RESUMEN
Phosphoinositides (PIs) are membrane phospholipids produced through the local activity of PI kinases and phosphatases that selectively add or remove phosphate groups from the inositol head group. PIs control membrane composition and play key roles in many cellular processes including actin dynamics, endosomal trafficking, autophagy, and nuclear functions. Mutations in phosphatidylinositol 4,5 bisphosphate [PI(4,5)P2] phosphatases cause a broad spectrum of neurodevelopmental disorders such as Lowe and Joubert syndromes and congenital muscular dystrophy with cataracts and intellectual disability, which are thus associated with increased levels of PI(4,5)P2. Here, we describe a neurodevelopmental disorder associated with an increase in the production of PI(4,5)P2 and with PI-signaling dysfunction. We identified three de novo heterozygous missense variants in PIP5K1C, which encodes an isoform of the phosphatidylinositol 4-phosphate 5-kinase (PIP5KIγ), in nine unrelated children exhibiting intellectual disability, developmental delay, acquired microcephaly, seizures, visual abnormalities, and dysmorphic features. We provide evidence that the PIP5K1C variants result in an increase of the endosomal PI(4,5)P2 pool, giving rise to ectopic recruitment of filamentous actin at early endosomes (EEs) that in turn causes dysfunction in EE trafficking. In addition, we generated an in vivo zebrafish model that recapitulates the disorder we describe with developmental defects affecting the forebrain, including the eyes, as well as craniofacial abnormalities, further demonstrating the pathogenic effect of the PIP5K1C variants.
Asunto(s)
Discapacidad Intelectual , Fosfatidilinositoles , Animales , Síndrome , Actinas , Pez Cebra/genética , Discapacidad Intelectual/genética , Monoéster Fosfórico Hidrolasas/genética , Fosfatos de FosfatidilinositolRESUMEN
Heterogeneous nuclear ribonucleoprotein C (HNRNPC) is an essential, ubiquitously abundant protein involved in mRNA processing. Genetic variants in other members of the HNRNP family have been associated with neurodevelopmental disorders. Here, we describe 13 individuals with global developmental delay, intellectual disability, behavioral abnormalities, and subtle facial dysmorphology with heterozygous HNRNPC germline variants. Five of them bear an identical in-frame deletion of nine amino acids in the extreme C terminus. To study the effect of this recurrent variant as well as HNRNPC haploinsufficiency, we used induced pluripotent stem cells (iPSCs) and fibroblasts obtained from affected individuals. While protein localization and oligomerization were unaffected by the recurrent C-terminal deletion variant, total HNRNPC levels were decreased. Previously, reduced HNRNPC levels have been associated with changes in alternative splicing. Therefore, we performed a meta-analysis on published RNA-seq datasets of three different cell lines to identify a ubiquitous HNRNPC-dependent signature of alternative spliced exons. The identified signature was not only confirmed in fibroblasts obtained from an affected individual but also showed a significant enrichment for genes associated with intellectual disability. Hence, we assessed the effect of decreased and increased levels of HNRNPC on neuronal arborization and neuronal migration and found that either condition affects neuronal function. Taken together, our data indicate that HNRNPC haploinsufficiency affects alternative splicing of multiple intellectual disability-associated genes and that the developing brain is sensitive to aberrant levels of HNRNPC. Hence, our data strongly support the inclusion of HNRNPC to the family of HNRNP-related neurodevelopmental disorders.
Asunto(s)
Discapacidad Intelectual , Trastornos del Neurodesarrollo , Humanos , Discapacidad Intelectual/genética , Empalme Alternativo/genética , Ribonucleoproteína Heterogénea-Nuclear Grupo C/genética , Haploinsuficiencia/genética , Trastornos del Neurodesarrollo/genética , Ribonucleoproteínas Nucleares Heterogéneas/genéticaRESUMEN
MTSS2, also known as MTSS1L, binds to plasma membranes and modulates their bending. MTSS2 is highly expressed in the central nervous system (CNS) and appears to be involved in activity-dependent synaptic plasticity. Variants in MTSS2 have not yet been associated with a human phenotype in OMIM. Here we report five individuals with the same heterozygous de novo variant in MTSS2 (GenBank: NM_138383.2: c.2011C>T [p.Arg671Trp]) identified by exome sequencing. The individuals present with global developmental delay, mild intellectual disability, ophthalmological anomalies, microcephaly or relative microcephaly, and shared mild facial dysmorphisms. Immunoblots of fibroblasts from two affected individuals revealed that the variant does not significantly alter MTSS2 levels. We modeled the variant in Drosophila and showed that the fly ortholog missing-in-metastasis (mim) was widely expressed in most neurons and a subset of glia of the CNS. Loss of mim led to a reduction in lifespan, impaired locomotor behavior, and reduced synaptic transmission in adult flies. Expression of the human MTSS2 reference cDNA rescued the mim loss-of-function (LoF) phenotypes, whereas the c.2011C>T variant had decreased rescue ability compared to the reference, suggesting it is a partial LoF allele. However, elevated expression of the variant, but not the reference MTSS2 cDNA, led to similar defects as observed by mim LoF, suggesting that the variant is toxic and may act as a dominant-negative allele when expressed in flies. In summary, our findings support that mim is important for appropriate neural function, and that the MTSS2 c.2011C>T variant causes a syndromic form of intellectual disability.
Asunto(s)
Discapacidad Intelectual , Microcefalia , Malformaciones del Sistema Nervioso , Animales , ADN Complementario , Drosophila/genética , Humanos , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Proteínas de la Membrana , Microcefalia/genética , Proteínas de Microfilamentos , Mutación Missense/genética , Malformaciones del Sistema Nervioso/genética , FenotipoRESUMEN
PURPOSE: Exome (ES) and genome sequencing (GS) are increasingly being utilized for individuals with rare and undiagnosed diseases; however, guidelines on their use remain limited. This study aimed to identify factors associated with diagnosis by ES and/or GS in a heterogeneous population of patients with rare and undiagnosed diseases. METHODS: In this case control study, we reviewed data from 400 diagnosed and 400 undiagnosed randomly selected participants in the Undiagnosed Diseases Network, all of whom had undergone ES and/or GS. We analyzed factors associated with receiving a diagnosis by ES and/or GS. RESULTS: Factors associated with a decreased odds of being diagnosed included adult symptom onset, singleton sequencing, and having undergone ES and/or GS before acceptance to the Undiagnosed Diseases Network (48%, 51%, and 32% lower odds, respectively). Factors that increased the odds of being diagnosed by ES and/or GS included having primarily neurological symptoms and having undergone prior chromosomal microarray testing (44% and 59% higher odds, respectively). CONCLUSION: We identified several factors that were associated with receiving a diagnosis by ES and/or GS. This will ideally inform the utilization of ES and/or GS and help manage expectations of individuals and families undergoing these tests.
Asunto(s)
Secuenciación del Exoma , Exoma , Enfermedades Raras , Secuenciación Completa del Genoma , Humanos , Enfermedades Raras/genética , Enfermedades Raras/diagnóstico , Femenino , Masculino , Adulto , Exoma/genética , Estudios de Casos y Controles , Pruebas Genéticas/métodos , Persona de Mediana Edad , Genoma Humano/genética , Adolescente , Adulto JovenRESUMEN
The minichromosome maintenance (MCM) complex acts as a DNA helicase during DNA replication, and thereby regulates cell cycle progression and proliferation. In addition, MCM-complex components localize to centrosomes and play an independent role in ciliogenesis. Pathogenic variants in genes coding for MCM components and other DNA replication factors have been linked to growth and developmental disorders as Meier-Gorlin syndrome and Seckel syndrome. Trio exome/genome sequencing identified the same de novo MCM6 missense variant p.(Cys158Tyr) in two unrelated individuals that presented with overlapping phenotypes consisting of intra-uterine growth retardation, short stature, congenital microcephaly, endocrine features, developmental delay and urogenital anomalies. The identified variant affects a zinc binding cysteine in the MCM6 zinc finger signature. This domain, and specifically cysteine residues, are essential for MCM-complex dimerization and the induction of helicase activity, suggesting a deleterious effect of this variant on DNA replication. Fibroblasts derived from the two affected individuals showed defects both in ciliogenesis and cell proliferation. We additionally traced three unrelated individuals with de novo MCM6 variants in the oligonucleotide binding (OB)-fold domain, presenting with variable (neuro)developmental features including autism spectrum disorder, developmental delay, and epilepsy. Taken together, our findings implicate de novo MCM6 variants in neurodevelopmental disorders. The clinical features and functional defects related to the zinc binding residue resemble those observed in syndromes related to other MCM components and DNA replication factors, while de novo OB-fold domain missense variants may be associated with more variable neurodevelopmental phenotypes. These data encourage consideration of MCM6 variants in the diagnostic arsenal of NDD.
Asunto(s)
Trastorno del Espectro Autista , Discapacidad Intelectual , Microcefalia , Trastornos del Neurodesarrollo , Humanos , Cisteína/genética , Trastornos del Neurodesarrollo/genética , Proteínas de Ciclo Celular/genética , ADN Helicasas/genética , Microcefalia/genética , Fenotipo , Zinc , Discapacidad Intelectual/genética , Componente 6 del Complejo de Mantenimiento de Minicromosoma/genéticaRESUMEN
MORC2 encodes an ATPase that plays a role in chromatin remodeling, DNA repair, and transcriptional regulation. Heterozygous variants in MORC2 have been reported in individuals with autosomal-dominant Charcot-Marie-Tooth disease type 2Z and spinal muscular atrophy, and the onset of symptoms ranges from infancy to the second decade of life. Here, we present a cohort of 20 individuals referred for exome sequencing who harbor pathogenic variants in the ATPase module of MORC2. Individuals presented with a similar phenotype consisting of developmental delay, intellectual disability, growth retardation, microcephaly, and variable craniofacial dysmorphism. Weakness, hyporeflexia, and electrophysiologic abnormalities suggestive of neuropathy were frequently observed but were not the predominant feature. Five of 18 individuals for whom brain imaging was available had lesions reminiscent of those observed in Leigh syndrome, and five of six individuals who had dilated eye exams had retinal pigmentary abnormalities. Functional assays revealed that these MORC2 variants result in hyperactivation of epigenetic silencing by the HUSH complex, supporting their pathogenicity. The described set of morphological, growth, developmental, and neurological findings and medical concerns expands the spectrum of genetic disorders resulting from pathogenic variants in MORC2.
Asunto(s)
Adenosina Trifosfatasas/genética , Anomalías Craneofaciales/genética , Trastornos del Crecimiento/genética , Mutación/genética , Trastornos del Neurodesarrollo/genética , Factores de Transcripción/genética , Adolescente , Adulto , Niño , Preescolar , Femenino , Enfermedades Genéticas Congénitas/genética , Heterocigoto , Humanos , Lactante , Discapacidad Intelectual/genética , Masculino , Microcefalia/genética , Persona de Mediana Edad , Fenotipo , Adulto JovenRESUMEN
The translocase of outer mitochondrial membrane (TOMM) complex is the entry gate for virtually all mitochondrial proteins and is essential to build the mitochondrial proteome. TOMM70 is a receptor that assists mainly in mitochondrial protein import. Here, we report two individuals with de novo variants in the C-terminal region of TOMM70. While both individuals exhibited shared symptoms including hypotonia, hyper-reflexia, ataxia, dystonia and significant white matter abnormalities, there were differences between the two individuals, most prominently the age of symptom onset. Both individuals were undiagnosed despite extensive genetics workups. Individual 1 was found to have a p.Thr607Ile variant while Individual 2 was found to have a p.Ile554Phe variant in TOMM70. To functionally assess both TOMM70 variants, we replaced the Drosophila Tom70 coding region with a Kozak-mini-GAL4 transgene using CRISPR-Cas9. Homozygous mutant animals die as pupae, but lethality is rescued by the mini-GAL4-driven expression of human UAS-TOMM70 cDNA. Both modeled variants lead to significantly less rescue indicating that they are loss-of-function alleles. Similarly, RNAi-mediated knockdown of Tom70 in the developing eye causes roughening and synaptic transmission defect, common findings in neurodegenerative and mitochondrial disorders. These phenotypes were rescued by the reference, but not the variants, of TOMM70. Altogether, our data indicate that de novo loss-of-function variants in TOMM70 result in variable white matter disease and neurological phenotypes in affected individuals.
Asunto(s)
Predisposición Genética a la Enfermedad , Leucoencefalopatías/genética , Proteínas de Transporte de Membrana Mitocondrial/genética , Enfermedades del Sistema Nervioso/genética , Edad de Inicio , Ataxia/genética , Ataxia/patología , Niño , Distonía/genética , Distonía/patología , Femenino , Humanos , Leucoencefalopatías/patología , Masculino , Mitocondrias/genética , Mitocondrias/metabolismo , Mitocondrias/patología , Proteínas del Complejo de Importación de Proteínas Precursoras Mitocondriales , Hipotonía Muscular/genética , Hipotonía Muscular/patología , Enfermedades del Sistema Nervioso/patología , Reflejo Anormal/genéticaRESUMEN
Mitochondrial complex V plays an important role in oxidative phosphorylation by catalyzing the generation of ATP. Most complex V subunits are nuclear encoded and not yet associated with recognized Mendelian disorders. Using exome sequencing, we identified a rare homozygous splice variant (c.87+3A>G) in ATP5PO, the complex V subunit which encodes the oligomycin sensitivity conferring protein, in three individuals from two unrelated families, with clinical suspicion of a mitochondrial disorder. These individuals had a similar, severe infantile and often lethal multi-systemic disorder that included hypotonia, developmental delay, hypertrophic cardiomyopathy, progressive epileptic encephalopathy, progressive cerebral atrophy, and white matter abnormalities on brain MRI consistent with Leigh syndrome. cDNA studies showed a predominant shortened transcript with skipping of exon 2 and low levels of the normal full-length transcript. Fibroblasts from the affected individuals demonstrated decreased ATP5PO protein, defective assembly of complex V with markedly reduced amounts of peripheral stalk proteins, and complex V hydrolytic activity. Further, expression of human ATP5PO cDNA without exon 2 (hATP5PO-∆ex2) in yeast cells deleted for yATP5 (ATP5PO homolog) was unable to rescue growth on media which requires oxidative phosphorylation when compared to the wild type construct (hATP5PO-WT), indicating that exon 2 deletion leads to a non-functional protein. Collectively, our findings support the pathogenicity of the ATP5PO c.87+3A>G variant, which significantly reduces but does not eliminate complex V activity. These data along with the recent report of an affected individual with ATP5PO variants, add to the evidence that rare biallelic variants in ATP5PO result in defective complex V assembly, function and are associated with Leigh syndrome.
Asunto(s)
Encefalopatías , Enfermedad de Leigh , ATPasas de Translocación de Protón Mitocondriales , Encefalopatías/metabolismo , ADN Complementario/metabolismo , Humanos , Enfermedad de Leigh/genética , Enfermedad de Leigh/metabolismo , Mitocondrias/genética , Mitocondrias/metabolismo , ATPasas de Translocación de Protón Mitocondriales/genética , Mutación , Proteínas/metabolismoRESUMEN
OBJECTIVE: To characterize the phenotypic spectrum associated with GNAO1 variants and establish genotype-protein structure-phenotype relationships. METHODS: We evaluated the phenotypes of 14 patients with GNAO1 variants, analyzed their variants for potential pathogenicity, and mapped them, along with those in the literature, on a three-dimensional structural protein model. RESULTS: The 14 patients in our cohort, including one sibling pair, had 13 distinct, heterozygous GNAO1 variants classified as pathogenic or likely pathogenic. We attributed the same variant in two siblings to parental mosaicism. Patients initially presented with seizures beginning in the first 3 months of life (8/14), developmental delay (4/14), hypotonia (1/14), or movement disorder (1/14). All patients had hypotonia and developmental delay ranging from mild to severe. Nine had epilepsy, and nine had movement disorders, including dystonia, ataxia, chorea, and dyskinesia. The 13 GNAO1 variants in our patients are predicted to result in amino acid substitutions or deletions in the GNAO1 guanosine triphosphate (GTP)-binding region, analogous to those in previous publications. Patients with variants affecting amino acids 207-221 had only movement disorder and hypotonia. Patients with variants affecting the C-terminal region had the mildest phenotypes. SIGNIFICANCE: GNAO1 encephalopathy most frequently presents with seizures beginning in the first 3 months of life. Concurrent movement disorders are also a prominent feature in the spectrum of GNAO1 encephalopathy. All variants affected the GTP-binding domain of GNAO1, highlighting the importance of this region for G-protein signaling and neurodevelopment.
Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gi-Go/genética , Trastornos del Neurodesarrollo/genética , Adolescente , Estudios de Casos y Controles , Niño , Preescolar , Epilepsia/genética , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Humanos , Masculino , Adulto JovenRESUMEN
The burden of living with an undiagnosed condition is high and includes physical and emotional suffering, frustrations, and uncertainty. For patients and families experiencing these stressors, higher levels of empowerment may be associated with better outcomes. Thus, it is important to understand the experiences of patients with undiagnosed conditions and their families affected by undiagnosed conditions in order to identify strategies for fostering empowerment. In this study, we used the Genetic Counseling Outcome Scale (GCOS-24) to assess levels of empowerment and support group participation in 35 adult participants and 67 parents of child participants in the Undiagnosed Diseases Network (UDN) prior to their UDN in-person evaluation. Our results revealed significantly lower empowerment scores on the GCOS-24 in adult participants compared to parents of child participants [t(100) = - 3.01, p = 0.003, average difference = - 11.12, 95% CI (- 3.78, - 18.46)] and no significant association between support group participation and empowerment scores. The majority of participants (84.3%, 86/102) are not currently participating in any support groups, and participation rates were not significantly different for adult participants and parents of child participants (11.4 vs. 19.7%, respectively, FE p = 0.40). Open-ended responses provided additional insight into support group participation, the challenges of living with undiagnosed conditions, and positive coping strategies. Future research will evaluate the extent to which empowerment scores change as participation in the UDN unfolds.
Asunto(s)
Diagnóstico , Padres/psicología , Poder Psicológico , Adaptación Psicológica , Adulto , Niño , Toma de Decisiones , Manejo de la Enfermedad , Femenino , Asesoramiento Genético , Humanos , Lactante , Masculino , Medición de Resultados Informados por el Paciente , Proyectos Piloto , Reproducibilidad de los Resultados , Encuestas y Cuestionarios , IncertidumbreRESUMEN
Pathogenic missense and truncating variants in the GABRG2 gene cause a spectrum of epilepsies, from Dravet syndrome to milder simple febrile seizures. In most cases, pathogenic missense variants in the GABRG2 gene segregate with a febrile seizure phenotype. In this case series, we report a recurrent, de novo missense variant (c0.316 G > A; p.A106T) in the GABRG2 gene that was identified in five unrelated individuals. These patients were described to have a more severe phenotype than previously reported for GABRG2 missense variants. Common features include variable early-onset seizures, significant motor and speech delays, intellectual disability, hypotonia, movement disorder, dysmorphic features and vision/ocular issues. Our report further explores a recurrent pathogenic missense variant within the GABRG2 variant family and broadens the spectrum of associated phenotypes for GABRG2-associated disorders.
Asunto(s)
Anomalías Múltiples/patología , Mutación Missense , Receptores de GABA-A/genética , Índice de Severidad de la Enfermedad , Anomalías Múltiples/genética , Adolescente , Niño , Epilepsia/genética , Epilepsia/patología , Femenino , Humanos , Lactante , Discapacidad Intelectual/genética , Discapacidad Intelectual/patología , Masculino , Trastornos Motores/genética , Trastornos Motores/patología , Trastornos del Movimiento/genética , Trastornos del Movimiento/patología , Hipotonía Muscular/genética , Hipotonía Muscular/patología , Linaje , Fenotipo , Trastornos del Habla/genética , Trastornos del Habla/patologíaRESUMEN
EZH1 ( Enhancer of Zeste, homolog 1) , a Polycomb Repressive Complex-2 (PRC2) component, is involved in a myriad of cellular processes through modifying histone 3 lysine27 (H3K27) residues. EZH1 represses transcription of downstream target genes through H3K27 trimethylation (H3K27me3). Genetic mutations in histone modifiers have been associated with developmental disorders, while EZH1 has not yet been linked to any human disease. However, the paralog EZH2 is associated with Weaver syndrome. Here we report a previously undiagnosed individual with a novel neurodevelopmental phenotype identified to have a de novo variant in EZH1 , p.Ala678Gly, through exome sequencing. The individual presented in infancy with neurodevelopmental delay and hypotonia and was later noted to have proximal muscle weakness. The variant, p.A678G, is in the SET domain, known for its methyltransferase activity, and was the best candidate variant found in the exome. Human EZH1 / 2 are homologous to fly Enhancer of zeste E(z) , an essential gene in flies, and the residue (A678 in humans, A691 in Drosophila ) is conserved. To further study this variant, we obtained Drosophila null alleles and generated transgenic flies expressing wild-type (E(z) WT ) and the variant (E(z) A691G ) . The E(z) A691G variant led to hyper H3K27me3 while the E(z) WT did not, suggesting this is as a gain-of-function allele. When expressed under the tubulin promotor in vivo the variant rescued null-lethality similar to wild-type but the E(z) A691G flies exhibit bang sensitivity and shortened lifespan. In conclusion, here we present a novel EZH1 de novo variant associated with a neurodevelopmental disorder. Furthermore, we found that this variant has a functional impact in Drosophila . Biochemically this allele leads to increased H3K27me3 suggesting gain-of-function, but when expressed in adult flies the E(z) A691G has some characteristics of partial loss-of-function which may suggest it is a more complex allele in vivo .
RESUMEN
Protein UFMylation downstream of the E1 enzyme UBA5 plays essential roles in development and ER stress. Variants in the UBA5 gene are associated with developmental and epileptic encephalopathy 44 (DEE44), an autosomal recessive disorder characterized by early-onset encephalopathy, movement abnormalities, global developmental delay, intellectual disability, and seizures. DEE44 is caused by at least twelve different missense variants described as loss of function (LoF), but the relationships between genotypes and molecular or clinical phenotypes remains to be established. We developed a humanized UBA5 fly model and biochemical activity assays in order to describe in vivo and in vitro genotype-phenotype relationships across the UBA5 allelic series. In vivo, we observed a broad spectrum of phenotypes in viability, developmental timing, lifespan, locomotor activity, and bang sensitivity. A range of functional effects was also observed in vitro across comprehensive biochemical assays for protein stability, ATP binding, UFM1 activation, and UFM1 transthiolation. Importantly, there is a strong correlation between in vivo and in vitro phenotypes, establishing a classification of LoF variants into mild, intermediate, and severe allelic strengths. By systemically evaluating UBA5 variants across in vivo and in vitro platforms, this study provides a foundation for more basic and translational UBA5 research, as well as a basis for evaluating current and future individuals afflicted with this rare disease.
RESUMEN
Protein UFMylation downstream of the E1 enzyme UBA5 plays essential roles in development and endoplasmic reticulum stress. Variants in the UBA5 gene are associated with developmental and epileptic encephalopathy 44 (DEE44), an autosomal recessive disorder characterized by early-onset encephalopathy, movement abnormalities, global developmental delay, intellectual disability, and seizures. DEE44 is caused by at least 12 different missense variants described as loss of function (LoF), but the relationships between genotypes and molecular or clinical phenotypes remain to be established. We developed a humanized UBA5 fly model and biochemical activity assays in order to describe in vivo and in vitro genotype-phenotype relationships across the UBA5 allelic series. In vivo, we observed a broad spectrum of phenotypes in viability, developmental timing, lifespan, locomotor activity, and bang sensitivity. A range of functional effects was also observed in vitro across comprehensive biochemical assays for protein stability, ATP binding, UFM1 activation, and UFM1 transthiolation. Importantly, there is a strong correlation between in vivo and in vitro phenotypes, establishing a classification of LoF variants into mild, intermediate, and severe allelic strengths. By systemically evaluating UBA5 variants across in vivo and in vitro platforms, this study provides a foundation for more basic and translational UBA5 research, as well as a basis for evaluating current and future individuals afflicted with this rare disease.
Although rare diseases only impact a small fraction of the population, they still affect hundreds of millions of people around the world. Many of these conditions are caused by variations in inherited genetic material, which nowadays can be readily detected using advanced sequencing technologies. However, establishing a connection between these genetic changes and the disease they cause often requires further in-depth study. One such rare inherited disorder is developmental and epileptic encephalopathy type 44 (DEE44), which is caused by genetic variations within the gene for UBA5 (short for ubiquitin-like modifier activating enzyme 5). For DEE44 to occur, both copies of the gene for UBA5, known as alleles, must contain one or more detrimental variation. Although all these variations prevent UBA5 from working correctly, the level of disruption they cause, known as allelic strength, varies between them. However, it remained unclear whether the severity of the DEE44 disease directly corresponds with the allelic strength of these variants. To answer this question, Pan et al. tested how different genetic variants found in patients with DEE44 affected the behavior and health of fruit flies. These results were then compared against in vitro biochemical assays testing how alleles containing these variants impacted the function of UBA5. When the fly gene for the enzyme was replaced with the human gene containing variations associated with DEE44, flies exhibited changes in their survival rates, developmental progress, lifespan, and neurological well-being. However, not all of the variants caused ill effects. Using this information, the patient variants were classified into three categories based on the severity of their effect: mild, intermediate, and severe. Biochemical assays supported this classification and revealed that the variants that caused more severe symptoms tended to inhibit the activity of UBA5 more significantly. Pan et al. further analyzed the nature of the variants in the patients and showed that most patients typically carried one mild and one strong variant, although some individuals did have two intermediate variants. Notably, no patients carried two severe variants. This indicates that DEE44 is the result of UBA5 only partially losing its ability to work correctly. The study by Pan et al. provides a framework for assessing the impact of genetic variants associated with DEE44, aiding the diagnosis and treatment of the disorder. However, further research involving more patients, more detailed clinical data, and testing other newly identified DEE44-causing variants is needed to solidify the correlation between allelic strength and disease severity.
Asunto(s)
Encefalopatías , Discapacidad Intelectual , Trastornos del Movimiento , Enzimas Activadoras de Ubiquitina , Humanos , Encefalopatías/genética , Discapacidad Intelectual/genética , Trastornos del Movimiento/genética , Mutación Missense , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/metabolismo , Drosophila/genética , Proteínas de Drosophila/genéticaRESUMEN
EZH1, a polycomb repressive complex-2 component, is involved in a myriad of cellular processes. EZH1 represses transcription of downstream target genes through histone 3 lysine27 (H3K27) trimethylation (H3K27me3). Genetic variants in histone modifiers have been associated with developmental disorders, while EZH1 has not yet been linked to any human disease. However, the paralog EZH2 is associated with Weaver syndrome. Here we report a previously undiagnosed individual with a novel neurodevelopmental phenotype identified to have a de novo missense variant in EZH1 through exome sequencing. The individual presented in infancy with neurodevelopmental delay and hypotonia and was later noted to have proximal muscle weakness. The variant, p.A678G, is in the SET domain, known for its methyltransferase activity, and an analogous somatic or germline mutation in EZH2 has been reported in patients with B-cell lymphoma or Weaver syndrome, respectively. Human EZH1/2 are homologous to fly Enhancer of zeste (E(z)), an essential gene in Drosophila, and the affected residue (p.A678 in humans, p.A691 in flies) is conserved. To further study this variant, we obtained null alleles and generated transgenic flies expressing wildtype [E(z)WT] and the variant [E(z)A691G]. When expressed ubiquitously the variant rescues null-lethality similar to the wildtype. Overexpression of E(z)WT induces homeotic patterning defects but notably the E(z)A691G variant leads to dramatically stronger morphological phenotypes. We also note a dramatic loss of H3K27me2 and a corresponding increase in H3K27me3 in flies expressing E(z)A691G, suggesting this acts as a gain-of-function allele. In conclusion, here we present a novel EZH1 de novo variant associated with a neurodevelopmental disorder. Furthermore, we found that this variant has a functional impact in Drosophila.
Asunto(s)
Drosophila melanogaster , Histonas , Animales , Humanos , Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteína Potenciadora del Homólogo Zeste 2/genética , Proteína Potenciadora del Homólogo Zeste 2/metabolismo , Histonas/genética , Complejo Represivo Polycomb 2RESUMEN
Early infantile epileptic encephalopathy-44 (EIEE44, MIM: 617132) is a previously described condition resulting from biallelic variants in UBA5, a gene involved in a ubiquitin-like post-translational modification system called UFMylation. Here we report five children from four families with biallelic pathogenic variants in UBA5 All five children presented with global developmental delay, epilepsy, axial hypotonia, appendicular hypertonia, and a movement disorder, including dystonia in four. Affected individuals in all four families have compound heterozygous pathogenic variants in UBA5 All have the recurrent mild c.1111G > A (p.Ala371Thr) variant in trans with a second UBA5 variant. One patient has the previously described c.562C > T (p. Arg188*) variant, two other unrelated patients have a novel missense variant, c.907T > C (p.Cys303Arg), and the two siblings have a novel missense variant, c.761T > C (p.Leu254Pro). Functional analyses demonstrate that both the p.Cys303Arg variant and the p.Leu254Pro variants result in a significant decrease in protein function. We also review the phenotypes and genotypes of all 15 previously reported families with biallelic UBA5 variants, of which two families have presented with distinct phenotypes, and we describe evidence for some limited genotype-phenotype correlation. The overlap of motor and developmental phenotypes noted in our cohort and literature review adds to the increasing understanding of genetic syndromes with movement disorders-epilepsy.
Asunto(s)
Fenotipo , Espasmos Infantiles/genética , Espasmos Infantiles/metabolismo , Enzimas Activadoras de Ubiquitina/genética , Enzimas Activadoras de Ubiquitina/metabolismo , Adolescente , Encéfalo/diagnóstico por imagen , Encéfalo/fisiología , Niño , Estudios de Cohortes , Epilepsia/genética , Femenino , Estudios de Asociación Genética , Células HEK293 , Humanos , Masculino , Hipotonía Muscular , Mutación Missense , Proteínas/genética , Proteínas/metabolismo , Espasmos Infantiles/diagnóstico por imagen , Espasmos Infantiles/patología , Adulto JovenRESUMEN
BACKGROUND: CTNNB1 (MIM 116806) encodes beta-catenin, an adherens junction protein that supports the integrity between layers of epithelial tissue and mediates intercellular signaling. Recently, various heterozygous germline variants in CTNNB1 have been associated with human disease, including neurodevelopmental disorder with spastic diplegia and visual defects (MIM 615075) as well as isolated familial exudative vitreoretinopathy without developmental delays or other organ system involvement (MIM 617572). From over 40 previously reported patients with CTNNB1-related neurodevelopmental disorder, many have had ocular anomalies including strabismus, hyperopia, and astigmatism. More recently, multiple reports indicate that these abnormalities are associated with the presence of vitreoretinopathy. METHODS: We gathered a cohort of three patients with CTNNB1-related neurodevelopmental disorder, recruited from both our own clinic and referred from outside providers. We then searched for a clinical database comprised of over 12,000 exome sequencing studies to identify and recruit four additional patients. RESULTS: Here, we report seven new cases of CTNNB1-related neurodevelopmental disorder, all harboring de novo variants, six of which were previously unreported. All patients but one presented with a spectrum of ocular abnormalities and one patient, who was found to carry a missense variant in CTNNB1, had notable vitreoretinopathy. CONCLUSIONS: Our findings suggest ophthalmologic screening should be performed in all patients with CTNNB1 variants.