Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
J Virol ; : e0093524, 2024 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-39283124

RESUMEN

The large group of negative-strand RNA viruses (NSVs) comprises many important pathogens. To identify conserved patterns in host responses, we systematically compared changes in the cellular RNA levels after infection of human hepatoma cells with nine different NSVs of different virulence degrees. RNA sequencing experiments indicated that the amount of viral RNA in host cells correlates with the number of differentially expressed host cell transcripts. Time-resolved differential gene expression analysis revealed a common set of 178 RNAs that are regulated by all NSVs analyzed. A newly developed open access web application allows downloads and visualizations of all gene expression comparisons for individual viruses over time or between several viruses. Most of the genes included in the core set of commonly differentially expressed genes (DEGs) encode proteins that serve as membrane receptors, signaling proteins and regulators of transcription. They mainly function in signal transduction and control immunity, metabolism, and cell survival. One hundred sixty-five of the DEGs encode host proteins from which 47 have already been linked to the regulation of viral infections in previous studies and 89 proteins form a complex interaction network that may function as a core hub to control NSV infections.IMPORTANCEThe infection of cells with negative-strand RNA viruses leads to the differential expression of many host cell RNAs. The differential spectrum of virus-regulated RNAs reflects a large variety of events including anti-viral responses, cell remodeling, and cell damage. Here, these virus-specific differences and similarities in the regulated RNAs were measured in a highly standardized model. A newly developed app allows interested scientists a wide range of comparisons and visualizations.

2.
BMC Bioinformatics ; 25(1): 138, 2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38553675

RESUMEN

Even though high-throughput transcriptome sequencing is routinely performed in many laboratories, computational analysis of such data remains a cumbersome process often executed manually, hence error-prone and lacking reproducibility. For corresponding data processing, we introduce Curare, an easy-to-use yet versatile workflow builder for analyzing high-throughput RNA-Seq data focusing on differential gene expression experiments. Data analysis with Curare is customizable and subdivided into preprocessing, quality control, mapping, and downstream analysis stages, providing multiple options for each step while ensuring the reproducibility of the workflow. For a fast and straightforward exploration and visualization of differential gene expression results, we provide the gene expression visualizer software GenExVis. GenExVis can create various charts and tables from simple gene expression tables and DESeq2 results without the requirement to upload data or install software packages. In combination, Curare and GenExVis provide a comprehensive software environment that supports the entire data analysis process, from the initial handling of raw RNA-Seq data to the final DGE analyses and result visualizations, thereby significantly easing data processing and subsequent interpretation.


Asunto(s)
Curare , RNA-Seq , Reproducibilidad de los Resultados , Análisis de Secuencia de ARN/métodos , Transcriptoma , Programas Informáticos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Perfilación de la Expresión Génica/métodos
3.
Nucleic Acids Res ; 49(2): 986-1005, 2021 01 25.
Artículo en Inglés | MEDLINE | ID: mdl-33398323

RESUMEN

Extracytoplasmic function σ factors (ECFs) represent one of the major bacterial signal transduction mechanisms in terms of abundance, diversity and importance, particularly in mediating stress responses. Here, we performed a comprehensive phylogenetic analysis of this protein family by scrutinizing all proteins in the NCBI database. As a result, we identified an average of ∼10 ECFs per bacterial genome and 157 phylogenetic ECF groups that feature a conserved genetic neighborhood and a similar regulation mechanism. Our analysis expands previous classification efforts ∼50-fold, enriches many original ECF groups with previously unclassified proteins and identifies 22 entirely new ECF groups. The ECF groups are hierarchically related to each other and are further composed of subgroups with closely related sequences. This two-tiered classification allows for the accurate prediction of common promoter motifs and the inference of putative regulatory mechanisms across subgroups composing an ECF group. This comprehensive, high-resolution description of the phylogenetic distribution of the ECF family, together with the massive expansion of classified ECF sequences and an openly accessible data repository called 'ECF Hub' (https://www.computational.bio.uni-giessen.de/ecfhub), will serve as a powerful hypothesis-generator to guide future research in the field.


Asunto(s)
Proteínas Bacterianas/química , Familia de Multigenes , Factor sigma/clasificación , Secuencia de Aminoácidos , Proteínas Bacterianas/genética , Secuencia de Consenso , ARN Polimerasas Dirigidas por ADN/química , ARN Polimerasas Dirigidas por ADN/metabolismo , Regulación Bacteriana de la Expresión Génica , Filogenia , Alineación de Secuencia , Factor sigma/genética , Transducción de Señal , Especificidad por Sustrato , Terminología como Asunto
4.
BMC Genomics ; 22(1): 323, 2021 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-33941076

RESUMEN

BACKGROUND: Mutualistic interactions with microbes can help insects adapt to extreme environments and unusual diets. An intriguing example is the burying beetle Nicrophorus vespilloides, which feeds and reproduces on small vertebrate carcasses. Its fungal microbiome is dominated by yeasts that potentially facilitate carcass utilization by producing digestive enzymes, eliminating cadaver-associated toxic volatiles (that would otherwise attract competitors), and releasing antimicrobials to sanitize the microenvironment. Some of these yeasts are closely related to the biotechnologically important species Yarrowia lipolytica. RESULTS: To investigate the roles of these Yarrowia-like yeast (YLY) strains in more detail, we selected five strains from two different phylogenetic clades for third-generation sequencing and genome analysis. The first clade, represented by strain B02, has a 20-Mb genome containing ~ 6400 predicted protein-coding genes. The second clade, represented by strain C11, has a 25-Mb genome containing ~ 6300 predicted protein-coding genes, and extensive intraspecific variability within the ITS-D1/D2 rDNA region commonly used for species assignments. Phenotypic microarray analysis revealed that both YLY strains were able to utilize a diverse range of carbon and nitrogen sources (including microbial metabolites associated with putrefaction), and can grow in environments with extreme pH and salt concentrations. CONCLUSIONS: The genomic characterization of five yeast strains isolated from N. vespilloides resulted in the identification of strains potentially representing new YLY species. Given their abundance in the beetle hindgut, and dominant growth on beetle-prepared carcasses, the analysis of these strains has revealed the genetic basis of a potential symbiotic relationship between yeasts and burying beetles that facilitates carcass digestion and preservation.


Asunto(s)
Escarabajos , Yarrowia , Animales , Escarabajos/genética , Genómica , Filogenia , Simbiosis , Yarrowia/genética
5.
Biotechnol Bioeng ; 115(8): 2087-2100, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29704459

RESUMEN

Accurate and complete genome sequences are essential in biotechnology to facilitate genome-based cell engineering efforts. The current genome assemblies for Cricetulus griseus, the Chinese hamster, are fragmented and replete with gap sequences and misassemblies, consistent with most short-read-based assemblies. Here, we completely resequenced C. griseus using single molecule real time sequencing and merged this with Illumina-based assemblies. This generated a more contiguous and complete genome assembly than either technology alone, reducing the number of scaffolds by >28-fold, with 90% of the sequence in the 122 longest scaffolds. Most genes are now found in single scaffolds, including up- and downstream regulatory elements, enabling improved study of noncoding regions. With >95% of the gap sequence filled, important Chinese hamster ovary cell mutations have been detected in draft assembly gaps. This new assembly will be an invaluable resource for continued basic and pharmaceutical research.


Asunto(s)
Cricetulus/genética , Genoma , Secuenciación Completa del Genoma , Animales , Biología Computacional , Secuenciación de Nucleótidos de Alto Rendimiento , Análisis de Secuencia de ADN
6.
Eukaryot Cell ; 11(12): 1582-3, 2012 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23193139

RESUMEN

Wickerhamomyces ciferrii is a microorganism characterized by the production and secretion of large amounts of acetylated sphingoid bases, in particular tetraacetyl phytosphingosine. Here, we present the 15.90-Mbp draft genome sequence of W. ciferrii NRRL Y-1031 F-60-10 generated by pyrosequencing and de novo assembly. The draft genome sequence comprising 364 contigs in 150 scaffolds was annotated and covered 6,702 protein-coding sequences. This information will contribute to the metabolic engineering of this yeast to improve the yield and spectrum of acetylated sphingoid bases in biotechnological production.


Asunto(s)
Genoma Fúngico , Pichia/genética , Secuencia de Bases , Mapeo Contig , Bases de Datos Genéticas , Anotación de Secuencia Molecular , Datos de Secuencia Molecular
7.
J Bacteriol ; 194(21): 5968-9, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23045487

RESUMEN

Turicella otitidis is an unusual corynebacterium with a controversial role in otitis media in children. Metabolic capabilities deduced from the draft genome indicate its adaptation to habitats on the human skin and in the intestine. The lack of candidate virulence factors implies that T. otitidis has a low pathogenic potential.


Asunto(s)
Actinobacteria/genética , ADN Bacteriano/química , ADN Bacteriano/genética , Genoma Bacteriano , Análisis de Secuencia de ADN , Actinobacteria/aislamiento & purificación , Actinobacteria/metabolismo , Actinobacteria/patogenicidad , Niño , Oído Medio/microbiología , Exudados y Transudados/microbiología , Humanos , Redes y Vías Metabólicas/genética , Datos de Secuencia Molecular , Otitis Media/microbiología , Virulencia , Factores de Virulencia/genética
8.
FEMS Yeast Res ; 12(3): 382-6, 2012 May.
Artículo en Inglés | MEDLINE | ID: mdl-22292503

RESUMEN

The ascomycetous yeast Wickerhamomyces anomalus (formerly Pichia anomala and Hansenula anomala) exhibits antimicrobial activities and flavoring features that are responsible for its frequent association with food, beverage and feed products. However, limited information on the genetic background of this yeast and its multiple capabilities are currently available. Here, we present the draft genome sequence of the neotype strain W. anomalus DSM 6766. On the basis of pyrosequencing, a de novo assembly of this strain resulted in a draft genome sequence with a total size of 25.47 Mbp. An automatic annotation using RAPYD generated 11 512 protein-coding sequences. This annotation provided the basis to analyse metabolic capabilities, phylogenetic relationships, as well as biotechnologically important features and yielded novel candidate genes of W. anomalus DSM 6766 coding for proteins participating in antimicrobial activities.


Asunto(s)
Antiinfecciosos/metabolismo , Biotecnología/métodos , Genoma Fúngico/genética , Factores Asesinos de Levadura/metabolismo , Pichia/genética , Análisis de Secuencia de ADN/métodos , Compuestos Orgánicos Volátiles/metabolismo , Mapeo Cromosómico , Microbiología de Alimentos , Proteínas Fúngicas/metabolismo , Anotación de Secuencia Molecular , Datos de Secuencia Molecular , Filogenia , Pichia/clasificación , Pichia/metabolismo
9.
Biotechnol Bioeng ; 109(6): 1386-94, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22389098

RESUMEN

Recently released sequence information on Chinese hamster ovary (CHO) cells promises to not only facilitate our understanding of these industrially important cell factories through direct analysis of the sequence, but also to enhance existing methodologies and allow new tools to be developed. In this article we demonstrate the utilization of CHO specific sequence information to improve mass spectrometry (MS) based proteomic identification. The use of various CHO specific databases enabled the identification of 282 additional proteins, thus increasing the total number of identified proteins by 40-50%, depending on the sample source and methods used. In addition, a considerable portion of those proteins that were identified previously based on inter-species sequence homology were now identified by a larger number of peptides matched, thus increasing the confidence of identification. The new sequence information offers improved interpretation of proteomic analyses and will, in the years to come, prove vital to unraveling the CHO proteome.


Asunto(s)
Biología Computacional , Células Epiteliales/química , Espectrometría de Masas/métodos , Proteómica , Animales , Células CHO , Cricetinae , Cricetulus
10.
Toxins (Basel) ; 14(12)2022 12 02.
Artículo en Inglés | MEDLINE | ID: mdl-36548743

RESUMEN

The venoms of ants (Formicidae) are a promising source of novel bioactive molecules with potential for clinical and agricultural applications. However, despite the rich diversity of ant species, only a fraction of this vast resource has been thoroughly examined in bioprospecting programs. Previous studies focusing on the venom of Central European ants (subfamily Myrmicinae) identified a number of short linear decapeptides and nonapeptides resembling antimicrobial peptides (AMPs). Here, we describe the in silico approach and bioactivity profiling of 10 novel AMP-like peptides from the fellow Central European myrmicine ants Myrmica rubra and Myrmica ruginodis. Using the sequences of known ant venom peptides as queries, we screened the venom gland transcriptomes of both species. We found transcripts of nine novel decapeptides and one novel nonapeptide. The corresponding peptides were synthesized for bioactivity profiling in a broad panel of assays consisting of tests for cytotoxicity as well as antiviral, insecticidal, and antimicrobial activity. U-MYRTX-Mrug5a showed moderately potent antimicrobial effects against several bacteria, including clinically relevant pathogens such as Listeria monocytogenes and Staphylococcus epidermidis, but high concentrations showed negligible cytotoxicity. U-MYRTX-Mrug5a is, therefore, a probable lead for the development of novel peptide-based antibiotics.


Asunto(s)
Venenos de Hormiga , Antiinfecciosos , Hormigas , Animales , Hormigas/genética , Péptidos/química , Transcriptoma , Ponzoñas , Venenos de Hormiga/toxicidad , Venenos de Hormiga/química
11.
Toxins (Basel) ; 14(5)2022 05 21.
Artículo en Inglés | MEDLINE | ID: mdl-35622604

RESUMEN

Animal venoms are a rich source of novel biomolecules with potential applications in medicine and agriculture. Ants are one of the most species-rich lineages of venomous animals. However, only a fraction of their biodiversity has been studied so far. Here, we investigated the venom components of two myrmicine (subfamily Myrmicinae) ants: Myrmica rubra and Myrmica ruginodis. We applied a venomics workflow based on proteotranscriptomics and found that the venoms of both species are composed of several protein classes, including venom serine proteases, cysteine-rich secretory protein, antigen 5 and pathogenesis-related 1 (CAP) superfamily proteins, Kunitz-type serine protease inhibitors and venom acid phosphatases. Several of these protein classes are known venom allergens, and for the first time we detected phospholipase A1 in the venom of M. ruginodis. We also identified two novel epidermal growth factor (EGF) family toxins in the M. ruginodis venom proteome and an array of additional EGF-like toxins in the venom gland transcriptomes of both species. These are similar to known toxins from the related myrmicine ant, Manica rubida, and the myrmecine (subfamily Myrmeciinae) Australian red bulldog ant Myrmecia gullosa, and are possibly deployed as weapons in defensive scenarios or to subdue prey. Our work suggests that M.rubra and M. ruginodis venoms contain many enzymes and other high-molecular-weight proteins that cause cell damage. Nevertheless, the presence of EGF-like toxins suggests that myrmicine ants have also recruited smaller peptide components into their venom arsenal. Although little is known about the bioactivity and function of EGF-like toxins, their presence in myrmicine and myrmecine ants suggests they play a key role in the venom systems of the superfamily Formicoidea. Our work adds to the emerging picture of ant venoms as a source of novel bioactive molecules and highlights the need to incorporate such taxa in future venom bioprospecting programs.


Asunto(s)
Venenos de Hormiga , Hormigas , Animales , Australia , Biodiversidad , Factor de Crecimiento Epidérmico
12.
Front Microbiol ; 12: 634503, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33854488

RESUMEN

Black soldier fly larvae (Hermetia illucens, Diptera: Stratiomyidae) are used for the bioconversion of organic side products into valuable compounds such as proteins, lipids and chitin. However, the economic competitiveness of farmed insects compared to conventional protein production systems in agriculture and aquaculture depends on the availability of large quantities of inexpensive insect feed. Cottonseed press cake (CPC) is a side-stream of cotton production that is rich in proteins and lipids but unsuitable as feed for several farmed animals, except ruminants, due to the presence of the anti-nutritional sesquiterpenoid gossypol. Here, we tested CPC as a feed for black soldier fly larvae and studied the impact of this diet on the gut microbiome. Larvae reared on CPC developed normally and even showed a shorter life-cycle, but were smaller at the end of larval development than control larvae reared on chicken feed. The adaptability of the larvae to different diets is mediated by their versatile gut microbiome, which facilitates digestion and detoxification. We therefore used amplicon sequencing to analyze the bacterial and fungal communities associated with larvae reared on each diet, revealing differences between the larval guts and frass (residual feed substrate) as well as differences between the two diet groups. For example, Actinomycetaceae and Aspergillaceae were significantly enriched in guts of the CPC diet group and may help to metabolize compounds such as gossypol. Potentially probiotic yeasts and beneficial Enterobacteriaceae, which presumably belong to the core microbiota, were detected in high relative abundance in the gut and frass, indicating a functional role of these microbes, especially the protection against pathogens. We conclude that CPC may be suitable as an inexpensive and environmentally sustainable feed for the industrial rearing of black soldier flies.

13.
Genes (Basel) ; 12(8)2021 07 22.
Artículo en Inglés | MEDLINE | ID: mdl-34440287

RESUMEN

The clothes moth Tineola bisselliella is one of a few insects that can digest keratin, leading to the destruction of clothing, textiles and artwork. The mechanism of keratin digestion is not yet fully understood, partly reflecting the lack of publicly available genomic and transcriptomic data. Here we present a high-quality gut transcriptome of T. bisselliella generated from larvae reared on keratin-rich and keratin-free diets. The overall transcriptome consists of 428,221 contigs that were functionally annotated and screened for candidate enzymes involved in keratin utilization. As a mechanism for keratin digestion, we identified cysteine synthases, cystathionine ß-synthases and cystathionine γ-lyases. These enzymes release hydrogen sulfite, which may reduce the disulfide bonds in keratin. The dataset also included 27 differentially expressed contigs with trypsin domains, among which 20 were associated with keratin feeding. Finally, we identified seven collagenases that were upregulated on the keratin-rich diet. In addition to this enzymatic repertoire potentially involved in breaking down keratin, our analysis of poly(A)-enriched and poly(A)-depleted transcripts suggested that T. bisselliella larvae possess an unstable intestinal microbiome that may nevertheless contribute to keratin digestion.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Queratinas/metabolismo , Larva/genética , Lepidópteros/genética , Transcriptoma , Animales , Ontología de Genes , Lepidópteros/crecimiento & desarrollo
14.
Microorganisms ; 8(9)2020 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-32937935

RESUMEN

The evolutionary success of insects is promoted by their association with beneficial microbes that enable the utilization of unusual diets. The synanthropic clothing moth Tineola bisselliella provides an intriguing example of this phenomenon. The caterpillars of this species have adapted to feed on keratin-rich diets such as feathers and wool, which cannot be digested by most other animals and are resistant to common digestive enzymes. Inspired by the hypothesis that this ability may be conferred by symbiotic microbes, we utilized a simple assay to detect keratinase activity and a method to screen gut bacteria for candidate enzymes, which were isolated from feather-fed larvae. The isolation of DNA from keratin-degrading bacterial strains followed by de novo genome sequencing resulted in the identification of a novel bacterial strain related to Bacillus sp. FDAARGOS_235. Genome annotation identified 20 genes with keratinase domains. Proteomic analysis of the culture supernatant from this gut bacterium grown in non-nutrient buffer supplemented with feathers revealed several candidate enzymes potentially responsible for keratin degradation, including a thiol-disulfide oxidoreductase and multiple proteases. Our results suggest that the unusual diet of T. bisselliella larvae promotes their association with keratinolytic microorganisms and that the ability of larvae to feed on keratin can at least partially be attributed to bacteria that produce a cocktail of keratin-degrading enzymes.

15.
J Biotechnol ; 136(1-2): 11-21, 2008 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-18367281

RESUMEN

Corynebacterium urealyticum is a lipid-requiring, urealytic bacterium of the human skin flora that has been recognized as causative agent of urinary tract infections. We report the analysis of the complete genome sequence of C. urealyticum DSM7109, which was initially recovered from a patient with alkaline-encrusted cystitis. The genome sequence was determined by a combination of pyrosequencing and Sanger technology. The chromosome of C. urealyticum DSM7109 has a size of 2,369,219bp and contains 2024 predicted coding sequences, of which 78% were considered as orthologous with genes in the Corynebacterium jeikeium K411 genome. Metabolic analysis of the lipid-requiring phenotype revealed the absence of a fatty acid synthase gene and the presence of a beta-oxidation pathway along with a large repertoire of auxillary genes for the degradation of exogenous fatty acids. A urease locus with the gene order ureABCEFGD may play a pivotal role in virulence of C. urealyticum by the alkalinization of human urine and the formation of struvite stones. Multidrug resistance of C. urealyticum DSM7109 is mediated by transposable elements, conferring resistances to macrolides, lincosamides, ketolides, aminoglycosides, chloramphenicol, and tetracycline. The complete genome sequence of C. urealyticum revealed a detailed picture of the lifestyle of this opportunistic human pathogen.


Asunto(s)
Proteínas Bacterianas/genética , Mapeo Cromosómico/métodos , Corynebacterium/genética , Genoma Bacteriano/genética , Sistemas de Lectura Abierta/genética , Análisis de Secuencia de ADN/métodos , Secuencia de Bases , Datos de Secuencia Molecular
16.
J Biotechnol ; 136(1-2): 22-30, 2008 Aug 31.
Artículo en Inglés | MEDLINE | ID: mdl-18430482

RESUMEN

Corynebacterium kroppenstedtii is a lipophilic corynebacterial species that lacks in the cell envelope the characteristic alpha-alkyl-beta-hydroxy long-chain fatty acids, designated mycolic acids. We report here the bioinformatic analysis of genome data obtained by pyrosequencing of the type strain C. kroppenstedtii DSM44385 that was initially isolated from human sputum. A single run with the Genome Sequencer FLX system revealed 560,248 shotgun reads with 110,018,974 detected bases that were assembled into a contiguous genomic sequence with a total size of 2,446,804bp. Automatic annotation of the complete genome sequence resulted in the prediction of 2122 coding sequences, of which 29% were considered as specific for C. kroppenstedtii when compared with predicted proteins from hitherto sequenced pathogenic corynebacteria. This comparative content analysis of the genome data revealed a large repertoire of genes involved in sugar uptake and central carbohydrate metabolism and the presence of the mevalonate route for isoprenoid biosynthesis. The lack of mycolic acids and the lipophilic lifestyle of C. kroppenstedtii are apparently caused by gene loss, including a condensase gene cluster, a mycolate reductase gene, and a microbial type I fatty acid synthase gene. A complete beta-oxidation pathway involved in the degradation of fatty acids is present in the genome. Evaluation of the genomic data indicated that lipophilism is the dominant feature involved in pathogenicity of C. kroppenstedtii.


Asunto(s)
Proteínas Bacterianas/genética , Corynebacterium/fisiología , Genoma Bacteriano/genética , Ácidos Micólicos/metabolismo , Sistemas de Lectura Abierta/genética , Análisis de Secuencia de ADN/métodos , Secuencia de Bases , Mapeo Cromosómico/métodos , Datos de Secuencia Molecular
17.
J Biotechnol ; 129(2): 191-211, 2007 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-17227685

RESUMEN

The complete nucleotide sequence of the Corynebacterium glutamicum ATCC 13032 genome was previously determined and allowed the reliable prediction of 3002 protein-coding genes within this genome. Using computational methods, we have defined 158 genes, which form the minimal repertoire for proteins that presumably act as transcriptional regulators of gene expression. Most of these regulatory proteins have a direct role as DNA-binding transcriptional regulator, while others either have less well-defined functions in transcriptional regulation or even more general functions, such as the sigma factors. Recent advances in genome-wide transcriptional profiling of C. glutamicum generated a huge amount of data on regulation of gene expression. To understand transcriptional regulation of gene expression from the perspective of systems biology, rather than from the analysis of an individual regulatory protein, we compiled the current knowledge on the defined DNA-binding transcriptional regulators and their physiological role in modulating transcription in response to environmental signals. This comprehensive data collection provides a solid basis for database-guided reconstructions of the gene regulatory network of C. glutamicum, currently comprising 56 transcriptional regulators that exert 411 regulatory interactions to control gene expression. A graphical reconstruction revealed first insights into the functional modularity, the hierarchical architecture and the topological design principles of the transcriptional regulatory network of C. glutamicum.


Asunto(s)
Corynebacterium glutamicum/genética , Regulación Bacteriana de la Expresión Génica/fisiología , Biología de Sistemas , Transcripción Genética/fisiología , Aminoácidos/biosíntesis , Aminoácidos/metabolismo , Corynebacterium glutamicum/metabolismo , Bases de Datos de Proteínas , Regulación Bacteriana de la Expresión Génica/genética , Proteómica
18.
J Biotechnol ; 129(2): 279-89, 2007 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-17229482

RESUMEN

CoryneRegNet is an ontology-based data warehouse for the reconstruction and visualization of transcriptional regulatory interactions in prokaryotes. To extend the biological content of CoryneRegNet, we added comprehensive data on transcriptional regulations in the model organism Escherichia coli K-12, originally deposited in the international reference database RegulonDB. The enhanced web interface of CoryneRegNet offers several types of search options. The results of a search are displayed in a table-based style and include a visualization of the genetic organization of the respective gene region. Information on DNA binding sites of transcriptional regulators is depicted by sequence logos. The results can also be displayed by several layouters implemented in the graphical user interface GraphVis, allowing, for instance, the visualization of genome-wide network reconstructions and the homology-based inter-species comparison of reconstructed gene regulatory networks. In an application example, we compare the composition of the gene regulatory networks involved in the SOS response of E. coli and Corynebacterium glutamicum. CoryneRegNet is available at the following URL: http://www.cebitec.uni-bielefeld.de/groups/gi/software/coryneregnet/.


Asunto(s)
Corynebacterium glutamicum/genética , Bases de Datos Genéticas , Escherichia coli/genética , Redes Reguladoras de Genes/genética , Biología de Sistemas , Regulación de la Expresión Génica
19.
J Biotechnol ; 257: 150-161, 2017 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-27890772

RESUMEN

The cellular mechanisms responsible for the versatile properties of CHO cells as the major production cell line for biopharmaceutical molecules are not entirely understood yet, although several 'omics' data facilitate the understanding of CHO cells and their reactions to environmental conditions. However, genome-wide studies of epigenetic processes such as DNA methylation are still limited. To prove the applicability and usefulness of integrating DNA methylation and gene expression data in a biotechnological context, we exemplarily analyzed the time course of cellular reactions upon butyrate addition in antibody-producing CHO cells by whole-genome bisulfite sequencing and CHO-specific cDNA microarrays. Gene expression and DNA methylation analyses showed that pathways known to be affected by butyrate, including cell cycle and apoptosis, as well as pathways potentially involved in butyrate-induced hyperproductivity such as central energy metabolism and protein biosynthesis were affected. Differentially methylated regions were furthermore found to contain binding-site motifs of specific transcription factors and were hypothesized to represent regulatory regions closely connected to the cellular response to butyrate. Generally, our experiment underlines the benefit of integrating DNA methylation and gene expression data, as it provided potential novel candidate genes for rational cell line development and allowed for new insights into the butyrate effect on CHO cells.


Asunto(s)
Butiratos/farmacología , Células CHO/efectos de los fármacos , Metilación de ADN , Expresión Génica , Animales , Apoptosis/efectos de los fármacos , Ciclo Celular/efectos de los fármacos , División Celular/efectos de los fármacos , Cricetulus , Epigénesis Genética , Perfilación de la Expresión Génica , Ontología de Genes , Genoma , Datos de Secuencia Molecular , Proteínas/metabolismo , Factores de Transcripción , Secuenciación Completa del Genoma
20.
BMC Genomics ; 7: 24, 2006 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-16478536

RESUMEN

BACKGROUND: The application of DNA microarray technology in post-genomic analysis of bacterial genome sequences has allowed the generation of huge amounts of data related to regulatory networks. This data along with literature-derived knowledge on regulation of gene expression has opened the way for genome-wide reconstruction of transcriptional regulatory networks. These large-scale reconstructions can be converted into in silico models of bacterial cells that allow a systematic analysis of network behavior in response to changing environmental conditions. DESCRIPTION: CoryneRegNet was designed to facilitate the genome-wide reconstruction of transcriptional regulatory networks of corynebacteria relevant in biotechnology and human medicine. During the import and integration process of data derived from experimental studies or literature knowledge CoryneRegNet generates links to genome annotations, to identified transcription factors and to the corresponding cis-regulatory elements. CoryneRegNet is based on a multi-layered, hierarchical and modular concept of transcriptional regulation and was implemented by using the relational database management system MySQL and an ontology-based data structure. Reconstructed regulatory networks can be visualized by using the yFiles JAVA graph library. As an application example of CoryneRegNet, we have reconstructed the global transcriptional regulation of a cellular module involved in SOS and stress response of corynebacteria. CONCLUSION: CoryneRegNet is an ontology-based data warehouse that allows a pertinent data management of regulatory interactions along with the genome-scale reconstruction of transcriptional regulatory networks. These models can further be combined with metabolic networks to build integrated models of cellular function including both metabolism and its transcriptional regulation.


Asunto(s)
Corynebacterium/genética , Corynebacterium/metabolismo , Sistemas de Administración de Bases de Datos , Bases de Datos Genéticas , Factores de Transcripción/genética , Factores de Transcripción/metabolismo , Gráficos por Computador , Regulación Bacteriana de la Expresión Génica , Genoma Bacteriano , Genómica , Internet , Respuesta SOS en Genética , Programas Informáticos , Interfaz Usuario-Computador
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA