing FAP, PSMA, or both on the tumor cell surface or within the TME. FP-L1 can readily be converted into a theranostic for the management of heterogeneous tumors.


Asunto(s)
Neoplasias de la Próstata , Radiofármacos , Animales , Masculino , Ratones , Humanos , Radiofármacos/farmacocinética , Tomografía Computarizada por Tomografía de Emisión de Positrones/métodos , Distribución Tisular , Línea Celular Tumoral , Glutamato Carboxipeptidasa II/metabolismo , Tomografía de Emisión de Positrones , Neoplasias de la Próstata/patología , Microambiente Tumoral
5.
Vet Pathol ; 58(2): 258-265, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33327888

RESUMEN

Animal models have critical roles in biomedical research in promoting understanding of human disease and facilitating development of new therapies and diagnostic techniques to improve human and animal health. In the study of myriad human conditions, each model requires in-depth characterization of its assets and limitations in order for it to be used to greatest advantage. Veterinary pathology expertise is critical in understanding the relevance and translational validity of animal models to conditions under study, assessing morbidity and mortality, and validating outcomes as relevant or not to the study interventions. Clear communication with investigators and education of research personnel on the use and interpretation of pathology endpoints in animal models are critical to the success of any research program. The veterinary pathologist is underutilized in biomedical research due to many factors including misconceptions about high fiscal costs, lack of perceived value, limited recognition of their expertise, and the generally low number of veterinary pathologists currently employed in biomedical research. As members of the multidisciplinary research team, veterinary pathologists have an important role to educate scientists, ensure accurate interpretation of pathology data, maximize rigor, and ensure reproducibility to provide the most reliable data for animal models in biomedical research.


Asunto(s)
Investigación Biomédica , Patología Veterinaria , Veterinarios , Animales , Humanos , Patólogos , Reproducibilidad de los Resultados
6.
Eur J Nucl Med Mol Imaging ; 46(12): 2545-2557, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31399803

RESUMEN

PURPOSE: To develop a prostate-specific membrane antigen (PSMA)-targeted radiotherapeutic for metastatic castration-resistant prostate cancer (mCRPC) with optimized efficacy and minimized toxicity employing the ß-particle radiation of 177Lu. METHODS: We synthesized 14 new PSMA-targeted, 177Lu-labeled radioligands (177Lu-L1-177Lu-L14) using different chelating agents and linkers. We evaluated them in vitro using human prostate cancer PSMA(+) PC3 PIP and PSMA(-) PC3 flu cells and in corresponding flank tumor models. Efficacy and toxicity after 8 weeks were evaluated at a single administration of 111 MBq for 177Lu-L1, 177Lu-L3, 177Lu-L5 and 177Lu-PSMA-617. Efficacy of 177Lu-L1 was further investigated using different doses, and long-term toxicity was determined in healthy immunocompetent mice. RESULTS: Radioligands were produced in high radiochemical yield and purity. Cell uptake and internalization indicated specific uptake only in PSMA(+) PC3 cells. 177Lu-L1, 177Lu-L3 and 177Lu-L5 demonstrated comparable uptake to 177Lu-PSMA-617 and 177Lu-PSMA-I&T in PSMA-expressing tumors up to 72 h post-injection. 177Lu-L1, 177Lu-L3 and 177Lu-L5 also demonstrated efficient tumor regression at 8 weeks. 177Lu-L1 enabled the highest survival rate. Necropsy studies of the treated group at 8 weeks revealed subacute damage to lacrimal glands and testes. No radiation nephropathy was observed 1 year post-treatment in healthy mice receiving 111 MBq of 177Lu-L1, most likely related to the fast renal clearance of this agent. CONCLUSIONS: 177Lu-L1 is a viable clinical candidate for radionuclide therapy of PSMA-expressing malignancies because of its high tumor-targeting ability and low off-target radiotoxic effects.


Asunto(s)
Glutamato Carboxipeptidasa II/metabolismo , Lutecio/química , Radioisótopos/química , Radiofármacos/química , Radiofármacos/uso terapéutico , Animales , Marcaje Isotópico , Masculino , Ratones , Peso Molecular , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/radioterapia , Radiometría , Radiofármacos/metabolismo
8.
Toxicol Pathol ; 45(4): 574-575, 2017 06.
Artículo en Inglés | MEDLINE | ID: mdl-28641507

RESUMEN

Since its creation in 2004, the Coalition for Veterinary Pathology Fellows, a partnership between the American College of Veterinary Pathologists and the Society of Toxicologic Pathology, has established 32 new training positions backed by US$7.4 million in financial support from private sponsors.


Asunto(s)
Becas , Patología Veterinaria/educación , Sociedades Científicas , Animales , Educación en Veterinaria , Humanos , Patología , Toxicología , Estados Unidos
9.
J Pathol ; 238(2): 359-67, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26387837

RESUMEN

Animal models are essential research tools in modern biomedical research, but there are concerns about their lack of reproducibility and the failure of animal data to translate into advances in human medical therapy. A major factor in improving experimental reproducibility is thorough communication of research methodologies. The recently published ARRIVE guidelines outline basic information that should be provided when reporting animal studies. This paper builds on ARRIVE by providing the minimum information needed in reports to allow proper assessment of pathology data gathered from animal tissues. This guidance covers aspects of experimental design, technical procedures, data gathering, analysis, and presentation that are potential sources of variation when creating morphological, immunohistochemical (IHC) or in situ hybridization (ISH) datasets. This reporting framework will maximize the likelihood that pathology data derived from animal experiments can be reproduced by ensuring that sufficient information is available to allow for replication of the methods and facilitate inter-study comparison by identifying potential interpretative confounders.


Asunto(s)
Modelos Animales , Patología/métodos , Guías de Práctica Clínica como Asunto , Experimentación Animal , Animales , Humanos , Difusión de la Información , Publicaciones , Proyectos de Investigación , Investigación Biomédica Traslacional
10.
J Immunol ; 189(3): 1243-52, 2012 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-22753934

RESUMEN

IL-10 is an immunoregulatory cytokine expressed by numerous cell types. Studies in mice confirm that different IL-10-expressing cell subsets contribute differentially to disease phenotypes. However, little is known about the relationship between cell- or tissue-specific IL-10 expression and disease susceptibility in humans. In this study, we used the previously described human (h)IL10BAC transgenic model to examine the role of hIL-10 in maintaining intestinal homeostasis. Genomically controlled hIL-10 expression rescued Il10(-/-) mice from Helicobacter-induced colitis and was associated with control of proinflammatory cytokine expression and Th17 cell accumulation in gut tissues. Resistance to colitis was associated with an accumulation of hIL-10-expressing CD4(+)Foxp3(+) regulatory T cells specifically within the lamina propria but not other secondary lymphoid tissues. Cotransfer of CD4(+)CD45RB(lo) cells from Il10(-/-)/hIL10BAC mice rescued Rag1(-/-) mice from colitis, further suggesting that CD4(+) T cells represent a protective source of hIL-10 in the colon. In concordance with an enhanced capacity to express IL-10, CD4(+)CD44(+) T cells isolated from the lamina propria exhibited lower levels of the repressive histone mark H3K27Me3 and higher levels of the permissive histone mark acetylated histone H3 in both the human and mouse IL10 locus compared with the spleen. These results provide experimental evidence verifying the importance of T cell-derived hIL-10 expression in controlling inflammation within the colonic mucosa. We also provide molecular evidence suggesting the tissue microenvironment influences IL-10 expression patterns and chromatin structure in the human (and mouse) IL10 locus.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/metabolismo , Colitis/prevención & control , Infecciones por Helicobacter/prevención & control , Interleucina-10/genética , Animales , Linfocitos T CD4-Positivos/microbiología , Colitis/genética , Colitis/inmunología , Helicobacter/inmunología , Infecciones por Helicobacter/genética , Infecciones por Helicobacter/inmunología , Homeostasis/genética , Homeostasis/inmunología , Humanos , Interleucina-10/biosíntesis , Interleucina-10/deficiencia , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Ratones Transgénicos , Membrana Mucosa/inmunología , Membrana Mucosa/metabolismo , Membrana Mucosa/microbiología
11.
J Control Release ; 371: 101-110, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38782065

RESUMEN

Vaginal drug delivery is often preferred over systemic delivery to reduce side effects and increase efficacy in treating diseases and conditions of the female reproductive tract (FRT). Current vaginal products have drawbacks, including spontaneous ejection of drug-eluting rings and unpleasant discharge from vaginal creams. Here, we describe the development and characterization of a hypotonic, gel-forming, Pluronic-based delivery system for vaginal drug administration. The rheological properties were characterized with and without common hydrogel polymers to demonstrate the versatility. Both qualitative and quantitative approaches were used to determine the Pluronic F127 concentration below the critical gel concentration (CGC) that was sufficient to achieve gelation when formulated to be hypotonic to the mouse vagina. The hypotonic, gel-forming formulation was found to form a thin, uniform gel layer along the vaginal epithelium in mice, in contrast to the rapidly forming conventional gelling formulation containing polymer above the CGC. When the hypotonic, gel-forming vehicle was formulated in combination with a progesterone nanosuspension (ProGel), equivalent efficacy was observed in the prevention of chemically-induced preterm birth (PTB) compared to commercial Crinone® vaginal cream. Further, ProGel showed marked benefits in reducing unpleasant discharge, reducing product-related toxicity, and improving compatibility with vaginal bacteria in vitro. A hypotonic, gel-forming delivery system may be a viable option for therapeutic delivery to the FRT.


Asunto(s)
Sistemas de Liberación de Medicamentos , Geles , Poloxámero , Vagina , Femenino , Animales , Administración Intravaginal , Poloxámero/química , Vagina/efectos de los fármacos , Progesterona/administración & dosificación , Progesterona/química , Reología , Ratones , Cremas, Espumas y Geles Vaginales/administración & dosificación , Embarazo
12.
Mol Cancer ; 12: 90, 2013 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-23919753

RESUMEN

BACKGROUND: Recent epidemiological studies demonstrate that both active and involuntary exposure to tobacco smoke increase the risk of breast cancer. Little is known, however, about the molecular mechanisms by which continuous, long term exposure to tobacco smoke contributes to breast carcinogenesis because most previous studies have focused on short term treatment models. In this work we have set out to investigate the progressive transforming effects of tobacco smoke on non-tumorigenic mammary epithelial cells and breast cancer cells using in vitro and in vivo models of chronic cigarette smoke exposure. RESULTS: We show that both non-tumorigenic (MCF 10A, MCF-12A) and tumorigenic (MCF7) breast epithelial cells exposed to cigarette smoke acquire mesenchymal properties such as fibroblastoid morphology, increased anchorage-independent growth, and increased motility and invasiveness. Moreover, transplantation experiments in mice demonstrate that treatment with cigarette smoke extract renders MCF 10A cells more capable to survive and colonize the mammary ducts and MCF7 cells more prone to metastasize from a subcutaneous injection site, independent of cigarette smoke effects on the host and stromal environment. The extent of transformation and the resulting phenotype thus appear to be associated with the differentiation state of the cells at the time of exposure. Analysis by flow cytometry showed that treatment with CSE leads to the emergence of a CD44(hi)/CD24(low) population in MCF 10A cells and of CD44+ and CD49f + MCF7 cells, indicating that cigarette smoke causes the emergence of cell populations bearing markers of self-renewing stem-like cells. The phenotypical alterations induced by cigarette smoke are accompanied by numerous changes in gene expression that are associated with epithelial to mesenchymal transition and tumorigenesis. CONCLUSIONS: Our results indicate that exposure to cigarette smoke leads to a more aggressive and transformed phenotype in human mammary epithelial cells and that the differentiation state of the cell at the time of exposure may be an important determinant in the phenotype of the final transformed state.


Asunto(s)
Neoplasias de la Mama/etiología , Neoplasias de la Mama/patología , Transición Epitelial-Mesenquimal , Fumar/efectos adversos , Animales , Mama/metabolismo , Mama/patología , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Transformación Celular Neoplásica/genética , Transformación Celular Neoplásica/metabolismo , Células Epiteliales/metabolismo , Células Epiteliales/patología , Transición Epitelial-Mesenquimal/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Humanos , Células MCF-7 , Ratones , Invasividad Neoplásica , Metástasis de la Neoplasia , Células Madre/metabolismo
13.
Biochem Biophys Res Commun ; 434(1): 70-4, 2013 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-23545254

RESUMEN

The high mobility group A1 gene (HMGA1) has been previously implicated in breast carcinogenesis, and is considered an attractive target for therapeutic intervention because its expression is virtually absent in normal adult tissue. Other studies have shown that knockdown of HMGA1 reduces the tumorigenic potential of breast cancer cells in vitro. Therefore, we sought to determine if silencing HMGA1 can affect breast cancer development and metastatic progression in vivo. We silenced HMGA1 expression in the human breast cancer cell line MDA-MB-231 using an RNA interference vector, and observed a significant reduction in anchorage-independent growth and tumorsphere formation, which respectively indicate loss of tumorigenesis and self-renewal ability. Moreover, silencing HMGA1 significantly impaired xenograft growth in immunodeficient mice, and while control cells metastasized extensively to the lungs and lymph nodes, HMGA1-silenced cells generated only a few small metastases. Thus, our results show that interfering with HMGA1 expression reduces the tumorigenic and metastatic potential of breast cancer cells in vivo, and lend further support to investigations into targeting HMGA1 as a potential treatment for breast cancer.


Asunto(s)
Neoplasias de la Mama/genética , Neoplasias de la Mama/terapia , Técnicas de Silenciamiento del Gen , Proteína HMGA1a/antagonistas & inhibidores , Proteína HMGA1a/genética , Animales , Neoplasias de la Mama/patología , Línea Celular Tumoral , Proliferación Celular , Femenino , Humanos , Ratones , Ratones Endogámicos NOD , Ratones SCID , Esferoides Celulares/patología , Trasplante Heterólogo/patología
14.
Int J Radiat Oncol Biol Phys ; 117(4): 1028-1037, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37331568

RESUMEN

PURPOSE: In this study we determined the dose-independent relative biological effectiveness (RBE2) of bone marrow for an anti-HER2/neu antibody labeled with the alpha-particle emitter actinium 225 (225Ac). Hematologic toxicity is often a consequence of radiopharmaceutical therapy (RPT) administration, and dosimetric guidance to the bone marrow is required to limit toxicity. METHODS AND MATERIALS: Female neu/N transgenic mice (MMTV-neu) were intravenously injected with 0 to 16.65 kBq of the alpha-particle emitter labeled antibody, 225Ac-DOTA-7.16.4, and euthanized at 1 to 9 days after treatment. Complete blood counts were performed. Femurs and tibias were collected, and bone marrow was isolated from 1 femur and tibia and counted for radioactivity. Contralateral intact femurs were fixed, decalcified, and assessed by histology. Marrow cellularity was the biologic endpoint selected for RBE2 determination. For the reference radiation, both femurs of the mice were photon irradiated with 0 to 5 Gy using a small animal radiation research platform. RESULTS: Response as measured by cellularity for the alpha-particle emitter RPT (αRPT) RPT and the external beam radiation therapy were linear and linear quadratic, respectively, as a function of absorbed dose. The resulting dose-independent RBE2 for bone marrow was 6. CONCLUSIONS: As αRPT gains prominence, preclinical studies evaluating RBE in vivo will be important in relating to human experience with beta-particle emitter RPT. Such normal tissue RBE evaluations will help mitigate unexpected toxicity in αRPT.

15.
Matter ; 6(2): 583-604, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36531610

RESUMEN

Coronaviruses have historically precipitated global pandemics of severe acute respiratory syndrome (SARS) into devastating public health crises. Despite the virus's rapid rate of mutation, all SARS coronavirus 2 (SARS-CoV-2) variants are known to gain entry into host cells primarily through complexation with angiotensin-converting enzyme 2 (ACE2). Although ACE2 has potential as a druggable decoy to block viral entry, its clinical use is complicated by its essential biological role as a carboxypeptidase and hindered by its structural and chemical instability. Here we designed supramolecular filaments, called fACE2, that can silence ACE2's enzymatic activity and immobilize ACE2 to their surface through enzyme-substrate complexation. This docking strategy enables ACE2 to be effectively delivered in inhalable aerosols and improves its structural stability and functional preservation. fACE2 exhibits enhanced and prolonged inhibition of viral entry compared with ACE2 alone while mitigating lung injury in vivo.

16.
Int J Radiat Oncol Biol Phys ; 115(2): 518-528, 2023 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-35926719

RESUMEN

PURPOSE: We have determined the in vivo relative biological effectiveness (RBE) of an alpha-particle-emitting radiopharmaceutical therapeutic agent (212Pb-labeled anti-HER2/neu antibody) for the bone marrow, a potentially dose-limiting normal tissue. METHODS AND MATERIALS: The RBE was measured in mice using femur marrow cellularity as the biological endpoint. External beam radiation therapy (EBRT), delivered by a small-animal radiation research platform was used as the reference radiation. Alpha-particle emissions were delivered by 212Bi after the decay of its parent nuclide 212Pb, which was conjugated onto an anti-HER2/neu antibody. The alpha-particle absorbed dose to the marrow after an intravenous administration (tail vein) of 122.1 to 921.3 kBq 212Pb-TCMC-7.16.4 was calculated. The mice were sacrificed at 0 to 7 days after treatment and the radioactivity from the femur bone marrow was measured. Changes in marrow cellularity were assessed by histopathology. RESULTS: The dose response for EBRT and 212Pb-anti-HER2/neu antibody were linear-quadratic and linear, respectively. On transforming the EBRT dose-response relationship into a linear relationship using the equivalent dose in 2-Gy fractions of external beam radiation formalism, we obtained an RBE (denoted RBE2) of 6.4, which is independent of cellularity and absorbed dose. CONCLUSIONS: Because hematologic toxicity is dose limiting in almost all antibody-based RPT, in vivo measurements of RBE are important in helping identify an initial administered activity in phase 1 escalation trials. Applying the RBE2 and assuming typical antibody clearance kinetics (biological half-life of 48 hours), using a modified blood-based dosimetry method, an average administered activity of approximately 185.5 MBq (5.0 mCi) per patient could be administered before hematologic toxicity is anticipated.


Asunto(s)
Médula Ósea , Plomo , Animales , Ratones , Efectividad Biológica Relativa , Radiometría , Anticuerpos Monoclonales/uso terapéutico
17.
mBio ; 14(5): e0212123, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37791765

RESUMEN

IMPORTANCE: Respectively, HPV16 and HPV18 cause 50% and 20% of cervical cancer cases globally. Viral proteins E6 and E7 are obligate drivers of oncogenic transformation. We recently developed a candidate therapeutic DNA vaccine, pBI-11, that targets HPV16 and HPV18 E6 and E7. Single-site intramuscular delivery of pBI-11 via a needle elicited therapeutic anti-tumor effects in mice and is now being tested in high-risk human papillomavirus+ head and neck cancer patients (NCT05799144). Needle-free biojectors such as the Tropis device show promise due to ease of administration, high patient acceptability, and the possibility of improved delivery. For example, vaccination of patients with the ZyCoV-D DNA vaccine using the Tropis device is effective against COVID19, well tolerated, and licensed. Here we show that split-dose, multi-site administration and intradermal delivery via the Tropis biojector increase the delivery of pBI-11 DNA vaccine, enhance HPV antigen-specific CD8+ T-cell responses, and improve anti-tumor therapeutic effects, suggesting its translational potential to treat HPV16/18 infection and disease.


Asunto(s)
Proteínas Oncogénicas Virales , Infecciones por Papillomavirus , Neoplasias del Cuello Uterino , Vacunas de ADN , Femenino , Humanos , Animales , Ratones , Papillomavirus Humano 16/genética , Vacunas de ADN/genética , Vacunas de ADN/uso terapéutico , Papillomavirus Humano 18/genética , Proteínas Oncogénicas Virales/genética , Proteínas E7 de Papillomavirus/genética , Neoplasias del Cuello Uterino/prevención & control , Infecciones por Papillomavirus/prevención & control , Vacunación , Inmunidad
18.
Vet Pathol ; 54(5): 731-733, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28820050
20.
Antibiotics (Basel) ; 11(10)2022 Sep 20.
Artículo en Inglés | MEDLINE | ID: mdl-36289936

RESUMEN

Staphylococcus aureus can cause a variety of infections, including persistent biofilm infections, which are difficult to eradicate with current antibiotic treatments. Here, we demonstrate that combining drugs that have robust anti-persister activity, such as clinafloxacin or oritavancin, in combination with drugs that have high activity against growing bacteria, such as vancomycin or meropenem, could completely eradicate S. aureus biofilm bacteria in vitro. In contrast, single or two drugs, including the current treatment doxycycline plus rifampin for persistent S. aureus infection, failed to kill all biofilm bacteria in vitro. In a chronic persistent skin infection mouse model, we showed that the drug combination clinafloxacin + meropenem + daptomycin which killed all biofilm bacteria in vitro completely eradicated S. aureus biofilm infection in mice while the current treatments failed to do so. The complete eradication of biofilm bacteria is attributed to the unique high anti-persister activity of clinafloxacin, which could not be replaced by other fluoroquinolones including moxifloxacin, levofloxacin, or ciprofloxacin. We also compared our persister drug combination with the current approaches for treating persistent infections, including gentamicin + fructose and ADEP4 + rifampin in the S. aureus biofilm infection mouse model, and found neither treatment could eradicate the biofilm infection. Our study demonstrates an important treatment principle, the Yin-Yang model, for persistent infections by targeting both growing and non-growing heterogeneous bacterial populations, utilizing persister drugs for the more effective eradication of persistent and biofilm infections. Our findings have implications for the improved treatment of other persistent and biofilm infections in general.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA