Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 38
Filtrar
1.
Phys Chem Chem Phys ; 25(35): 23923-23928, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37642502

RESUMEN

The magnesium channel controls Mg2+ concentration in the cell and plays an indispensable role in biological functions. The crystal structure of the Magnesium Transport E channel suggested that Mg2+ hydrated by 6 water molecules is transported through a selection filter consisting of COO- groups on two Asp residues. This Mg2+ motion implies successive pairing with -OOC-R and dissociation mediated by water molecules. For another divalent ion, however, it is known that RCOO-⋯Ca2+ cannot be separated even with 12 water molecules. From this discrepancy, we probe the structure of Mg2+(CH3COO-)(H2O)4-17 clusters by measuring the infrared spectra and monitoring the vibrational frequencies of COO- with the help of quantum chemistry calculations. The hydration by (H2O)6 is not enough to induce ion separation, and partially-separated or separated pairs are formed from 10 water molecules at least. These results suggest that the ion separation between Mg2+ and carboxylate ions in the selection-filter of the MgtE channel not only results from water molecules in their first hydration shell, but also from additional factors including water molecules and protein groups in the second solvation shell of Mg2+.

2.
Molecules ; 28(13)2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37446709

RESUMEN

Hydrogen bonds (H-bonds) are ubiquitous in peptides and proteins and are central to the stabilization of their structures. Inter-residue H-bonds between non-adjacent backbone amide NH and C=O motifs lead to the well-known secondary structures of helices, turns and sheets, but it is recognized that other H-bonding modes may be significant, including the weak intra-residue H-bond (called a C5 H-bond) that implicates the NH and C=O motifs of the same amino acid residue. Peptide model compounds that adopt stable C5 H-bonds are not readily available and the so-called 2.05-helix, formed by successive C5 H-bonds, is an elusive secondary structure. Using a combination of theoretical chemistry and spectroscopic studies in both the gas phase and solution phase, we have demonstrated that derivatives of 3-amino-1-methylazetidine-3-carboxylic acid, Aatc(Me) can form sidechain-backbone N-H···N C6γ H-bonds that accompany-and thereby stabilize-C5 H-bonds. In the capped trimer of Aatc(Me), extended C5/C6γ motifs are sufficiently robust to challenge classical 310-helix formation in solution and the fully-extended 2.05-helix conformer has been characterized in the gas phase. Concurrent H-bonding support for successive C5 motifs is a new axiom for stabilizing the extended backbone secondary structure in short peptides.


Asunto(s)
Aminoácidos , Azetidinas , Aminoácidos/química , Proteínas/química , Péptidos/química , Estructura Secundaria de Proteína , Enlace de Hidrógeno
3.
Chemistry ; 28(25): e202104328, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35175657

RESUMEN

Models of asparagine-containing dipeptides specifically designed to favor intrinsic folding into an Asx turn were characterized both theoretically, by using quantum chemistry, and experimentally, by using laser spectroscopy in the gas phase. Both approaches provided evidence for the spontaneous folding of both the Asn-Ala and Asn-Gly dipeptide models into the most stable Asx turn, a conformation stabilized by a C10 H-bond that was very similar to a type II' ß-turn. In parallel, analysis of Asx turns implicating asparagine in crystallized protein structures in the Protein Data Bank revealed a sequence-dependent behavior. In Asn-Ala sequences, the Asx turn was found in conjunction with a type I ß-turn for which the first of the four defining residues was Asn. The observation that the Asx turn in these structures is mostly of type II' (i. e., its most stable innate structure) suggests that this motif might foster the formation and/or enhance the stability of the backbone ß-turn. In contrast, the Asx turns observed in Asn-Gly sequences extensively adopted a type II Asx-turn structure, thus suggesting that their formation should be ascribed to other factors, such as hydration. The fact that the Asx turn in a Asn-Gly sequence is also often found in combination with a hydrated ß-bulge supports the premise that a Asn-Gly sequence might efficiently promote the formation of the ß-bulge secondary structure.


Asunto(s)
Asparagina , Proteínas , Asparagina/química , Bases de Datos de Proteínas , Dipéptidos/química , Estructura Secundaria de Proteína
4.
Chemistry ; 28(25): e202200969, 2022 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-35419892

RESUMEN

Invited for the cover of this issue are David J. Aitken, Michel Mons, and co-workers at Université Paris-Saclay. The image depicts the investigation strategies used to document the intrinsic structures of an important secondary structure in proteins, the so-called Asx turn. Read the full text of the article at 10.1002/chem.202104328.


Asunto(s)
Proteínas , Humanos , Estructura Secundaria de Proteína , Proteínas/química
5.
Phys Chem Chem Phys ; 24(20): 12121-12125, 2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35545953

RESUMEN

Microhydrated H2-tagged ion pairs (Ca2+, AcO-)(H2O)n=0-8 and (Ba2+, AcO-)(H2O)n=0-5 are investigated by IR photodissociation laser spectroscopy and DFT-D frequency calculations. The detailed picture of the first steps of ion dissociation reveals two mechanisms, where water molecules promote dissociation either directly or indirectly depending on the nature of the cation.


Asunto(s)
Metales Alcalinotérreos , Agua , Ácidos Carboxílicos , Cationes , Metales Alcalinotérreos/química , Agua/química
6.
Int J Mol Sci ; 23(2)2022 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-35054802

RESUMEN

The present benchmark calculations testify to the validity of time-dependent density functional theory (TD-DFT) when exploring the low-lying excited states potential energy surfaces of models of phenylalanine protein chains. Among three functionals suitable for systems exhibiting charge-transfer excited states, LC-ωPBE, CAM-B3LYP, and ωB97X-D, which were tested on a reference peptide system, we selected the ωB97X-D functional, which gave the best results compared to the approximate coupled-cluster singles and doubles (CC2) method. A quantitative agreement for both the geometrical parameters and the vibrational frequencies was obtained for the lowest singlet excited state (a ππ* state) of the series of capped peptides. In contrast, only a qualitative agreement was met for the corresponding adiabatic zero-point vibrational energy (ZPVE)-corrected excitation energies. Two composite protocols combining CC2 and DFT/TD-DFT methods were then developed to improve these calculations. Both protocols substantially reduced the error compared to CC2 and experiment, and the best of both even led to results of CC2 quality at a lower cost, thus providing a reliable alternative to this method for very large systems.


Asunto(s)
Teoría Funcional de la Densidad , Modelos Moleculares , Fenilalanina/química , Proteínas/química , Conformación Molecular , Termodinámica
7.
Molecules ; 27(10)2022 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-35630640

RESUMEN

The side-chain of methionine residues is long enough to establish NH⋯S H-bonds with neighboring carbonyl groups of the backbone, giving rise to so-called intra-residue 6δ and inter-residue 7δ H-bonds. The aim of the present article is to document how the substitution of sulfur with a selenium atom affects the H-bonding of the Met system. This was investigated both experimentally and theoretically by conformation-resolved optical spectroscopy, following an isolated molecule approach. The present work emphasizes the similarities of the Met and Sem residues in terms of conformational structures, energetics, NH⋯Se/S H-bond strength and NH stretch spectral shifts, but also reveals subtle behavior differences between them. It provides evidence for the sensitivity of the H-bonding network with the folding type of the Sem/Met side-chains, where a simple flip of the terminal part of the side-chain can induce an extra 50 cm-1 spectral shift of the NH stretch engaged in a 7δ NH⋯S/Se bond.


Asunto(s)
Metionina , Selenio , Péptidos/química , Estructura Secundaria de Proteína , Proteínas/química , Análisis Espectral
8.
Chemphyschem ; 22(23): 2442-2455, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34637180

RESUMEN

The present work uses ATR-FTIR spectroscopy assisted by simulations in explicit solvent and frequency calculations to investigate the supramolecular structure of carboxylate alkali-metal ion pairs in aqueous solutions. ATR-FTIR spectra in the 0.25-4.0 M concentration range displayed cation-specific behaviors, which enabled the measurement of the appearance concentration thresholds of contact ion pairs between 1.9 and 2.6 M depending on the cation. Conformational explorations performed using a non-local optimization method associated to a polarizable force-field (AMOEBA), followed by high quantum chemistry level (RI-B97-D3/dhf-TZVPP) optimizations, mode-dependent scaled harmonic frequency calculations and electron density analyses, were used to identify the main supramolecular structures contributing to the experimental spectra. A thorough analysis enables us to reveal the mechanisms responsible for the spectroscopic sensitivity of the carboxylate group and the respective role played by the cation and the water molecules, highlighting the necessity of combining advanced experimental and theoretical techniques to provide a fair and accurate description of ion pairing.

9.
Amino Acids ; 53(4): 621-633, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33743071

RESUMEN

S-containing amino acids can lead to two types of local NH···S interactions which bridge backbone NH sites to the side chain to form either intra- or inter-residue H-bonds. The present work reports on the conformational preferences of S-methyl-L-cysteine, Cys(Me), using a variety of investigating tools, ranging from quantum chemistry simulations, gas-phase UV and IR laser spectroscopy, and solution state IR and NMR spectroscopies, on model compounds comprising one or two Cys(Me) residues. We demonstrate that in gas phase and in low polarity solution, the C- and N-capped model compound for one Cys(Me) residue adopts a preferred C5-C6γ conformation which combines an intra-residue N-H···O=C backbone interaction (C5) and an inter-residue N-H···S interaction implicating the side-chain sulfur atom (C6γ). In contrast, the dominant conformation of the C- and N-capped model compound featuring two consecutive Cys(Me) residues is a regular type I ß-turn. This structure is incompatible with concomitant C6γ interactions, which are no longer in evidence. Instead, C5γ interactions occur, that are fully consistent with the turn geometry and additionally stabilize the structure. Comparison with the thietane amino acid Attc, which exhibits a rigid cyclic side chain, pinpoints the significance of side chain flexibility for the specific conformational behavior of Cys(Me).


Asunto(s)
Cisteína/análogos & derivados , Cisteína/química , Gases , Enlace de Hidrógeno , Conformación Molecular , Teoría Cuántica , Soluciones , Análisis Espectral
10.
J Chem Phys ; 154(21): 214105, 2021 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-34240962

RESUMEN

Benchmarking calculations on excited states of models of phenylalanine protein chains are presented to assess the ability of alternative methods to the standard and most commonly used multiconfigurational wave function-based method, the complete active space self-consistent field (CASSCF), in recovering the non-dynamical correlation for systems that become not affordable by the CASSCF. The exploration of larger active spaces beyond the CASSCF limit is benchmarked through three strategies based on the reduction in the number of determinants: the restricted active space self-consistent field, the generalized active space self-consistent field (GASSCF), and the occupation-restricted multiple active space (ORMAS) schemes. The remaining dynamic correlation effects are then added by the complete active space second-order perturbation theory and by the multireference difference dedicated configuration interaction methods. In parallel, the approximate second-order coupled cluster (CC2), already proven to be successful for small building blocks of model proteins in one of our previous works [Ben Amor et al., J. Chem. Phys. 148, 184105 (2018)], is investigated to assess its performances for larger systems. Among the different alternative strategies to CASSCF, our results highlight the greatest efficiency of the GASSCF and ORMAS schemes in the systematic reduction of the configuration interaction expansion without loss of accuracy in both nature and excitation energies of both singlet ππ* and nπ* CO excited states with respect to the equivalent CASSCF calculations. Guidelines for an optimum applicability of this scheme to systems requiring active spaces beyond the complete active space limit are then proposed. Finally, the extension of the CC2 method to such large systems without loss of accuracy is demonstrated, highlighting the great potential of this method to treat accurately excited states, mainly single reference, of very large systems.


Asunto(s)
Teoría Funcional de la Densidad , Proteínas/química , Análisis por Conglomerados , Modelos Moleculares
11.
Phys Chem Chem Phys ; 22(36): 20409-20420, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32914809

RESUMEN

Models of protein chains containing a seleno-cysteine (Sec) residue have been investigated by gas phase laser spectroscopy in order to document the effect of the H-bonding properties of the SeH group in the folding of the Sec side chain, by comparison with recent data on Ser- and Cys-containing sequences. Experimental data, complemented by quantum chemistry calculations and natural bonding orbital (NBO) analyses, are interpreted in terms of the formation of a so-called 5γ intra-residue motif, which bridges the acceptor chalcogen atom of the side chain to the NH bond of the same residue. This local structure, in which the O/S/Se atom is close to the plane of the N-terminal side amide, is constrained by local backbone-side chain hyperconjugation effects involving the S and Se atoms. Theoretical investigations of the Cys/Sec side chain show that (i) this 5γ motif is an intrinsic feature of these residues, (ii) the corresponding H-bond is strongly non-linear and intrinsically weak, (iii) but enhanced by γ- and ß-turn secondary structures, which promote a more favorable 5γ H-bonding approach and distance. The resulting H-bonds are slightly stronger in selenocysteine than in cysteine, but nearly inexistent in serine, whose side chain in contrast behaves as a H-bonding donor. The modest spectral shifts of the Cys/Sec NH stretches measured experimentally reflect the moderate strength of the 5γ H-bonding, in agreement with the correlation obtained with a NBO-based H-bond strength indicator. The evolution along the Ser, Cys and Sec series emphasizes the compromise between the several factors that control the H-bonding in a hyperconjugation-constrained geometry, among them the chalcogen van der Waals and covalent radii. It also illustrates the 5γ H-bond enhancements with the Sec and Cys residues favoured by the constraints imposed by the γ- and ß-turn structures of the peptide chain.


Asunto(s)
Cisteína/química , Dipéptidos/química , Selenocisteína/química , Enlace de Hidrógeno , Estructura Secundaria de Proteína , Teoría Cuántica , Serina/química , Análisis Espectral/métodos
12.
Phys Chem Chem Phys ; 22(36): 20284-20294, 2020 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-32966425

RESUMEN

A dual microwave and optical spectroscopic study of a capped cysteine amino acid isolated in a supersonic expansion, combined with quantum chemistry modelling, enabled us to characterize the conformational preferences of Cys embedded in a protein chain. IR/UV double resonance spectroscopy provided evidence for the coexistence of two conformers, assigned to folded and extended backbones (with classical C7 and C5 backbone H-bonding respectively), each of them additionally stabilized by specific main-chain/side-chain H-bonding, where the sulfur atom essentially plays the role of H-bond acceptor. The folded structure was confirmed by microwave spectroscopy, which demonstrated the validity of the DFT-D methods currently used in the field. These structural and spectroscopic results, complemented by a theoretical Natural Bond Orbital analysis, enabled us to document the capacity of the weakly polar -CH2-SH side chain of Cys to adapt itself to the intrinsic local preferences of the peptide backbone, i.e., a γ-turn or a ß-sheet extended secondary structure. The corresponding local H-bonding bridges the side chain acceptor S atom to the backbone NH donor site of the same or the next residue along the chain, through a 5- or a 6-membered ring respectively.


Asunto(s)
Cisteína/análogos & derivados , Dipéptidos/química , Teoría Funcional de la Densidad , Enlace de Hidrógeno , Microondas , Modelos Químicos , Conformación Proteica , Espectrofotometría Infrarroja , Espectrofotometría Ultravioleta , Termodinámica
13.
Phys Chem Chem Phys ; 21(44): 24601-24619, 2019 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-31670335

RESUMEN

Natural bond orbital (NBO) analysis of electron delocalization in a series of capped isolated peptides is used to diagnose amide-amide H-bonding and backbone-induced hyperconjugative interactions, and to rationalize their spectral effects. The sum of the stabilization energies corresponding to the interactions between NBOs that are involved in the H-bonding is demonstrated as an insightful indicator for the H-bond strength. It is then used to decouple the effect of the H-bond distance from that, intrinsic, of the donor/acceptor relative orientation, i.e., the geometrical approach. The diversity of the approaches given by the series of peptides studied enables us to illustrate the crucial importance of the approach when the acceptor is a carbonyl group, and emphasizes that efficient approaches can be achieved despite not matching the usual picture of a proton donor directly facing a lone pair of the proton acceptor, i.e., that encountered in intermolecular H-bonds. The study also illustrates the role of backbone flexibility, partly controlled by backbone-amide hyperconjugative interactions, in influencing the equilibrium structures, in particular by frustrating or enhancing the HB for a given geometrical approach. Finally, the presently used NBO-based HB strength indicator enables a fair prediction of the frequency of the proton donor amide NH stretching mode, but this simple picture is blurred by ubiquitous hyperconjugative effects between the backbone and amide groups, whose magnitude can be comparable to that of the weakest H-bonds.


Asunto(s)
Amidas/química , Péptidos/química , Dimerización , Enlace de Hidrógeno , Modelos Moleculares , Conformación Proteica en Hélice alfa , Conformación Proteica en Lámina beta , Teoría Cuántica
14.
Phys Chem Chem Phys ; 21(28): 15439-15451, 2019 Jul 17.
Artículo en Inglés | MEDLINE | ID: mdl-31257399

RESUMEN

The effect of complexation with sulfuric acid on the photo-dissociation of protonated Cinchona alkaloids, namely cinchonidine (Cd), quinine (Qn) and quinidine (Qd), is studied by combining laser spectroscopy with quantum chemical calculations. The protonated complexes are structurally characterized in a room-temperature ion trap by means of infra-red multiple photon dissociation (IRMPD) spectroscopy in the fingerprint and the ν(XH) (X = C, N, O) stretch regions. Comparison with density functional theory calculations including dispersion (DFT-D) unambiguously shows that the complex consists of a doubly protonated Cinchona alkaloid strongly bound to a bisulfate HSO4- anion, which bridges the two protonated sites of the Cinchona alkaloid. UV excitation of the complex does not induce loss of specific photo fragments, in contrast to the protonated monomer or dimer, for which photo-specific fragments were observed. Indeed the UV-induced fragmentation pattern is identical to that observed in collision-induced dissociation experiments. Analysis of the nature of the first electronic transitions at the second order approximate coupled-cluster level (CC2) explains the difference in the behavior of the complex relative to the monomer or dimer towards UV excitation.

15.
Phys Chem Chem Phys ; 21(24): 12798-12805, 2019 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-30977483

RESUMEN

In a context where structure elucidation of ion pairs in solution remains a contemporary challenge, this work explores an original approach where accurate gas phase spectroscopic data are used to refine high level quantum chemistry calculations of ion pairs in solution, resulting in an unprecedented level of accuracy in vibrational frequency prediction. First, gas phase studies focus on a series of isolated contact ion pairs (M+, Ph-CH2-COO-, with M = Li, Na, K, Rb, Cs) for which conformer-selective IR spectra in the CO2- stretch region are recorded. These experiments reveal the interactions at play in isolated contact ion pairs, and provide vibrational frequencies enabling us to assess the accuracy of the theoretical approach used, i.e., mode-dependent scaled harmonic frequency calculations at the RI-B97-D3/dhf-TZVPP level. This level of calculation is then employed on large water clusters embedding either a free acetate ion or its contact or solvent-shared pairs with a sodium cation in order to simulate the individual vibrational spectra of these species in solution. This study shows that the stretching modes of carboxylate are sensitive to both solvent-shared and contact ion pair formation. FTIR spectra of solutions of increasing concentrations indeed reveal several spectral changes consistent with the presence of specific types of solvent-shared and contact ion pairs. By providing relevant guidelines for the interpretation of solution phase IR spectra, this work illustrates the potential of the approach for the elucidation of supramolecular structures in electrolyte solutions.

16.
Phys Chem Chem Phys ; 20(44): 28105-28113, 2018 Nov 14.
Artículo en Inglés | MEDLINE | ID: mdl-30383043

RESUMEN

High resolution infrared spectroscopy combining an external cavity quantum cascade laser with a pulsed pin hole supersonic jet is used to investigate small van der Waals (vdW) heteroclusters containing SF6 and rare gas (Rg) atoms in the ν3 region of SF6. In the first step of the analysis, the rovibrational band contours of parallel and perpendicular transitions of 1 : 1 SF6-Rg heterodimers (Rg = Ar, Kr, Xe) are simulated to derive ground and excited state parameters and hence ground state and equilibrium S-Rg distances with a precision better than 0.5 pm. These values are used to assess quantum chemistry calculations (DFT-D method) as well as semi-empirical predictions (combination rules). In the second step, the spectral signatures of the 1 : 1 heterodimers and of larger heteroclusters containing up to three Rg atoms have been identified by considering reduced vibrational red shifts, i.e., shifts normalized to the average 1 : 1 red shift. The reduced vibrational red shifts within the series of bands observed and assigned to 1 : 1 and 1 : 2 complexes are found to be independent of the Rg atom, which suggests similar 1 : 1 and 1 : 2 structures along the Rg series. In addition, the increasing number of bands when going from monomer to 1 : 2 complexes illustrates the increased lifting of vibrational degeneracy induced by Rg solvation. Finally, the vibrational shifts of the 1 : 1 SF6-Rg heterodimers are found to fit an intermolecular interaction model in which long-range attractive and short-range repulsive contributions to the vibrational shift are found to partially cancel out, the former being dominant. From the same model, well depths are obtained and are found to compare well with quantum chemistry calculations and semi-empirical combination rules.

17.
J Chem Phys ; 148(18): 184105, 2018 May 14.
Artículo en Inglés | MEDLINE | ID: mdl-29764139

RESUMEN

A benchmark set of relevant geometries of a model protein, the N-acetylphenylalanylamide, is presented to assess the validity of the approximate second-order coupled cluster (CC2) method in studying low-lying excited states of such bio-relevant systems. The studies comprise investigations of basis-set dependence as well as comparison with two multireference methods, the multistate complete active space 2nd order perturbation theory (MS-CASPT2) and the multireference difference dedicated configuration interaction (DDCI) methods. First of all, the applicability and the accuracy of the quasi-linear multireference difference dedicated configuration interaction method have been demonstrated on bio-relevant systems by comparison with the results obtained by the standard MS-CASPT2. Second, both the nature and excitation energy of the first low-lying excited state obtained at the CC2 level are very close to the Davidson corrected CAS+DDCI ones, the mean absolute deviation on the excitation energy being equal to 0.1 eV with a maximum of less than 0.2 eV. Finally, for the following low-lying excited states, if the nature is always well reproduced at the CC2 level, the differences on excitation energies become more important and can depend on the geometry.

18.
Phys Chem Chem Phys ; 18(43): 29969-29978, 2016 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-27762418

RESUMEN

Conformer-selective IR gas phase spectroscopy and high level quantum chemistry methods have been used to characterise the diversity of local NH-π interactions between the π ring of a phenylalanine aromatic residue and the nearby main chain amide groups. The study of model systems shows how the amide NH stretch vibrational features, in the 3410-3460 cm-1 frequency range, can be used to monitor the strength of these local π H-bonds, which is found to depend on both the backbone conformation and the aromatic side chain orientation. This is rationalized in terms of partial electron transfer between the π cloud and the main chain NH bonds, with the help of analysis tools based on Natural Bonding Orbitals and Non-Covalent Interactions plots. The experimental study, extended to the NH-π interactions when the Phe residue is excited in its first ππ* electronic state, also demonstrates the principle of the ππ* labelling technique, i.e. a selective labelling of those NH bonds in a peptide molecule that are in close contact with an aromatic ring, as an elegant tool for IR spectroscopic assignments. The validation of theoretical predictions against experimental data (frequency change upon excitation) eventually qualifies the use of the CC2 method for the description of the ππ* excited states of systems having a phenyl ring, both in terms of structure, vibrational modes and nature of excited states.


Asunto(s)
Enlace de Hidrógeno , Modelos Biológicos , Péptidos/química , Proteínas/química , Amidas , Fenilalanina/química , Conformación Proteica
19.
Chemistry ; 21(46): 16479-93, 2015 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-26406900

RESUMEN

This work describes the use of conformer-selective laser spectroscopy following supersonic expansion to probe the local folding proclivities of four-membered ring cyclic ß-amino acid building blocks. Emphasis is placed on stereochemical effects as well as on the structural changes induced by the replacement of a carbon atom of the cycle by a nitrogen atom. The amide A IR spectra are obtained and interpreted with the help of quantum chemistry structure calculations. Results provide evidence that the building block with a trans-substituted cyclobutane ring has a predilection to form strong C8 hydrogen bonds. Nitrogen-atom substitution in the ring induces the formation of the hydrazino turn, with a related but distinct hydrogen-bonding network: the structure is best viewed as a bifurcated C8/C5 bond with the N heteroatom lone electron pair playing a significant acceptor role, which supports recent observations on the hydrazino turn structure in solution. Surprisingly, this study shows that the cis-substituted cyclobutane ring derivative also gives rise predominantly to a C8 hydrogen bond, although weaker than in the two former cases, a feature that is not often encountered for this building block.


Asunto(s)
Amidas/química , Ciclobutanos/química , Péptidos Cíclicos/química , Espectrofotometría Infrarroja/métodos , Enlace de Hidrógeno , Modelos Moleculares , Conformación Proteica , Teoría Cuántica
20.
J Phys Chem A ; 119(23): 5932-41, 2015 Jun 11.
Artículo en Inglés | MEDLINE | ID: mdl-25336282

RESUMEN

The intrinsic conformational landscape of two phenylalanine-containing protein chain models (-Gly-Phe- and -Ala-Phe- sequences) has been investigated theoretically and experimentally in the gas phase. The near UV spectroscopy (first ππ* transition of the Phe ring) is obtained experimentally under jet conditions where the conformational features can be resolved. Single-conformation IR spectroscopy in the NH stretch region is then obtained by IR/UV double resonance in the ground state, leading to resolved vibrational spectra that are assigned in terms of conformation and H-bonding content from comparison with quantum chemistry calculations. For the main conformer, whose UV spectrum exhibits a significant Franck-Condon activity in low frequency modes involving peptide backbone motions relative to the Phe chromophore, excited state IR spectroscopy has also been recorded in a UV/IR/UV experiment. The NH stretch spectral changes observed in such a ππ* labeling experiment enable us to determine those NH bonds that are coupled to the phenyl ring; they are compared to CC2 excited state calculations to quantify the geometry change upon ππ* excitation. The complete and consistent series of data obtained enable us to propose an unambiguous assignment for the gallery of conformers observed and to demonstrate that, in these two sequences, three conceptually important local structural motifs of proteins (ß-strands, 27 ribbons, and ß-turns) are represented. The satisfactory agreement between the experimental conformational distribution and the predicted landscape anticipated from the DFT-D approach demonstrates the capabilities of a theoretical method that accounts for dispersive interactions. It also shows that the flaws, inherent to a resonant two-photon ionization detection scheme, often evoked for aromatic chromophores, do not seem to be significant in the case of Phe.


Asunto(s)
Péptidos/química , Fenilalanina/química , Teoría Cuántica , Análisis Espectral , Rayos Láser , Modelos Moleculares , Estructura Secundaria de Proteína , Rayos Ultravioleta
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA