Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 94
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Pharmacol Res ; 208: 107352, 2024 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-39147005

RESUMEN

A cutting-edge approach in cell-based immunotherapy for combating resistant cancer involves genetically engineered chimeric antigen receptor T (CAR-T) lymphocytes. In recent years, these therapies have demonstrated effectiveness, leading to their commercialization and clinical application against certain types of cancer. However, CAR-T therapy faces limitations, such as the immunosuppressive tumour microenvironment (TME) that can render CAR-T cells ineffective, and the adverse side effects of the therapy, including cytokine release syndrome (CRS). Extracellular vesicles (EVs) are a diverse group of membrane-bound particles released into the extracellular environment by virtually all cell types. They are essential for intercellular communication, transferring cargoes such as proteins, lipids, various types of RNAs, and DNA fragments to target cells, traversing biological barriers both locally and systemically. EVs play roles in numerous physiological processes, with those from both immune and non-immune cells capable of modulating the immune system through activation or suppression. Leveraging this capability of EVs to enhance CAR-T cell therapy could represent a significant advancement in overcoming its current limitations. This review examines the current landscape of CAR-T cell immunotherapy and explores the potential role of EVs in augmenting its therapeutic efficacy.

2.
Cardiovasc Diabetol ; 22(1): 324, 2023 11 28.
Artículo en Inglés | MEDLINE | ID: mdl-38017541

RESUMEN

BACKGROUND AND AIMS: Bempedoic Acid (BA) is a novel Lipid-Lowering Therapy (LLT). We performed a systematic review and meta-analysis to assess the efficacy and safety of BA in patients with hypercholesterolemia. METHODS: PubMed, Scopus, and Cochrane library databases were searched for randomised controlled trials evaluating the efficacy and/or safety of BA compared with placebo. Trials investigating dosages other than 180 mg/die were excluded. Major adverse cardiovascular events (MACE) were the primary efficacy endpoint. LDL-cholesterol reduction was the primary laboratory endpoint. Pre-specified safety endpoints included muscle-related adverse events, new-onset diabetes, and gout. The protocol was registered on PROSPERO (temporary ID:399,867). RESULTS: Study search identified 275 deduplicated results. 11 studies, encompassing 18,315 patients (9854 on BA vs 8461 on placebo/no treatment) were included. BA was associated with a reduced risk of MACE (OR 0.86, 95% CI 0.79-0.95), myocardial infarction (OR 0.76, 95% CI 0.64-0.88) and unstable angina (OR 0.69, 95% CI 0.54-0.88) compared to control, over a median follow up of 87 (15-162) weeks. BA was associated with a reduction of LDL-Cholesterol (mean difference [MD]-22.42,95% CI - 24.02% to - 20.82%), total cholesterol (- 16.50%,95% - 19.21% to - 13.79%), Apo-B lipoprotein (- 19.55%, - 22.68% to - 16.42%) and high-sensitivity CRP (- 27.83%, - 31.71% to - 23.96%) at 12 weeks. BA was associated with a higher risk of gout (OR 1.55, 95% CI 1.27-1.90) as compared with placebo. Efficacy on laboratory endpoints was confirmed, with a variable extent, across patients on statin or ezetimibe background therapy. CONCLUSIONS: The improved cholesterol control achieved with BA translates into a reduced risk of MACE, including myocardial infarction and coronary revascularisation. The drug has a satisfactory safety profile except for an increased risk of gout.


Asunto(s)
Gota , Inhibidores de Hidroximetilglutaril-CoA Reductasas , Infarto del Miocardio , Humanos , Inhibidores de Hidroximetilglutaril-CoA Reductasas/efectos adversos , LDL-Colesterol , Colesterol , Infarto del Miocardio/diagnóstico , Infarto del Miocardio/tratamiento farmacológico , Gota/inducido químicamente , Gota/tratamiento farmacológico , Resultado del Tratamiento , Ensayos Clínicos Controlados Aleatorios como Asunto
3.
Pharmacol Res ; 195: 106871, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37506784

RESUMEN

Circulating tumour-derived extracellular vesicles are supposed to contribute to the spreading of distant metastasis. In this study, we investigated the impact of circulating extracellular vesicles derived from tumour-endothelial cells (TEVs) in the expansion of the metastatic bulk. We focus on the role of immune cells in controlling this process using the 4T1 triple negative breast cancer (TNBC) syngeneic model. 4T1 cells were intravenously injected and exposed to circulating TEVs from day 7. The lung, spleen, and bone marrow (BM) were recovered and analysed. We demonstrated that circulating TEVs boost lung metastasis and angiogenesis. FACS and immunohistochemically analyses revealed a significant enrichment of Ly6G+/F4/80+/CD11b+ cells and Ly6G+/F4/80-/CD11b+ in the lung and in the spleen, while Ly6G+/F4/80-/CD11b+ in the BM, indicating the occurrence of a systemic and local immune suppression. TEV immune suppressive properties were further supported by the increased expression of PD-L1, PD-1, and iNOS in the tumour mass. In addition, in vitro experiments demonstrated an increase of CD11+ cells, PD-L1+ myeloid and cancer cells, upregulation of LAG3, CTLA4 and PD-1 in T-cells, release of ROS and NOS, and impaired T-cell-mediated cytotoxic effect in co-culture of TEVs-preconditioned PBMCs and cancer cells. Granulocyte-colony stimulating factor (G-CSF) level was increased in vivo, and was involved in reshaping the immune response. Mechanistically, we also found that mTOR enriched TEVs support G-CSF release and trigger the phosphorylation of the S6 (Ser235/236) mTOR downstream target. Overall, we provided evidence that circulating TEVs enriched in mTOR supported G-CSF release thereby granting tumour immune suppression and metastasis outgrowth.


Asunto(s)
Vesículas Extracelulares , Neoplasias Pulmonares , Humanos , Células Endoteliales , Antígeno B7-H1 , Receptor de Muerte Celular Programada 1 , Serina-Treonina Quinasas TOR , Factor Estimulante de Colonias de Granulocitos , Neoplasias Pulmonares/tratamiento farmacológico , Línea Celular Tumoral
4.
Pharmacol Res ; 190: 106718, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36878306

RESUMEN

Current therapeutic approaches for chronic venous ulcers (CVUs) still require evidence of effectiveness. Diverse sources of extracellular vesicles (EVs) have been proposed for tissue regeneration, however the lack of potency tests, to predict in-vivo effectiveness, and a reliable scalability have delayed their clinical application. This study aimed to investigate whether autologous serum-derived EVs (s-EVs), recovered from patients with CVUs, may be a proper therapeutic approach to improve the healing process. A pilot case-control interventional study (CS2/1095/0090491) has been designed and s-EVs recovered from patients. Patient eligibility included two or more distinct chronic lesions in the same limb with 11 months as median persistence of active ulcer before enrollment. Patients were treated three times a week, for 2 weeks. Qualitative CVU analysis demonstrated that s-EVs-treated lesions displayed a higher percentage of granulation tissue compared to the control group (Sham) (s-EVs 3 out of 5: 75-100 % vs Sham: none), further confirmed at day 30. s-EVs-treated lesions also displayed higher sloughy tissue reduction at the end of treatment even increased at day 30. Additionally, s-EV treatment led to a median surface reduction of 151 mm2 compared to 84 mm2 in the Sham group, difference even more evident at day 30 (s-EVs 385 mm2vs Sham 106 mm2p = 0.004). Consistent with the enrichment of transforming growth factor-ß1 in s-EVs, histological analyses showed a regenerative tissue with an increase in microvascular proliferation areas. This study first demonstrates the clinical effectiveness of autologous s-EVs in promoting the healing process of CVUs unresponsive to conventional treatments.


Asunto(s)
Vesículas Extracelulares , Úlcera Varicosa , Enfermedades Vasculares , Humanos , Úlcera Varicosa/terapia , Resultado del Tratamiento , Cicatrización de Heridas
5.
Int J Mol Sci ; 24(21)2023 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-37958693

RESUMEN

Non-healing wound- and tissue-injury are commonly experienced worldwide by the aging population. The persistence of disease commonly leads to tissue infection, resulting in severe clinical complications. In the last decade, extracellular vesicles (EVs) have been considered promising and emergent therapeutic tools to improve the healing processes. Therefore, efforts have been directed to develop a cell-free therapeutic platform based on EV administration to orchestrate tissue repair. EVs derived from different cell types, including fibroblast, epithelial, and immune cells are recruited to the injured sites and in turn take part in scar formation. EVs are nano-sized particles containing a heterogeneous cargo consisting of lipids, proteins, and nucleic acids protected from degradation by their lipid bilayer. Noteworthy, since EVs have natural biocompatibility and low immunogenicity, they represent the ideal therapeutic candidates for regenerative purposes. Indeed, EVs are released by several cell types, and even if they possess unique biological properties, their functional capability can be further improved by engineering their content and functionalizing their surface, allowing a specific cell cargo delivery. Herein, we provide an overview of preclinical data supporting the contribution of EVs in the repair and regenerative processes, focusing on different naïve EV sources, as well as on their engineering, to offer a scalable and low-cost therapeutic option for tissue repair.


Asunto(s)
Vesículas Extracelulares , Humanos , Anciano , Cicatriz , Fibroblastos , Membrana Dobles de Lípidos
6.
Pharmacol Res ; 179: 106206, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35398240

RESUMEN

Antibody-based anti-cancer therapy is considered a successful approach to impair tumour progression. This study aimed to investigate the clinical impact of targeting the IL-3 signalling in the microenvironment of solid tumours. We intended to investigate whether the IL-3Rα blockade on tumour-derived endothelial cells (TEC) can modulate PD-L1 expression in tumour cells and peripheral blood mononuclear cells (PBMC) to reshape the anti-tumour immune response. Extracellular vesicles released by TEC after IL-3Rα blockade (aTEV) were used as the ultimate effectors of the antibody-based approach, while naive TEC-derived extracellular vesicles (nTEV) served as control. Firstly, we demonstrated that, either directly or indirectly via nTEV, IL-3 controls the expression of its receptor on TEC and PBMC respectively. Moreover, we found that nTEV, moulded by the autocrine secretion of IL-3, increased PD-L1 expression in myeloid cells both in vitro and in vivo. In addition, we found that nTEV-primed PBMC favour tumour cell growth (TEC and MDA-MB-231 cells), whereas PBMC-primed with aTEV still retain their anti-tumour properties. Isolated T-cells pre-conditioned with nTEV or aTEV and co-cultured with TEC or MDA-MB-231 cells have no effects, thereby sustaining the key role of myeloid cells in tumour immune editing. In vivo nTEV, but not aTEV, increased the expression of PD-L1 in primary tumours, lung and liver metastases. Finally, we demonstrated that the enrichment of miR-214 in aTEV impacts on PD-L1 expression in vivo. Overall, these data indicate that an approach based on IL-3Rα blockade in TEC rearranges EV cargo and may reshape the anti-tumour immune response.


Asunto(s)
Vesículas Extracelulares , Neoplasias Hepáticas , MicroARNs , Antígeno B7-H1/metabolismo , Células Endoteliales/metabolismo , Vesículas Extracelulares/metabolismo , Humanos , Inmunidad , Interleucina-3/metabolismo , Leucocitos Mononucleares/metabolismo , Neoplasias Hepáticas/metabolismo , MicroARNs/metabolismo , Microambiente Tumoral
7.
Int J Mol Sci ; 23(20)2022 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-36292960

RESUMEN

Diabetic nephropathy (DN) is a severe kidney-related complication of type 1 and type 2 diabetes and the most frequent cause of end-stage kidney disease. Extracellular vesicles (EVs) present in the urine mainly derive from the cells of the nephron, thus representing an interesting tool mirroring the kidney's physiological state. In search of the biomarkers of disease progression, we here assessed a panel of urinary EV miRNAs previously related to DN in type 2 diabetic patients stratified based on proteinuria levels. We found that during DN progression, miR145 and miR126 specifically increased in urinary EVs from diabetic patients together with albuminuria. In vitro, miRNA modulation was assessed in a model of TGF-ß1-induced glomerular damage within a three-dimensional perfusion system, as well as in a model of tubular damage induced by albumin and glucose overload. Both renal tubular cells and podocytes undergoing epithelial to mesenchymal transition released EVs containing increased miR145 and miR126 levels. At the same time, miR126 levels were reduced in EVs released by glomerular endothelial cells. This work highlights a modulation of miR126 and miR145 during the progression of kidney damage in diabetes as biomarkers of epithelial to mesenchymal transition.


Asunto(s)
Diabetes Mellitus Tipo 2 , Nefropatías Diabéticas , Vesículas Extracelulares , MicroARNs , Humanos , Nefropatías Diabéticas/genética , Nefropatías Diabéticas/orina , Factor de Crecimiento Transformador beta1/genética , Transición Epitelial-Mesenquimal/genética , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/orina , Regulación hacia Arriba , Células Endoteliales , Riñón , Vesículas Extracelulares/genética , MicroARNs/genética , Biomarcadores , Glucosa , Albúminas/genética
8.
Cytotherapy ; 23(5): 373-380, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33934807

RESUMEN

Mesenchymal stromal/stem cells (MSCs) have been widely tested against many diseases, with more than 1000 registered clinical trials worldwide. Despite many setbacks, MSCs have been approved for the treatment of graft-versus-host disease and Crohn disease. However, it is increasingly clear that MSCs exert their therapeutic functions in a paracrine manner through the secretion of small extracellular vesicles (sEVs) of 50-200 nm in diameter. Unlike living cells that can persist long-term, sEVs are non-living and non-replicative and have a transient presence in the body. Their small size also renders sEV preparations highly amenable to sterilization by filtration. Together, acellular MSC-sEV preparations are potentially safer and easier to translate into the clinic than cellular MSC products. Nevertheless, there are inherent challenges in the development of MSC-sEV drug products. MSC-sEVs are products of living cells, and living cells are sensitive to changes in the external microenvironment. Consequently, quality control metrics to measure key identity and potency features of MSC-sEV preparations have to be specified during development of MSC-sEV therapeutics. The authors have previously described quantifiable assays to define the identity of MSC-sEVs. Here the authors discuss requirements for prospective potency assays to predict the therapeutic effectiveness of the drug substance in accordance with International Council for Harmonisation of Technical Requirements for Pharmaceuticals for Human Use guidelines. Although potency assays should ideally reflect the mechanism of action (MoA), this is challenging because the MoA for the reported efficacy of MSC-sEV preparations against multiple diseases of diverse underlying pathology is likely to be complex and different for each disease and difficult to fully elucidate. Nevertheless, robust potency assays could be developed by identifying the EV attribute most relevant to the intended biological activity in EV-mediated therapy and quantifying the EV attribute. Specifically, the authors highlight challenges and mitigation measures to enhance the manufacture of consistent and reproducibly potent sEV preparations, to identify and select the appropriate EV attribute for potency assays despite a complex "work-in-progress" MoA and to develop assays likely to be compliant with regulatory guidance for assay validation.


Asunto(s)
Vesículas Extracelulares , Enfermedad Injerto contra Huésped , Células Madre Mesenquimatosas , Humanos , Estudios Prospectivos
9.
Pharmacol Res ; 170: 105715, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34111564

RESUMEN

The relevance of extracellular vesicles (EV) as mediators of cardiac damage or recovery upon Ischemia Reperfusion Injury (IRI) and Remote Ischemic PreConditioning (RIPC) is controversial. This study aimed to investigate whether serum-derived EV, recovered from patients with Acute Coronary Syndrome (ACS) and subjected to the RIPC or sham procedures, may be a suitable therapeutic approach to prevent IRI during Percutaneous-Coronary-Intervention (PCI). A double-blind, randomized, sham-controlled study (NCT02195726) has been extended, and EV were recovered from 30 patients who were randomly assigned (1:1) to undergo the RIPC- (EV-RIPC) or sham-procedures (EV-naive) before PCI. Patient-derived EV were analyzed by TEM, FACS and western blot. We found that troponin (TnT) was enriched in EV, compared to healthy subjects, regardless of diagnosis. EV-naive induced protection against IRI, both in-vitro and in the rat heart, unlike EV-RIPC. We noticed that EV-naive led to STAT-3 phosphorylation, while EV-RIPC to Erk-1/2 activation in the rat heart. Pre-treatment of the rat heart with specific STAT-3 and Erk-1/2 inhibitors led us to demonstrate that STAT-3 is crucial for EV-naive-mediated protection. In the same model, Erk-1/2 inhibition rescued STAT-3 activation and protection upon EV-RIPC treatment. 84 Human Cardiovascular Disease mRNAs were screened and DUSP6 mRNA was found enriched in patient-derived EV-naive. Indeed, DUSP6 silencing in EV-naive prevented STAT-3 phosphorylation and cardio-protection in the rat heart. This analysis of ACS-patients' EV proved: (i) EV-naive cardio-protective activity and mechanism of action; (ii) the lack of EV-RIPC-mediated cardio-protection; (iii) the properness of the in-vitro assay to predict EV effectiveness in-vivo.


Asunto(s)
Síndrome Coronario Agudo/terapia , Brazo/irrigación sanguínea , Vesículas Extracelulares/trasplante , Precondicionamiento Isquémico Miocárdico , Daño por Reperfusión Miocárdica/prevención & control , Miocitos Cardíacos/metabolismo , Intervención Coronaria Percutánea , Síndrome Coronario Agudo/sangre , Síndrome Coronario Agudo/diagnóstico , Anciano , Animales , Estudios de Casos y Controles , Línea Celular , Modelos Animales de Enfermedad , Método Doble Ciego , Fosfatasa 6 de Especificidad Dual/metabolismo , Células Endoteliales/metabolismo , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Vesículas Extracelulares/metabolismo , Femenino , Humanos , Precondicionamiento Isquémico Miocárdico/efectos adversos , Masculino , Persona de Mediana Edad , Daño por Reperfusión Miocárdica/diagnóstico , Daño por Reperfusión Miocárdica/etiología , Daño por Reperfusión Miocárdica/metabolismo , Miocitos Cardíacos/patología , Intervención Coronaria Percutánea/efectos adversos , Fosforilación , Ratas Wistar , Flujo Sanguíneo Regional , Factor de Transcripción STAT3/metabolismo , Factores de Tiempo , Resultado del Tratamiento
10.
Arterioscler Thromb Vasc Biol ; 40(1): 239-254, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31665908

RESUMEN

OBJECTIVES: Critical hindlimb ischemia is a severe consequence of peripheral artery disease. Surgical treatment does not prevent skeletal muscle impairment or improve long-term patient outcomes. The present study investigates the protective/regenerative potential and the mechanism of action of adipose stem cell-derived extracellular vesicles (ASC-EVs) in a mouse model of hindlimb ischemia. Approach and Results: We demonstrated that ASC-EVs exert a protective effect on muscle damage by acting both on tissue microvessels and muscle cells. The genes involved in muscle regeneration were up-regulated in the ischemic muscles of ASC-EV-treated animals. MyoD expression has also been confirmed in satellite cells. This was followed by a reduction in muscle function impairment in vivo. ASC-EVs drive myoblast proliferation and differentiation in the in vitro ischemia/reoxygenation model. Moreover, ASC-EVs have shown an anti-apoptotic effect both in vitro and in vivo. Transcriptomic analyses have revealed that ASC-EVs carry a variety of pro-angiogenic mRNAs, while proteomic analyses have demonstrated an enrichment of NRG1 (neuregulin 1). A NRG1 blocking antibody used in vivo demonstrated that NRG1 is relevant to ASC-EV-induced muscle protection, vascular growth, and recruitment of inflammatory cells. Finally, bioinformatic analyses on 18 molecules that were commonly detected in ASC-EVs, including mRNAs and proteins, confirmed the enrichment of pathways involved in vascular growth and muscle regeneration/protection. CONCLUSIONS: This study demonstrates that ASC-EVs display pro-angiogenic and skeletal muscle protective properties that are associated with their NRG1/mRNA cargo. We, therefore, propose that ASC-EVs are a useful tool for therapeutic angiogenesis and muscle protection.


Asunto(s)
Adipocitos/citología , Vesículas Extracelulares/metabolismo , Miembro Posterior/irrigación sanguínea , Isquemia/patología , Músculo Esquelético/ultraestructura , Neurregulina-1/metabolismo , Células Madre/ultraestructura , Adipocitos/metabolismo , Animales , Western Blotting , Diferenciación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Ensayo de Inmunoadsorción Enzimática , Vesículas Extracelulares/ultraestructura , Isquemia/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Microscopía Electrónica de Transmisión , Músculo Esquelético/metabolismo , Proteómica , Células Madre/metabolismo
11.
Int J Mol Sci ; 22(8)2021 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-33919576

RESUMEN

Extracellular vesicles (EV) are microparticles released in biological fluids by different cell types, both in physiological and pathological conditions. Owing to their ability to carry and transfer biomolecules, EV are mediators of cell-to-cell communication and are involved in the pathogenesis of several diseases. The ability of EV to modulate the immune system, the coagulation cascade, the angiogenetic process, and to drive endothelial dysfunction plays a crucial role in the pathophysiology of both autoimmune and renal diseases. Recent studies have demonstrated the involvement of EV in the control of renal homeostasis by acting as intercellular signaling molecules, mediators of inflammation and tissue regeneration. Moreover, circulating EV and urinary EV secreted by renal cells have been investigated as potential early biomarkers of renal injury. In the present review, we discuss the recent findings on the involvement of EV in autoimmunity and in renal intercellular communication. We focused on EV-mediated interaction between the immune system and the kidney in autoimmune diseases displaying common renal damage, such as antiphospholipid syndrome, systemic lupus erythematosus, thrombotic microangiopathy, and vasculitis. Although further studies are needed to extend our knowledge on EV in renal pathology, a deeper investigation of the impact of EV in kidney autoimmune diseases may also provide insight into renal biological processes. Furthermore, EV may represent promising biomarkers of renal diseases with potential future applications as diagnostic and therapeutic tools.


Asunto(s)
Síndrome Antifosfolípido/inmunología , Vesículas Extracelulares/inmunología , Vesículas Extracelulares/metabolismo , Enfermedades Renales/inmunología , Lupus Eritematoso Sistémico/inmunología , Microangiopatías Trombóticas/inmunología , Animales , Síndrome Antifosfolípido/metabolismo , Humanos , Enfermedades Renales/metabolismo , Lupus Eritematoso Sistémico/metabolismo , Microangiopatías Trombóticas/metabolismo
12.
Int J Mol Sci ; 22(16)2021 Aug 05.
Artículo en Inglés | MEDLINE | ID: mdl-34445131

RESUMEN

Breast cancers and cancers of the genitourinary tract are the most common malignancies among men and women and are still characterized by high mortality rates. In order to improve the outcomes, early diagnosis is crucial, ideally by applying non-invasive and specific biomarkers. A key role in this field is played by extracellular vesicles (EVs), lipid bilayer-delimited structures shed from the surface of almost all cell types, including cancer cells. Subcellular structures contained in EVs such as nucleic acids, proteins, and lipids can be isolated and exploited as biomarkers, since they directly stem from parental cells. Furthermore, it is becoming even more evident that different body fluids can also serve as sources of EVs for diagnostic purposes. In this review, EV isolation and characterization methods are described. Moreover, the potential contribution of EV cargo for diagnostic discovery purposes is described for each tumor.


Asunto(s)
Neoplasias de la Mama/diagnóstico , Vesículas Extracelulares/metabolismo , Neoplasias Urogenitales/diagnóstico , Animales , Biomarcadores de Tumor/metabolismo , Neoplasias de la Mama/metabolismo , Detección Precoz del Cáncer/métodos , Femenino , Humanos , Neoplasias/diagnóstico , Neoplasias/metabolismo , Ácidos Nucleicos/metabolismo , Neoplasias Urogenitales/metabolismo
13.
Int J Mol Sci ; 22(19)2021 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-34639119

RESUMEN

Human liver stem-cell-derived extracellular vesicles (HLSC-EVs) exhibit therapeutic properties in various pre-clinical models of kidney injury. We previously reported an overall improvement in kidney function following treatment with HLSC-EVs in a model of aristolochic acid nephropathy (AAN). Here, we provide evidence that HLSC-EVs exert anti-fibrotic effects by interfering with ß-catenin signalling. A mouse model of AAN and an in vitro pro-fibrotic model were used. The ß-catenin mRNA and protein expression, together with the pro-fibrotic markers α-SMA and collagen 1, were evaluated in vivo and in vitro following treatment with HLSC-EVs. Expression and functional analysis of miR29b was performed in vitro following HLSC-EV treatments through loss-of-function experiments. Results showed that expression of ß-catenin was amplified both in vivo and in vitro, and ß-catenin gene silencing in fibroblasts prevented AA-induced up-regulation of pro-fibrotic genes, revealing that ß-catenin is an important factor in fibroblast activation. Treatment with HLSC-EVs caused increased expression of miR29b, which was significantly inhibited in the presence of α-amanitin. The suppression of the miR29b function with a selective inhibitor abolished the anti-fibrotic effects of HLSC-EVs, resulting in the up-regulation of ß-catenin and pro-fibrotic α-Sma and collagen type 1 genes. Together, these data suggest a novel HLSC-EV-dependent regulatory mechanism in which ß-catenin is down regulated by HLSC-EVs-induced miR29b expression.


Asunto(s)
Vesículas Extracelulares/fisiología , Fibrosis/prevención & control , Enfermedades Renales/prevención & control , Hígado/citología , Células Madre/citología , beta Catenina/metabolismo , Animales , Apoptosis , Biomarcadores/metabolismo , Proliferación Celular , Células Cultivadas , Modelos Animales de Enfermedad , Femenino , Fibrosis/etiología , Fibrosis/metabolismo , Fibrosis/patología , Regulación de la Expresión Génica , Humanos , Enfermedades Renales/etiología , Enfermedades Renales/metabolismo , Enfermedades Renales/patología , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , MicroARNs/genética , Células Madre/metabolismo , beta Catenina/genética
14.
Int J Mol Sci ; 22(8)2021 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-33917759

RESUMEN

Extracellular vesicles (EVs) derived from mesenchymal stem cells isolated from both bone marrow (BMSCs) and adipose tissue (ADSCs) show potential therapeutic effects. These vesicles often show a similar beneficial effect on tissue regeneration, but in some contexts, they exert different biological properties. To date, a comparison of their molecular cargo that could explain the different biological effect is not available. Here, we demonstrated that ADSC-EVs, and not BMSC-EVs, promote wound healing on a murine model of diabetic wounds. Besides a general similarity, the bioinformatic analysis of their protein and miRNA cargo highlighted important differences between these two types of EVs. Molecules present exclusively in ADSC-EVs were highly correlated to angiogenesis, whereas those expressed in BMSC-EVs were preferentially involved in cellular proliferation. Finally, in vitro analysis confirmed that both ADSC and BMSC-EVs exploited beneficial effect on cells involved in skin wound healing such as fibroblasts, keratinocytes and endothelial cells, but through different cellular processes. Consistent with the bioinformatic analyses, BMSC-EVs were shown to mainly promote proliferation, whereas ADSC-EVs demonstrated a major effect on angiogenesis. Taken together, these results provide deeper comparative information on the cargo of ADSC-EVs and BMSC-EVs and the impact on regenerative processes essential for diabetic wound healing.


Asunto(s)
Complicaciones de la Diabetes/terapia , Vesículas Extracelulares/metabolismo , Células Madre Mesenquimatosas/metabolismo , Úlcera/etiología , Úlcera/terapia , Cicatrización de Heridas , Tejido Adiposo/citología , Animales , Células de la Médula Ósea , Exosomas/metabolismo , Exosomas/ultraestructura , Vesículas Extracelulares/ultraestructura , Citometría de Flujo , Perfilación de la Expresión Génica , Inmunohistoquímica , Células Madre Mesenquimatosas/citología , Ratones
15.
Int J Mol Sci ; 22(19)2021 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-34638611

RESUMEN

Extracellular vesicles (EVs) are promising therapeutic tools in the treatment of cardiovascular disorders. We have recently shown that EVs from patients with Acute Coronary Syndrome (ACS) undergoing sham pre-conditioning, before percutaneous coronary intervention (PCI) were cardio-protective, while EVs from patients experiencing remote ischemic pre-conditioning (RIPC) failed to induce protection against ischemia/reperfusion Injury (IRI). No data on EVs from ACS patients recovered after PCI are currently available. Therefore, we herein investigated the cardio-protective properties of EVs, collected after PCI from the same patients. EVs recovered from 30 patients randomly assigned (1:1) to RIPC (EV-RIPC) or sham procedures (EV-naive) (NCT02195726) were characterized by TEM, FACS and Western blot analysis and evaluated for their mRNA content. The impact of EVs on hypoxia/reoxygenation damage and IRI, as well as the cardio-protective signaling pathways, were investigated in vitro (HMEC-1 + H9c2 co-culture) and ex vivo (isolated rat heart). Both EV-naive and EV-RIPC failed to drive cardio-protection both in vitro and ex vivo. Consistently, EV treatment failed to activate the canonical cardio-protective pathways. Specifically, PCI reduced the EV-naive Dusp6 mRNA content, found to be crucial for their cardio-protective action, and upregulated some stress- and cell-cycle-related genes in EV-RIPC. We provide the first evidence that in ACS patients, PCI reprograms the EV cargo, impairing EV-naive cardio-protective properties without improving EV-RIPC functional capability.


Asunto(s)
Síndrome Coronario Agudo/terapia , Vesículas Extracelulares/fisiología , Intervención Coronaria Percutánea , Síndrome Coronario Agudo/sangre , Síndrome Coronario Agudo/fisiopatología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Cardiotónicos/metabolismo , Método Doble Ciego , Fosfatasa 6 de Especificidad Dual/genética , Vesículas Extracelulares/genética , Vesículas Extracelulares/ultraestructura , Femenino , Perfilación de la Expresión Génica , Humanos , Técnicas In Vitro , Precondicionamiento Isquémico , Masculino , Persona de Mediana Edad , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Wistar , Daño por Reperfusión/prevención & control
16.
Am J Physiol Renal Physiol ; 318(2): F486-F495, 2020 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-31869243

RESUMEN

Extracellular vesicles released into urine (uEVs) can represent interesting biomarkers of renal cell damage. CD133, a stem/progenitor cell marker expressed by renal progenitor cells, is highly expressed in uEVs of healthy individuals. In the present study, we evaluated the level of CD133 in the uEVs of patients with acute and chronic glomerular damage by cytofluorimetric analysis. The level of CD133+ uEVs was significantly decreased in pediatric patients with acute glomerulonephritis during the acute phase of renal damage, while it was restored after the subsequent recovery. A similar decrease was also observed in patients with chronic glomerulonephritis. Moreover, CD133+ uEVs significantly declined in patients with type 2 diabetes, used as validation group, with the lowest levels in patients with albuminuria with diabetic nephropathy. Indeed, receiver-operating characteristic curve analysis indicates the ability of CD133+ uEV values to discriminate the health condition from that of glomerular disease. In parallel, a significant decrease of CD133 in renal progenitor cells and in their derived EVs was observed in vitro after cell treatment with a combination of glucose and albumin overload, mimicking the diabetic condition. These data indicate that the level of CD133+ uEVs may represent an easily accessible marker of renal normal physiology and could provide information on the "reservoir" of regenerating cells within tubules.


Asunto(s)
Antígeno AC133/orina , Nefropatías Diabéticas/orina , Vesículas Extracelulares/metabolismo , Glomerulonefritis/orina , Glomérulos Renales/metabolismo , Células Madre/metabolismo , Enfermedad Aguda , Adolescente , Adulto , Factores de Edad , Anciano , Anciano de 80 o más Años , Biomarcadores/orina , Estudios de Casos y Controles , Proliferación Celular , Células Cultivadas , Niño , Preescolar , Enfermedad Crónica , Nefropatías Diabéticas/patología , Nefropatías Diabéticas/fisiopatología , Regulación hacia Abajo , Vesículas Extracelulares/patología , Femenino , Tasa de Filtración Glomerular , Glomerulonefritis/patología , Glomerulonefritis/fisiopatología , Humanos , Glomérulos Renales/patología , Glomérulos Renales/fisiopatología , Masculino , Persona de Mediana Edad , Valor Predictivo de las Pruebas , Pronóstico , Regeneración , Reproducibilidad de los Resultados , Células Madre/patología , Urinálisis
17.
Adv Exp Med Biol ; 1212: 179-220, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-31025308

RESUMEN

Insulin-dependent diabetes mellitus or type 1 diabetes mellitus (T1DM) is an auto-immune condition characterized by the loss of pancreatic ß-cells. The curative approach for highly selected patients is the pancreas or the pancreatic islet transplantation. Nevertheless, these options are limited by a growing shortage of donor organs and by the requirement of immunosuppression.Xenotransplantation of porcine islets has been extensively investigated. Nevertheless, the strong xenoimmunity and the risk of transmission of porcine endogenous retroviruses, have limited their application in clinic. Generation of ß-like cells from stem cells is one of the most promising strategies in regenerative medicine. Embryonic, and more recently, adult stem cells are currently the most promising cell sources exploited to generate functional ß-cells in vitro. A number of studies demonstrated that stem cells could generate functional pancreatic organoids (POs), able to restore normoglycemia when implanted in different preclinical diabetic models. Nevertheless, a gradual loss of function and cell dead are commonly detected when POs are transplanted in immunocompetent animals. So far, the main issue to be solved is the post-transplanted islet loss, due to the host immune attack. To avoid this hurdle, nanotechnology has provided a number of polymers currently under investigation for islet micro and macro-encapsulation. These new approaches, besides conferring PO immune protection, are able to supply oxygen and nutrients and to preserve PO morphology and long-term viability.Herein, we summarize the current knowledge on bioengineered POs and the stem cell differentiation platforms. We also discuss the in vitro strategies used to generate functional POs, and the protocols currently used to confer immune-protection against the host immune attack (micro- and macro-encapsulation). In addition, the most relevant ongoing clinical trials, and the most relevant hurdles met to move towards clinical application are revised.


Asunto(s)
Diabetes Mellitus Tipo 1/terapia , Islotes Pancreáticos/citología , Organoides/citología , Medicina Regenerativa/métodos , Células Madre/citología , Animales , Diferenciación Celular , Diabetes Mellitus Tipo 1/patología , Humanos , Trasplante de Islotes Pancreáticos/métodos
18.
Int J Mol Sci ; 21(18)2020 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-32942702

RESUMEN

The tumour microenvironment (TME) plays a crucial role in the regulation of cell survival and growth by providing inhibitory or stimulatory signals. Extracellular vesicles (EV) represent one of the most relevant cell-to-cell communication mechanism among cells within the TME. Moreover, EV contribute to the crosstalk among cancerous, immune, endothelial, and stromal cells to establish TME diversity. EV contain proteins, mRNAs and miRNAs, which can be locally delivered in the TME and/or transferred to remote sites to dictate tumour behaviour. EV in the TME impact on cancer cell proliferation, invasion, metastasis, immune-escape, pre-metastatic niche formation and the stimulation of angiogenesis. Moreover, EV can boost or inhibit tumours depending on the TME conditions and their cell of origin. Therefore, to move towards the identification of new targets and the development of a novel generation of EV-based targeting approaches to gain insight into EV mechanism of action in the TME would be of particular relevance. The aim here is to provide an overview of the current knowledge of EV released from different TME cellular components and their role in driving TME diversity. Moreover, recent proposed engineering approaches to targeting cells in the TME via EV are discussed.


Asunto(s)
Vesículas Extracelulares/metabolismo , Neoplasias/metabolismo , Microambiente Tumoral/fisiología , Animales , Comunicación Celular/fisiología , Células Endoteliales/metabolismo , Humanos , Neovascularización Patológica/metabolismo , Células del Estroma/metabolismo
19.
Int J Mol Sci ; 21(20)2020 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-33080952

RESUMEN

Cancer is one of the greatest public health challenges. According to the World Health Organization (WHO), 9.6 million cancer deaths have been reported in 2018. The most common cancers include lung, breast, colorectal, prostate, skin (non-melanoma) and stomach cancer. The unbalance of physiological signalling pathways due to the acquisition of mutations in tumour cells is considered the most common cancer driver. The Wingless-related integration site (Wnt)/ß-catenin pathway is crucial for tissue development and homeostasis in all animal species and its dysregulation is one of the most relevant events linked to cancer development and dissemination. The canonical and the non-canonical Wnt/ß-catenin pathways are known to control both physiological and pathological processes, including cancer. Herein, the impact of the Wnt/ß-catenin cascade in driving cancers from different origin has been examined. Finally, based on the impact of Extracellular Vesicles (EVs) on tumour growth, invasion and chemoresistance, and their role as tumour diagnostic and prognostic tools, an overview of the current knowledge linking EVs to the Wnt/ß-catenin pathway is also discussed.


Asunto(s)
Terapia Molecular Dirigida , Neoplasias/metabolismo , Neoplasias/terapia , Vía de Señalización Wnt , Animales , Polaridad Celular , Vesículas Extracelulares/metabolismo , Humanos , MicroARNs/genética , MicroARNs/metabolismo , Neoplasias/genética
20.
Int J Mol Sci ; 20(20)2019 Oct 11.
Artículo en Inglés | MEDLINE | ID: mdl-31614414

RESUMEN

Ischemic diseases in an aging population pose a heavy social encumbrance. Moreover, current therapeutic approaches, which aimed to prevent or minimize ischemia-induced damage, are associated with relevant costs for healthcare systems. Early reperfusion by primary percutaneous coronary intervention (PPCI) has undoubtedly improved patient's outcomes; however, the prevention of long-term complications is still an unmet need. To face these hurdles and improve patient's outcomes, novel pharmacological and interventional approaches, alone or in combination, reducing myocardium oxygen consumption or supplying blood flow via collateral vessels have been proposed. A number of clinical trials are ongoing to validate their efficacy on patient's outcomes. Alternative options, including stem cell-based therapies, have been evaluated to improve cardiac regeneration and prevent scar formation. However, due to the lack of long-term engraftment, more recently, great attention has been devoted to their paracrine mediators, including exosomes (Exo) and microvesicles (MV). Indeed, Exo and MV are both currently considered to be one of the most promising therapeutic strategies in regenerative medicine. As a matter of fact, MV and Exo that are released from stem cells of different origin have been evaluated for their healing properties in ischemia reperfusion (I/R) settings. Therefore, this review will first summarize mechanisms of cardiac damage and protection after I/R damage to track the paths through which more appropriate interventional and/or molecular-based targeted therapies should be addressed. Moreover, it will provide insights on novel non-invasive/invasive interventional strategies and on Exo-based therapies as a challenge for improving patient's long-term complications. Finally, approaches for improving Exo healing properties, and topics still unsolved to move towards Exo clinical application will be discussed.


Asunto(s)
Terapia Combinada/métodos , Vesículas Extracelulares/metabolismo , Daño por Reperfusión/terapia , Micropartículas Derivadas de Células , Ensayos Clínicos como Asunto , Circulación Coronaria , Humanos , Oxígeno/metabolismo , Daño por Reperfusión/metabolismo , Trasplante de Células Madre
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA