Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Asunto principal
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Philos Trans A Math Phys Eng Sci ; 380(2214): 20210120, 2022 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-34802273

RESUMEN

We describe the population-based susceptible-exposed-infected-removed (SEIR) model developed by the Irish Epidemiological Modelling Advisory Group (IEMAG), which advises the Irish government on COVID-19 responses. The model assumes a time-varying effective contact rate (equivalently, a time-varying reproduction number) to model the effect of non-pharmaceutical interventions. A crucial technical challenge in applying such models is their accurate calibration to observed data, e.g. to the daily number of confirmed new cases, as the history of the disease strongly affects predictions of future scenarios. We demonstrate an approach based on inversion of the SEIR equations in conjunction with statistical modelling and spline-fitting of the data to produce a robust methodology for calibration of a wide class of models of this type. This article is part of the theme issue 'Data science approaches to infectious disease surveillance'.


Asunto(s)
COVID-19 , Susceptibilidad a Enfermedades , Humanos , Modelos Estadísticos , SARS-CoV-2
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA