Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Mol Cell ; 80(3): 470-484.e8, 2020 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-33053322

RESUMEN

Cellular responses to environmental stress are frequently mediated by RNA-binding proteins (RBPs). Here, we examined global RBP dynamics in Saccharomyces cerevisiae in response to glucose starvation and heat shock. Each stress induced rapid remodeling of the RNA-protein interactome without corresponding changes in RBP abundance. Consistent with general translation shutdown, ribosomal proteins contacting the mRNA showed decreased RNA association. Among translation components, RNA association was most reduced for initiation factors involved in 40S scanning (eukaryotic initiation factor 4A [eIF4A], eIF4B, and Ded1), indicating a common mechanism of translational repression. In unstressed cells, eIF4A, eIF4B, and Ded1 primarily targeted the 5' ends of mRNAs. Following glucose withdrawal, 5' binding was abolished within 30 s, explaining the rapid translation shutdown, but mRNAs remained stable. Heat shock induced progressive loss of 5' RNA binding by initiation factors over ∼16 min and provoked mRNA degradation, particularly for translation-related factors, mediated by Xrn1. Taken together, these results reveal mechanisms underlying translational control of gene expression during stress.


Asunto(s)
Factores de Iniciación de Péptidos/metabolismo , Biosíntesis de Proteínas/fisiología , Estrés Fisiológico/fisiología , Regiones no Traducidas 5' , ARN Helicasas DEAD-box/metabolismo , Factor 4A Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/metabolismo , Factores Eucarióticos de Iniciación/metabolismo , Glucosa/metabolismo , Respuesta al Choque Térmico/fisiología , Factores de Iniciación de Péptidos/fisiología , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/metabolismo , Proteínas Ribosómicas/fisiología , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo
2.
Mol Cell ; 70(6): 987-988, 2018 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-29932908

RESUMEN

In this issue of Molecular Cell, Webster et al. (2018) and Yi et al. (2018) dissect the mechanisms underlying cytoplasmic mRNA deadenylation by the Ccr4-Not (CNOT) complex. Crucial to this process is the poly(A) binding protein Pab1/PABPC1, which both stimulates and suppresses the activity of different deadenylases.


Asunto(s)
Proteínas de Unión a Poli(A) , ARN Mensajero , Proteínas de Unión al ARN
3.
Mol Cell ; 65(5): 787-800.e5, 2017 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-28190770

RESUMEN

In budding yeast, the nuclear RNA surveillance system is active on all pre-mRNA transcripts and modulated by nutrient availability. To test the role of nuclear surveillance in reprogramming gene expression, we identified transcriptome-wide binding sites for RNA polymerase II and the exosome cofactors Mtr4 (TRAMP complex) and Nab3 (NNS complex) by UV crosslinking immediately following glucose withdrawal (0, 4, and 8 min). In glucose, mRNA binding by Nab3 and Mtr4 was mainly restricted to promoter-proximal sites, reflecting early transcription termination. Following glucose withdrawal, many growth-related mRNAs showed reduced transcription but increased Nab3 binding, accompanied by downstream recruitment of Mtr4, and oligo(A) tailing. We conclude that transcription termination is followed by TRAMP-mediated RNA decay. Upregulated transcripts evaded increased surveillance factor binding following glucose withdrawal. Some upregulated genes showed use of alternative transcription starts to bypass strong NNS binding sites. We conclude that nuclear surveillance pathways regulate both positive and negative responses to glucose availability.


Asunto(s)
Núcleo Celular/metabolismo , Regulación Fúngica de la Expresión Génica , Procesamiento Postranscripcional del ARN , Estabilidad del ARN , ARN de Hongos/metabolismo , ARN Mensajero/metabolismo , ARN Nuclear/metabolismo , Saccharomyces cerevisiae/metabolismo , Transcripción Genética , Adaptación Fisiológica , Sitios de Unión , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , Glucosa/deficiencia , Glucosa/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Unión Proteica , ARN Polimerasa II/genética , ARN Polimerasa II/metabolismo , ARN de Hongos/genética , ARN Mensajero/genética , ARN Nuclear/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Factores de Tiempo
4.
Nucleic Acids Res ; 50(5): 2923-2937, 2022 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-34302485

RESUMEN

Ssd1, a conserved fungal RNA-binding protein, is important in stress responses, cell division and virulence. Ssd1 is closely related to Dis3L2 of the RNase II family of nucleases, but lacks catalytic activity and likely suppresses translation of bound mRNAs. Previous studies identified RNA motifs enriched in Ssd1-associated transcripts, yet the sequence requirements for Ssd1 binding are not defined. Here, we identify precise binding sites of Ssd1 on RNA using in vivo cross-linking and cDNA analysis. These sites are enriched in 5' untranslated regions of a subset of mRNAs encoding cell wall proteins. We identified a conserved bipartite motif that binds Ssd1 with high affinity in vitro. Active RNase II enzymes have a characteristic, internal RNA binding path; the Ssd1 crystal structure at 1.9 Å resolution shows that remnants of regulatory sequences block this path. Instead, RNA binding activity has relocated to a conserved patch on the surface of the protein. Structure-guided mutations of this surface prevent Ssd1 from binding RNA in vitro and phenocopy Ssd1 deletion in vivo. These studies provide a new framework for understanding the function of a pleiotropic post-transcriptional regulator of gene expression and give insights into the evolution of regulatory and binding elements in the RNase II family.


Asunto(s)
Exorribonucleasas , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Regiones no Traducidas 5' , Exorribonucleasas/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
5.
RNA ; 24(6): 778-786, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29563249

RESUMEN

Transcriptome analysis of human cells has revealed that intron retention controls the expression of a large number of genes with diverse cellular functions. Detained introns (DI) constitute a subgroup of transcripts with retained introns that are not exported to the cytoplasm but instead remain in the nucleus. Previous studies reported that the splicing of DIs in the CLK1 transcript is post-transcriptionally induced to produce mature mRNA in the absence of new transcription. Thus, CLK1-DI serves as a precursor or "reservoir" for the CLK1 mRNA. However, whether this is a universal mechanism for gene regulation by intron detention remains unknown. The MAT2A gene encodes S-adenosylmethionine (SAM) synthetase and it contains a DI that is regulated in response to intracellular SAM levels. We used three independent assays to assess the precursor-product relationship between MAT2A-DI and MAT2A mRNA. In contrast to CLK1-DI, these data support a model in which the MAT2A-DI transcript is not a precursor to mRNA but is instead a "dead-end" RNA fated for nuclear decay. Additionally, we show that in SAM-deprived conditions the cotranscriptional splicing of MAT2A detained introns increases. We conclude that polyadenylated RNAs with DIs can have at least two distinct fates. They can serve as nuclear reservoirs of pre-mRNAs available for rapid induction by the cell, or they constitute dead-end RNAs that are degraded in the nucleus.


Asunto(s)
Intrones , Metionina Adenosiltransferasa/genética , Precursores del ARN/genética , Empalme del ARN , ARN Mensajero/genética , Transcripción Genética , Núcleo Celular/genética , Núcleo Celular/metabolismo , Regulación de la Expresión Génica , Humanos , S-Adenosilmetionina/metabolismo
6.
Mol Syst Biol ; 15(4): e8689, 2019 04 08.
Artículo en Inglés | MEDLINE | ID: mdl-30962360

RESUMEN

The RNA binding proteome (RBPome) was previously investigated using UV crosslinking and purification of poly(A)-associated proteins. However, most cellular transcripts are not polyadenylated. We therefore developed total RNA-associated protein purification (TRAPP) based on 254 nm UV crosslinking and purification of all RNA-protein complexes using silica beads. In a variant approach (PAR-TRAPP), RNAs were labelled with 4-thiouracil prior to 350 nm crosslinking. PAR-TRAPP in yeast identified hundreds of RNA binding proteins, strongly enriched for canonical RBPs. In comparison, TRAPP identified many more proteins not expected to bind RNA, and this correlated strongly with protein abundance. Comparing TRAPP in yeast and E. coli showed apparent conservation of RNA binding by metabolic enzymes. Illustrating the value of total RBP purification, we discovered that the glycolytic enzyme enolase interacts with tRNAs. Exploiting PAR-TRAPP to determine the effects of brief exposure to weak acid stress revealed specific changes in late 60S ribosome biogenesis. Furthermore, we identified the precise sites of crosslinking for hundreds of RNA-peptide conjugates, using iTRAPP, providing insights into potential regulation. We conclude that TRAPP is a widely applicable tool for RBPome characterization.


Asunto(s)
Proteínas de Unión al ARN/metabolismo , ARN/metabolismo , Ribonucleoproteínas/aislamiento & purificación , Tiouracilo/análogos & derivados , Reactivos de Enlaces Cruzados/química , Escherichia coli/genética , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , ARN/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Tiouracilo/química
7.
Mol Cell ; 39(2): 196-208, 2010 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-20670889

RESUMEN

In eukaryotic cells the final maturation of ribosomes occurs in the cytoplasm, where trans-acting factors are removed and critical ribosomal proteins are added for functionality. Here, we have carried out a comprehensive analysis of cytoplasmic maturation, ordering the known steps into a coherent pathway. Maturation is initiated by the ATPase Drg1. Downstream, assembly of the ribosome stalk is essential for the release of Tif6. The stalk recruits GTPases during translation. Because the GTPase Efl1, which is required for the release of Tif6, resembles the translation elongation factor eEF2, we suggest that assembly of the stalk recruits Efl1, triggering a step in 60S biogenesis that mimics aspects of translocation. Efl1 could thereby provide a mechanism to functionally check the nascent subunit. Finally, the release of Tif6 is a prerequisite for the release of the nuclear export adaptor Nmd3. Establishing this pathway provides an important conceptual framework for understanding ribosome maturation.


Asunto(s)
Citoplasma/metabolismo , Biosíntesis de Proteínas/fisiología , Subunidades Ribosómicas Grandes de Eucariotas/metabolismo , Saccharomyces cerevisiae/metabolismo , Adenosina Trifosfatasas/genética , Adenosina Trifosfatasas/metabolismo , Citoplasma/genética , GTP Fosfohidrolasas/genética , GTP Fosfohidrolasas/metabolismo , Proteínas de Unión al GTP/genética , Proteínas de Unión al GTP/metabolismo , Células HeLa , Humanos , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas Ribosómicas/genética , Proteínas Ribosómicas/metabolismo , Subunidades Ribosómicas Grandes de Eucariotas/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
8.
PLoS Genet ; 11(10): e1005610, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26484760

RESUMEN

The human nuclear poly(A)-binding protein PABPN1 has been implicated in the decay of nuclear noncoding RNAs (ncRNAs). In addition, PABPN1 promotes hyperadenylation by stimulating poly(A)-polymerases (PAPα/γ), but this activity has not previously been linked to the decay of endogenous transcripts. Moreover, the mechanisms underlying target specificity have remained elusive. Here, we inactivated PAP-dependent hyperadenylation in cells by two independent mechanisms and used an RNA-seq approach to identify endogenous targets. We observed the upregulation of various ncRNAs, including snoRNA host genes, primary miRNA transcripts, and promoter upstream antisense RNAs, confirming that hyperadenylation is broadly required for the degradation of PABPN1-targets. In addition, we found that mRNAs with retained introns are susceptible to PABPN1 and PAPα/γ-mediated decay (PPD). Transcripts are targeted for degradation due to inefficient export, which is a consequence of reduced intron number or incomplete splicing. Additional investigation showed that a genetically-encoded poly(A) tail is sufficient to drive decay, suggesting that degradation occurs independently of the canonical cleavage and polyadenylation reaction. Surprisingly, treatment with transcription inhibitors uncouples polyadenylation from decay, leading to runaway hyperadenylation of nuclear decay targets. We conclude that PPD is an important mammalian nuclear RNA decay pathway for the removal of poorly spliced and nuclear-retained transcripts.


Asunto(s)
Núcleo Celular/genética , Poli A/genética , Proteína I de Unión a Poli(A)/genética , Estabilidad del ARN/genética , Núcleo Celular/metabolismo , Humanos , Intrones/genética , Poliadenilación/genética , Empalme del ARN/genética , ARN sin Sentido/genética , ARN Mensajero/genética , ARN Interferente Pequeño/genética , ARN Nucleolar Pequeño/genética
9.
Nature ; 469(7328): 107-11, 2011 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-21170023

RESUMEN

The fidelity and specificity of information flow within a cell is controlled by scaffolding proteins that assemble and link enzymes into signalling circuits. These circuits can be inhibited by bacterial effector proteins that post-translationally modify individual pathway components. However, there is emerging evidence that pathogens directly organize higher-order signalling networks through enzyme scaffolding, and the identity of the effectors and their mechanisms of action are poorly understood. Here we identify the enterohaemorrhagic Escherichia coli O157:H7 type III effector EspG as a regulator of endomembrane trafficking using a functional screen, and report ADP-ribosylation factor (ARF) GTPases and p21-activated kinases (PAKs) as its relevant host substrates. The 2.5 Å crystal structure of EspG in complex with ARF6 shows how EspG blocks GTPase-activating-protein-assisted GTP hydrolysis, revealing a potent mechanism of GTPase signalling inhibition at organelle membranes. In addition, the 2.8 Å crystal structure of EspG in complex with the autoinhibitory Iα3-helix of PAK2 defines a previously unknown catalytic site in EspG and provides an allosteric mechanism of kinase activation by a bacterial effector. Unexpectedly, ARF and PAKs are organized on adjacent surfaces of EspG, indicating its role as a 'catalytic scaffold' that effectively reprograms cellular events through the functional assembly of GTPase-kinase signalling complex.


Asunto(s)
Factores de Ribosilacion-ADP/metabolismo , Biocatálisis , Escherichia coli O157/química , Proteínas de Escherichia coli/metabolismo , Transducción de Señal , Quinasas p21 Activadas/metabolismo , Factores de Ribosilacion-ADP/química , Regulación Alostérica , Animales , Transporte Biológico , Dominio Catalítico , Línea Celular , Cristalografía por Rayos X , Retículo Endoplásmico/metabolismo , Activación Enzimática , Escherichia coli O157/metabolismo , Proteínas de Escherichia coli/química , Aparato de Golgi/metabolismo , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Hidrólisis , Membranas Intracelulares/metabolismo , Ratones , Modelos Moleculares , Unión Proteica , Conformación Proteica , Mapeo de Interacción de Proteínas , Desplegamiento Proteico , Ratas , Técnicas del Sistema de Dos Híbridos , Quinasas p21 Activadas/química
10.
PLoS Genet ; 9(10): e1003893, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24146636

RESUMEN

Control of nuclear RNA stability is essential for proper gene expression, but the mechanisms governing RNA degradation in mammalian nuclei are poorly defined. In this study, we uncover a mammalian RNA decay pathway that depends on the nuclear poly(A)-binding protein (PABPN1), the poly(A) polymerases (PAPs), PAPα and PAPγ, and the exosome subunits RRP6 and DIS3. Using a targeted knockdown approach and nuclear RNA reporters, we show that PABPN1 and PAPα, redundantly with PAPγ, generate hyperadenylated decay substrates that are recognized by the exosome and degraded. Poly(A) tail extension appears to be necessary for decay, as cordycepin treatment or point mutations in the PAP-stimulating domain of PABPN1 leads to the accumulation of stable transcripts with shorter poly(A) tails than controls. Mechanistically, these data suggest that PABPN1-dependent promotion of PAP activity can stimulate nuclear RNA decay. Importantly, efficiently exported RNAs are unaffected by this decay pathway, supporting an mRNA quality control function for this pathway. Finally, analyses of both bulk poly(A) tails and specific endogenous transcripts reveals that a subset of nuclear RNAs are hyperadenylated in a PABPN1-dependent fashion, and this hyperadenylation can be either uncoupled or coupled with decay. Our results highlight a complex relationship between PABPN1, PAPα/γ, and nuclear RNA decay, and we suggest that these activities may play broader roles in the regulation of human gene expression.


Asunto(s)
Proteína I de Unión a Poli(A)/genética , Poliadenilación/genética , Estabilidad del ARN/genética , ARN Mensajero/biosíntesis , Proteínas Portadoras/genética , Núcleo Celular/genética , Exorribonucleasas/metabolismo , Complejo Multienzimático de Ribonucleasas del Exosoma/metabolismo , Exosomas/genética , Exosomas/metabolismo , Humanos , Proteína I de Unión a Poli(A)/metabolismo , ARN Mensajero/genética
11.
Cell Rep ; 42(3): 112184, 2023 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-36862555

RESUMEN

The fungal cell wall provides protection and structure and is an important target for antifungal compounds. A mitogen-activated protein (MAP) kinase cascade termed the cell wall integrity (CWI) pathway regulates transcriptional responses to cell wall damage. Here, we describe a posttranscriptional pathway that plays an important complementary role. We report that the RNA-binding proteins (RBPs) Mrn1 and Nab6 specifically target the 3' UTRs of a largely overlapping set of cell wall-related mRNAs. These mRNAs are downregulated in the absence of Nab6, indicating a function in target mRNA stabilization. Nab6 acts in parallel to CWI signaling to maintain appropriate expression of cell wall genes during stress. Cells lacking both pathways are hypersensitive to antifungal compounds targeting the cell wall. Deletion of MRN1 partially alleviates growth defects associated with Δnab6, and Mrn1 has an opposing function in mRNA destabilization. Our results uncover a posttranscriptional pathway that mediates cellular resistance to antifungal compounds.


Asunto(s)
Proteínas de Saccharomyces cerevisiae , Saccharomycetales , Antifúngicos/farmacología , Antifúngicos/metabolismo , Saccharomyces cerevisiae/metabolismo , Saccharomycetales/genética , Pared Celular/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Regulación Fúngica de la Expresión Génica
12.
Elife ; 112022 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36169304

RESUMEN

Kinetoplastids are a highly divergent lineage of eukaryotes with unusual mechanisms for regulating gene expression. We previously surveyed 65 putative chromatin factors in the kinetoplastid Trypanosoma brucei. Our analyses revealed that the predicted histone methyltransferase SET27 and the Chromodomain protein CRD1 are tightly concentrated at RNAPII transcription start regions (TSRs). Here, we report that SET27 and CRD1, together with four previously uncharacterized constituents, form the SET27 promoter-associated regulatory complex (SPARC), which is specifically enriched at TSRs. SET27 loss leads to aberrant RNAPII recruitment to promoter sites, accumulation of polyadenylated transcripts upstream of normal transcription start sites, and conversion of some normally unidirectional promoters to bidirectional promoters. Transcriptome analysis in the absence of SET27 revealed upregulated mRNA expression in the vicinity of SPARC peaks within the main body of chromosomes in addition to derepression of genes encoding variant surface glycoproteins (VSGs) located in subtelomeric regions. These analyses uncover a novel chromatin-associated complex required to establish accurate promoter position and directionality.


Asunto(s)
Trypanosoma brucei brucei , Cromatina/metabolismo , Heterocromatina/metabolismo , Histona Metiltransferasas/genética , ARN Polimerasa II/metabolismo , ARN Mensajero/metabolismo , Transcripción Genética , Trypanosoma brucei brucei/genética , Trypanosoma brucei brucei/metabolismo , Glicoproteínas Variantes de Superficie de Trypanosoma/genética
13.
Wellcome Open Res ; 5: 261, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33313418

RESUMEN

Infection with SARS-CoV-2 is expected to result in substantial reorganization of host cell RNA metabolism. We identified 14 proteins that were predicted to interact with host RNAs or RNA binding proteins, based on published data for SARS-CoV and SARS-CoV-2. Here, we describe a series of affinity-tagged and codon-optimized expression constructs for each of these 14 proteins. Each viral gene was separately tagged at the N-terminus with Flag-His 8, the C-terminus with His 8-Flag, or left untagged. The resulting constructs were stably integrated into the HEK293 Flp-In T-REx genome. Each viral gene was expressed under the control of an inducible Tet-On promoter, allowing expression levels to be tuned to match physiological conditions during infection. Expression time courses were successfully generated for most of the fusion proteins and quantified by western blot. A few fusion proteins were poorly expressed, whereas others, including Nsp1, Nsp12, and N protein, were toxic unless care was taken to minimize background expression. All plasmids can be obtained from Addgene and cell lines are available. We anticipate that availability of these resources will facilitate a more detailed understanding of coronavirus molecular biology.

14.
Open Biol ; 8(3)2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29563193

RESUMEN

Eukaryotic cells synthesize enormous quantities of RNA from diverse classes, most of which are subject to extensive processing. These processes are inherently error-prone, and cells have evolved robust quality control mechanisms to selectively remove aberrant transcripts. These surveillance pathways monitor all aspects of nuclear RNA biogenesis, and in addition remove nonfunctional transcripts arising from spurious transcription and a host of non-protein-coding RNAs (ncRNAs). Surprisingly, this is largely accomplished with only a handful of RNA decay enzymes. It has, therefore, been unclear how these factors efficiently distinguish between functional RNAs and huge numbers of diverse transcripts that must be degraded. Here we describe how bona fide transcripts are specifically protected, particularly by 5' and 3' modifications. Conversely, a plethora of factors associated with the nascent transcripts all act to recruit the RNA quality control, surveillance and degradation machinery. We conclude that initiating RNAPII is 'surveillance ready', with degradation being a default fate for all transcripts that lack specific protective features. We further postulate that this promiscuity is a key feature that allowed the proliferation of vast numbers of ncRNAs in eukaryotes, including humans.


Asunto(s)
Eucariontes/genética , ARN Polimerasa II/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/química , Animales , Eucariontes/metabolismo , Humanos , Estabilidad del ARN , ARN no Traducido/química , Transcripción Genética
15.
Elife ; 62017 06 27.
Artículo en Inglés | MEDLINE | ID: mdl-28653618

RESUMEN

The rate of protein synthesis in the adult heart is one of the lowest in mammalian tissues, but it increases substantially in response to stress and hypertrophic stimuli through largely obscure mechanisms. Here, we demonstrate that regulated expression of cytosolic poly(A)-binding protein 1 (PABPC1) modulates protein synthetic capacity of the mammalian heart. We uncover a poly(A) tail-based regulatory mechanism that dynamically controls PABPC1 protein synthesis in cardiomyocytes and thereby titrates cellular translation in response to developmental and hypertrophic cues. Our findings identify PABPC1 as a direct regulator of cardiac hypertrophy and define a new paradigm of gene regulation in the heart, where controlled changes in poly(A) tail length influence mRNA translation.


Asunto(s)
Regulación de la Expresión Génica , Miocardio/metabolismo , Proteína I de Unión a Poli(A)/metabolismo , Biosíntesis de Proteínas , ARN Mensajero/metabolismo , Animales , Humanos , Ratones Endogámicos C57BL
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA