Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
PLoS Pathog ; 19(5): e1011325, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-37130129

RESUMEN

Malaria-causing parasites achieve rapid proliferation in human blood through multiple rounds of asynchronous nuclear division followed by daughter cell formation. Nuclear divisions critically depend on the centriolar plaque, which organizes intranuclear spindle microtubules. The centriolar plaque consists of an extranuclear compartment, which is connected via a nuclear pore-like structure to a chromatin-free intranuclear compartment. Composition and function of this non-canonical centrosome remain largely elusive. Centrins, which reside in the extranuclear part, are among the very few centrosomal proteins conserved in Plasmodium falciparum. Here we identify a novel centrin-interacting centriolar plaque protein. Conditional knock down of this Sfi1-like protein (PfSlp) caused a growth delay in blood stages, which correlated with a reduced number of daughter cells. Surprisingly, intranuclear tubulin abundance was significantly increased, which raises the hypothesis that the centriolar plaque might be implicated in regulating tubulin levels. Disruption of tubulin homeostasis caused excess microtubules and aberrant mitotic spindles. Time-lapse microscopy revealed that this prevented or delayed mitotic spindle extension but did not significantly interfere with DNA replication. Our study thereby identifies a novel extranuclear centriolar plaque factor and establishes a functional link to the intranuclear compartment of this divergent eukaryotic centrosome.


Asunto(s)
Microtúbulos , Proteínas Protozoarias , Tubulina (Proteína) , Centrosoma/metabolismo , Homeostasis , Microtúbulos/metabolismo , Tubulina (Proteína)/genética , Plasmodium falciparum , Proteínas Protozoarias/genética
2.
PLoS Biol ; 20(7): e3001704, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35900985

RESUMEN

Kinesins are microtubule (MT)-based motors important in cell division, motility, polarity, and intracellular transport in many eukaryotes. However, they are poorly studied in the divergent eukaryotic pathogens Plasmodium spp., the causative agents of malaria, which manifest atypical aspects of cell division and plasticity of morphology throughout the life cycle in both mammalian and mosquito hosts. Here, we describe a genome-wide screen of Plasmodium kinesins, revealing diverse subcellular locations and functions in spindle assembly, axoneme formation, and cell morphology. Surprisingly, only kinesin-13 is essential for growth in the mammalian host while the other 8 kinesins are required during the proliferative and invasive stages of parasite transmission through the mosquito vector. In-depth analyses of kinesin-13 and kinesin-20 revealed functions in MT dynamics during apical cell polarity formation, spindle assembly, and axoneme biogenesis. These findings help us to understand the importance of MT motors and may be exploited to discover new therapeutic interventions against malaria.


Asunto(s)
Culicidae , Malaria , Parásitos , Plasmodium , Animales , Humanos , Cinesinas/genética , Estadios del Ciclo de Vida/genética , Malaria/metabolismo , Mamíferos , Microtúbulos/metabolismo , Plasmodium/genética
3.
J Cell Sci ; 135(15)2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35621049

RESUMEN

Acetyl-CoA participates in post-translational modification of proteins and in central carbon and lipid metabolism in several cell compartments. In mammals, acetyl-CoA transporter 1 (AT1, also known as SLC33A1) facilitates the flux of cytosolic acetyl-CoA into the endoplasmic reticulum (ER), enabling the acetylation of proteins of the secretory pathway, in concert with the activity of dedicated acetyltransferases such as NAT8. However, the involvement of the ER acetyl-CoA pool in acetylation of ER-transiting proteins in Apicomplexa is unknown. Here, we identified homologs of AT1 and NAT8 in Toxoplasma gondii and Plasmodium berghei parasites. Proteome-wide analyses revealed widespread N-terminal acetylation of secreted proteins in both species. Such extensive acetylation of N-terminally processed proteins has not been observed previously in any other organism. Deletion of AT1 homologs in both T. gondii and P. berghei resulted in considerable reductions in parasite fitness. In P. berghei, AT1 was found to be important for growth of asexual blood stages, production of female gametocytes and male gametocytogenesis, implying its requirement for parasite transmission. In the absence of AT1, lysine acetylation and N-terminal acetylation in T. gondii remained globally unaltered, suggesting an uncoupling between the role of AT1 in development and active acetylation occurring along the secretory pathway.


Asunto(s)
Parásitos , Toxoplasma , Acetilcoenzima A/metabolismo , Acetilación , Animales , Retículo Endoplásmico/metabolismo , Femenino , Masculino , Mamíferos/metabolismo , Parásitos/metabolismo , Procesamiento Proteico-Postraduccional , Proteoma/metabolismo , Toxoplasma/genética , Toxoplasma/metabolismo
4.
PLoS Pathog ; 18(1): e1010223, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-35077503

RESUMEN

Transmission of malaria-causing parasites to mosquitoes relies on the production of gametocyte stages and their development into gametes. These stages display various microtubule cytoskeletons and the architecture of the corresponding microtubule organisation centres (MTOC) remains elusive. Combining ultrastructure expansion microscopy (U-ExM) with bulk proteome labelling, we first reconstructed in 3D the subpellicular microtubule network which confers cell rigidity to Plasmodium falciparum gametocytes. Upon activation, as the microgametocyte undergoes three rounds of endomitosis, it also assembles axonemes to form eight flagellated microgametes. U-ExM combined with Pan-ExM further revealed the molecular architecture of the bipartite MTOC coordinating mitosis with axoneme formation. This MTOC spans the nuclear membrane linking cytoplasmic basal bodies to intranuclear bodies by proteinaceous filaments. In P. berghei, the eight basal bodies are concomitantly de novo assembled in a SAS6- and SAS4-dependent manner from a deuterosome-like structure, where centrin, γ-tubulin, SAS4 and SAS6 form distinct subdomains. Basal bodies display a fusion of the proximal and central cores where centrin and SAS6 are surrounded by a SAS4-toroid in the lumen of the microtubule wall. Sequential nucleation of axonemes and mitotic spindles is associated with a dynamic movement of γ-tubulin from the basal bodies to the intranuclear bodies. This dynamic architecture relies on two non-canonical regulators, the calcium-dependent protein kinase 4 and the serine/arginine-protein kinase 1. Altogether, these results provide insights into the molecular organisation of a bipartite MTOC that may reflect a functional transition of a basal body to coordinate axoneme assembly with mitosis.


Asunto(s)
Axonema/ultraestructura , Gametogénesis/fisiología , Microscopía/métodos , Centro Organizador de los Microtúbulos/ultraestructura , Mitosis/fisiología , Plasmodium/fisiología , Animales , Ratones , Plasmodium/ultraestructura
6.
PLoS Biol ; 19(3): e3001020, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33705377

RESUMEN

Malaria is caused by unicellular Plasmodium parasites. Plasmodium relies on diverse microtubule cytoskeletal structures for its reproduction, multiplication, and dissemination. Due to the small size of this parasite, its cytoskeleton has been primarily observable by electron microscopy (EM). Here, we demonstrate that the nanoscale cytoskeleton organisation is within reach using ultrastructure expansion microscopy (U-ExM). In developing microgametocytes, U-ExM allows monitoring the dynamic assembly of axonemes and concomitant tubulin polyglutamylation in whole cells. In the invasive merozoite and ookinete forms, U-ExM unveils the diversity across Plasmodium stages and species of the subpellicular microtubule arrays that confer cell rigidity. In ookinetes, we additionally identify an apical tubulin ring (ATR) that colocalises with markers of the conoid in related apicomplexan parasites. This tubulin-containing structure was presumed to be lost in Plasmodium despite its crucial role in motility and invasion in other apicomplexans. Here, U-ExM reveals that a divergent and considerably reduced form of the conoid is actually conserved in Plasmodium species.


Asunto(s)
Citoesqueleto/ultraestructura , Microtúbulos/ultraestructura , Toxoplasma/ultraestructura , Animales , Citoesqueleto/metabolismo , Malaria/metabolismo , Malaria/parasitología , Microscopía Electrónica/métodos , Microtúbulos/metabolismo , Parásitos , Plasmodium/metabolismo , Plasmodium/patogenicidad , Plasmodium/ultraestructura , Toxoplasma/metabolismo , Toxoplasma/patogenicidad , Tubulina (Proteína)
7.
Mol Microbiol ; 115(5): 829-838, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33112460

RESUMEN

Malaria-causing parasites are transmitted from humans to mosquitoes when developmentally arrested gametocytes are taken up by a female Anopheles during a blood meal. The changes in environment from human to mosquito activate gametogenesis, including a drop in temperature, a rise in pH, and a mosquito-derived molecule, xanthurenic acid. Signaling receptors have not been identified in malaria parasites but mounting evidence indicates that cGMP homeostasis is key to sensing extracellular cues in gametocytes. Low levels of cGMP maintained by phosphodiesterases prevent precocious activation of gametocytes in the human blood. Upon ingestion, initiation of gametogenesis depends on the activation of a hybrid guanylyl cyclase/P4-ATPase. Elevated cGMP levels lead to the rapid mobilization of intracellular calcium that relies upon the activation of both cGMP-dependent protein kinase and phosphoinositide phospholipase C. Once calcium is released, a cascade of phosphorylation events mediated by calcium-dependent protein kinases and phosphatases regulates the cellular processes required for gamete formation. cGMP signaling also triggers timely egress from the host cell at other life cycle stages of malaria parasites and in Toxoplasma gondii, a related apicomplexan parasite. This suggests that cGMP signaling is a versatile platform transducing external cues into calcium signals at important decision points in the life cycle of apicomplexan parasites.


Asunto(s)
Anopheles/parasitología , GMP Cíclico/metabolismo , Malaria/parasitología , Plasmodium/metabolismo , Animales , Anopheles/fisiología , Calcio/metabolismo , Células Germinativas/crecimiento & desarrollo , Células Germinativas/metabolismo , Humanos , Estadios del Ciclo de Vida , Malaria/transmisión , Plasmodium/genética , Plasmodium/crecimiento & desarrollo , Proteínas Protozoarias/genética , Proteínas Protozoarias/metabolismo
8.
EMBO J ; 36(21): 3250-3267, 2017 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-29030485

RESUMEN

Toxoplasma gondii encodes three protein kinase A catalytic (PKAc1-3) and one regulatory (PKAr) subunits to integrate cAMP-dependent signals. Here, we show that inactive PKAc1 is maintained at the parasite pellicle by interacting with acylated PKAr. Either a conditional knockdown of PKAr or the overexpression of PKAc1 blocks parasite division. Conversely, down-regulation of PKAc1 or stabilisation of a dominant-negative PKAr isoform that does not bind cAMP triggers premature parasite egress from infected cells followed by serial invasion attempts leading to host cell lysis. This untimely egress depends on host cell acidification. A phosphoproteome analysis suggested the interplay between cAMP and cGMP signalling as PKAc1 inactivation changes the phosphorylation profile of a putative cGMP-phosphodiesterase. Concordantly, inhibition of the cGMP-dependent protein kinase G (PKG) blocks egress induced by PKAc1 inactivation or environmental acidification, while a cGMP-phosphodiesterase inhibitor circumvents egress repression by PKAc1 or pH neutralisation. This indicates that pH and PKAc1 act as balancing regulators of cGMP metabolism to control egress. These results reveal a crosstalk between PKA and PKG pathways to govern egress in T. gondii.


Asunto(s)
3',5'-GMP Cíclico Fosfodiesterasas/genética , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/genética , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/genética , Proteínas Quinasas Dependientes de GMP Cíclico/genética , Interacciones Huésped-Parásitos , Proteínas Protozoarias/genética , Toxoplasma/genética , 3',5'-GMP Cíclico Fosfodiesterasas/metabolismo , Acilación , Línea Celular Transformada , AMP Cíclico/metabolismo , Subunidades Catalíticas de Proteína Quinasa Dependientes de AMP Cíclico/metabolismo , Subunidad RIalfa de la Proteína Quinasa Dependiente de AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Fibroblastos/parasitología , Regulación de la Expresión Génica , Humanos , Concentración de Iones de Hidrógeno , Estadios del Ciclo de Vida/genética , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Fosforilación , Proteínas Protozoarias/metabolismo , Transducción de Señal , Toxoplasma/crecimiento & desarrollo , Toxoplasma/metabolismo
9.
Genes Dev ; 27(10): 1198-215, 2013 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-23699412

RESUMEN

Fertilization is a crucial yet poorly characterized event in eukaryotes. Our previous discovery that the broadly conserved protein HAP2 (GCS1) functioned in gamete membrane fusion in the unicellular green alga Chlamydomonas and the malaria pathogen Plasmodium led us to exploit the rare biological phenomenon of isogamy in Chlamydomonas in a comparative transcriptomics strategy to uncover additional conserved sexual reproduction genes. All previously identified Chlamydomonas fertilization-essential genes fell into related clusters based on their expression patterns. Out of several conserved genes in a minus gamete cluster, we focused on Cre06.g280600, an ortholog of the fertilization-related Arabidopsis GEX1. Gene disruption, cell biological, and immunolocalization studies show that CrGEX1 functions in nuclear fusion in Chlamydomonas. Moreover, CrGEX1 and its Plasmodium ortholog, PBANKA_113980, are essential for production of viable meiotic progeny in both organisms and thus for mosquito transmission of malaria. Remarkably, we discovered that the genes are members of a large, previously unrecognized family whose first-characterized member, KAR5, is essential for nuclear fusion during yeast sexual reproduction. Our comparative transcriptomics approach provides a new resource for studying sexual development and demonstrates that exploiting the data can lead to the discovery of novel biology that is conserved across distant taxa.


Asunto(s)
Chlamydomonas/genética , Hongos/genética , Genes Esenciales , Membrana Nuclear/metabolismo , Proteínas Nucleares/clasificación , Plasmodium/genética , Vertebrados/genética , Animales , Proteínas de Arabidopsis/clasificación , Proteínas de Arabidopsis/metabolismo , Fertilización/genética , Hongos/crecimiento & desarrollo , Perfilación de la Expresión Génica , Meiosis , Proteínas de la Membrana/clasificación , Proteínas de la Membrana/metabolismo , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Plantas/genética , Reproducción/genética , Proteínas de Saccharomyces cerevisiae/clasificación , Proteínas de Saccharomyces cerevisiae/metabolismo , Transcriptoma/genética
10.
Mol Microbiol ; 100(3): 397-408, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-26748879

RESUMEN

Ca(2+) is a ubiquitous intracellular messenger in malaria parasites with important functions in asexual blood stages responsible for malaria symptoms, the preceding liver-stage infection and transmission through the mosquito. Intracellular messengers amplify signals by binding to effector molecules that trigger physiological changes. The characterisation of some Ca(2+) effector proteins has begun to provide insights into the vast range of biological processes controlled by Ca(2+) signalling in malaria parasites, including host cell egress and invasion, protein secretion, motility and cell cycle regulation. Despite the importance of Ca(2+) signalling during the life cycle of malaria parasites, little is known about Ca(2+) homeostasis. Recent findings highlighted that upstream of stage-specific Ca(2+) effectors is a conserved interplay between second messengers to control critical intracellular Ca(2+) signals throughout the life cycle. The identification of the molecular mechanisms integrating stage-transcending mechanisms of Ca(2+) homeostasis in a network of stage-specific regulator and effector pathways now represents a major challenge for a meaningful understanding of Ca(2+) signalling in malaria parasites.


Asunto(s)
Señalización del Calcio/fisiología , Calcio/metabolismo , Proteínas de Transporte de Catión/metabolismo , Malaria Falciparum/metabolismo , Plasmodium falciparum/metabolismo , Movimiento Celular/fisiología , Eritrocitos/parasitología , Estadios del Ciclo de Vida/fisiología , Malaria Falciparum/parasitología
11.
PLoS Biol ; 12(3): e1001806, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24594931

RESUMEN

Many critical events in the Plasmodium life cycle rely on the controlled release of Ca²âº from intracellular stores to activate stage-specific Ca²âº-dependent protein kinases. Using the motility of Plasmodium berghei ookinetes as a signalling paradigm, we show that the cyclic guanosine monophosphate (cGMP)-dependent protein kinase, PKG, maintains the elevated level of cytosolic Ca²âº required for gliding motility. We find that the same PKG-dependent pathway operates upstream of the Ca²âº signals that mediate activation of P. berghei gametocytes in the mosquito and egress of Plasmodium falciparum merozoites from infected human erythrocytes. Perturbations of PKG signalling in gliding ookinetes have a marked impact on the phosphoproteome, with a significant enrichment of in vivo regulated sites in multiple pathways including vesicular trafficking and phosphoinositide metabolism. A global analysis of cellular phospholipids demonstrates that in gliding ookinetes PKG controls phosphoinositide biosynthesis, possibly through the subcellular localisation or activity of lipid kinases. Similarly, phosphoinositide metabolism links PKG to egress of P. falciparum merozoites, where inhibition of PKG blocks hydrolysis of phosphatidylinostitol (4,5)-bisphosphate. In the face of an increasing complexity of signalling through multiple Ca²âº effectors, PKG emerges as a unifying factor to control multiple cellular Ca²âº signals essential for malaria parasite development and transmission.


Asunto(s)
Señalización del Calcio , Proteínas Quinasas Dependientes de GMP Cíclico/fisiología , Fosfatidilinositoles/metabolismo , Plasmodium falciparum/fisiología , Animales , Culicidae/parasitología , Proteínas Quinasas Dependientes de GMP Cíclico/metabolismo , Interacciones Huésped-Parásitos , Humanos , Estadios del Ciclo de Vida , Malaria/parasitología , Modelos Biológicos , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/metabolismo
12.
Nat Methods ; 8(12): 1078-82, 2011 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-22020067

RESUMEN

In malaria parasites, the systematic experimental validation of drug and vaccine targets by reverse genetics is constrained by the inefficiency of homologous recombination and by the difficulty of manipulating adenine and thymine (A+T)-rich DNA of most Plasmodium species in Escherichia coli. We overcame these roadblocks by creating a high-integrity library of Plasmodium berghei genomic DNA (>77% A+T content) in a bacteriophage N15-based vector that can be modified efficiently using the lambda Red method of recombineering. We built a pipeline for generating P. berghei genetic modification vectors at genome scale in serial liquid cultures on 96-well plates. Vectors have long homology arms, which increase recombination frequency up to tenfold over conventional designs. The feasibility of efficient genetic modification at scale will stimulate collaborative, genome-wide knockout and tagging programs for P. berghei.


Asunto(s)
ADN Protozoario/genética , ADN Recombinante/genética , Ingeniería Genética , Malaria/parasitología , Plasmodium berghei/genética , Escherichia coli/genética , Biblioteca de Genes , Vectores Genéticos/genética , Genoma de Protozoos/genética , Recombinación Homóloga
13.
mBio ; 15(2): e0305623, 2024 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-38132724

RESUMEN

Apicomplexa encompasses a large number of intracellular parasites infecting a wide range of animals. Cyclic nucleotide signaling is crucial for a variety of apicomplexan life stages and cellular processes. The cyclases and kinases that synthesize and respond to cyclic nucleotides (i.e., 3',5'-cyclic guanosine monophosphate and 3',5'-cyclic adenosine monophosphate) are highly conserved and essential throughout the parasite phylum. Growing evidence indicates that phosphodiesterases (PDEs) are also critical for regulating cyclic nucleotide signaling via cyclic nucleotide hydrolysis. Here, we discuss recent advances in apicomplexan PDE biology and opportunities for therapeutic interventions, with special emphasis on the major human apicomplexan parasite genera Plasmodium, Toxoplasma, Cryptosporidium, and Babesia. In particular, we show a highly flexible repertoire of apicomplexan PDEs associated with a wide range of cellular requirements across parasites and lifecycle stages. Despite this phylogenetic diversity, cellular requirements of apicomplexan PDEs for motility, host cell egress, or invasion are conserved. However, the molecular wiring of associated PDEs is extremely malleable suggesting that PDE diversity and redundancy are key for the optimization of cyclic nucleotide turnover to respond to the various environments encountered by each parasite and life stage. Understanding how apicomplexan PDEs are regulated and integrating multiple signaling systems into a unified response represent an untapped avenue for future exploration.


Asunto(s)
Criptosporidiosis , Cryptosporidium , Dietilestilbestrol/análogos & derivados , Animales , Humanos , Hidrolasas Diéster Fosfóricas/genética , Nucleótidos Cíclicos , Inhibidores de Fosfodiesterasa/uso terapéutico , Filogenia , GMP Cíclico , 3',5'-AMP Cíclico Fosfodiesterasas
14.
Nat Commun ; 14(1): 1312, 2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36898988

RESUMEN

Malaria-causing parasites of the Plasmodium genus undergo multiple developmental phases in the human and the mosquito hosts, regulated by various post-translational modifications. While ubiquitination by multi-component E3 ligases is key to regulate a wide range of cellular processes in eukaryotes, little is known about its role in Plasmodium. Here we show that Plasmodium berghei expresses a conserved SKP1/Cullin1/FBXO1 (SCFFBXO1) complex showing tightly regulated expression and localisation across multiple developmental stages. It is key to cell division for nuclear segregation during schizogony and centrosome partitioning during microgametogenesis. It is additionally required for parasite-specific processes including gamete egress from the host erythrocyte, as well as integrity of the apical and the inner membrane complexes (IMC) in merozoite and ookinete, two structures essential for the dissemination of these motile stages. Ubiquitinomic surveys reveal a large set of proteins ubiquitinated in a FBXO1-dependent manner including proteins important for egress and IMC organisation. We additionally demonstrate an interplay between FBXO1-dependent ubiquitination and phosphorylation via calcium-dependent protein kinase 1. Altogether we show that Plasmodium SCFFBXO1 plays conserved roles in cell division and is also important for parasite-specific processes in the mammalian and mosquito hosts.


Asunto(s)
Plasmodium berghei , Humanos , Eritrocitos/metabolismo , Plasmodium berghei/genética , Plasmodium berghei/metabolismo , Unión Proteica , Proteínas Quinasas Asociadas a Fase-S/metabolismo , Ubiquitinación
15.
Sci Adv ; 9(24): eadf2161, 2023 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-37327340

RESUMEN

Critical events in the life cycle of malaria-causing parasites depend on cyclic guanosine monophosphate homeostasis by guanylyl cyclases (GCs) and phosphodiesterases, including merozoite egress or invasion of erythrocytes and gametocyte activation. These processes rely on a single GCα, but in the absence of known signaling receptors, how this pathway integrates distinct triggers is unknown. We show that temperature-dependent epistatic interactions between phosphodiesterases counterbalance GCα basal activity preventing gametocyte activation before mosquito blood feed. GCα interacts with two multipass membrane cofactors in schizonts and gametocytes: UGO (unique GC organizer) and SLF (signaling linking factor). While SLF regulates GCα basal activity, UGO is essential for GCα up-regulation in response to natural signals inducing merozoite egress and gametocyte activation. This work identifies a GC membrane receptor platform that senses signals triggering processes specific to an intracellular parasitic lifestyle, including host cell egress and invasion to ensure intraerythrocytic amplification and transmission to mosquitoes.


Asunto(s)
Culicidae , Plasmodium , Animales , Señales (Psicología) , Plasmodium/fisiología , Eritrocitos/parasitología , Merozoítos/fisiología , Estadios del Ciclo de Vida , Culicidae/parasitología
16.
bioRxiv ; 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36778504

RESUMEN

Mechanisms of cell division are remarkably diverse, suggesting the underlying molecular networks among eukaryotes differ extensively. The Aurora family of kinases orchestrates the process of chromosome segregation and cytokinesis during cell division through precise spatiotemporal regulation of their catalytic activities by distinct scaffolds. Plasmodium spp., the causative agents of malaria, are unicellular eukaryotes that have three divergent aurora-related kinases (ARKs) and lack most canonical scaffolds/activators. The parasite uses unconventional modes of chromosome segregation during endomitosis and meiosis in sexual transmission stages within mosquito host. This includes a rapid threefold genome replication from 1N to 8N with successive cycles of closed mitosis, spindle formation and chromosome segregation within eight minutes (termed male gametogony). Kinome studies had previously suggested likely essential functions for all three Plasmodium ARKs during asexual mitotic cycles; however, little is known about their location, function, or their scaffolding molecules during unconventional sexual proliferative stages. Using a combination of super-resolution microscopy, mass spectrometry, and live-cell fluorescence imaging, we set out to investigate the role of the atypical Aurora paralog ARK2 to proliferative sexual stages using rodent malaria model Plasmodium berghei . We find that ARK2 primarily localises to the spindle apparatus in the vicinity of kinetochores during both mitosis and meiosis. Interactomics and co-localisation studies reveal a unique ARK2 scaffold at the spindle including the microtubule plus end-binding protein EB1, lacking conserved Aurora scaffold proteins. Gene function studies indicate complementary functions of ARK2 and EB1 in driving endomitotic divisions and thereby parasite transmission. Our discovery of a novel Aurora kinase spindle scaffold underlines the emerging flexibility of molecular networks to rewire and drive unconventional mechanisms of chromosome segregation in the malaria parasite Plasmodium .

17.
Res Sq ; 2023 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-36798191

RESUMEN

Mechanisms of cell division are remarkably diverse, suggesting the underlying molecular networks among eukaryotes differ extensively. The Aurora family of kinases orchestrates the process of chromosome segregation and cytokinesis during cell division through precise spatiotemporal regulation of their catalytic activities by distinct scaffolds. Plasmodium spp., the causative agents of malaria, are unicellular eukaryotes that have three divergent aurora-related kinases (ARKs) and lack most canonical scaffolds/activators. The parasite uses unconventional modes of chromosome segregation during endomitosis and meiosis in sexual transmission stages within mosquito host. This includes a rapid threefold genome replication from 1N to 8N with successive cycles of closed mitosis, spindle formation and chromosome segregation within eight minutes (termed male gametogony). Kinome studies had previously suggested likely essential functions for all three Plasmodium ARKs during asexual mitotic cycles; however, little is known about their location, function, or their scaffolding molecules during unconventional sexual proliferative stages. Using a combination of super-resolution microscopy, mass spectrometry, omics and live-cell fluorescence imaging, we set out to investigate the contribution of the atypical Aurora paralog ARK2 to proliferative sexual stages using rodent malaria model Plasmodium berghei. We find that ARK2 primarily localises to the spindle apparatus associated with kinetochores during both mitosis and meiosis. Interactomics and co-localisation studies reveal a unique ARK2 scaffold at the spindle including the microtubule plus end-binding protein EB1 and lacking some other conserved molecules. Gene function studies indicate complementary functions of ARK2 and EB1 in driving endomitotic divisions and thereby parasite transmission. Our discovery of a novel Aurora spindle scaffold underlines the emerging flexibility of molecular networks to rewire and drive unconventional mechanisms of chromosome segregation in the malaria parasite Plasmodium.

18.
Nat Commun ; 14(1): 5652, 2023 09 13.
Artículo en Inglés | MEDLINE | ID: mdl-37704606

RESUMEN

The Aurora family of kinases orchestrates chromosome segregation and cytokinesis during cell division, with precise spatiotemporal regulation of its catalytic activities by distinct protein scaffolds. Plasmodium spp., the causative agents of malaria, are unicellular eukaryotes with three unique and highly divergent aurora-related kinases (ARK1-3) that are essential for asexual cellular proliferation but lack most canonical scaffolds/activators. Here we investigate the role of ARK2 during sexual proliferation of the rodent malaria Plasmodium berghei, using a combination of super-resolution microscopy, mass spectrometry, and live-cell fluorescence imaging. We find that ARK2 is primarily located at spindle microtubules in the vicinity of kinetochores during both mitosis and meiosis. Interactomic and co-localisation studies reveal several putative ARK2-associated interactors including the microtubule-interacting protein EB1, together with MISFIT and Myosin-K, but no conserved eukaryotic scaffold proteins. Gene function studies indicate that ARK2 and EB1 are complementary in driving endomitotic division and thereby parasite transmission through the mosquito. This discovery underlines the flexibility of molecular networks to rewire and drive unconventional mechanisms of chromosome segregation in the malaria parasite.


Asunto(s)
División del Núcleo Celular , Segregación Cromosómica , Animales , Plasmodium berghei/genética , Proliferación Celular , Meiosis , Aurora Quinasas , Eucariontes
19.
J Cell Biol ; 221(9)2022 09 05.
Artículo en Inglés | MEDLINE | ID: mdl-36006241

RESUMEN

Kinetochores are multiprotein assemblies directing mitotic spindle attachment and chromosome segregation. In apicomplexan parasites, most known kinetochore components and associated regulators are apparently missing, suggesting a minimal structure with limited control over chromosome segregation. In this study, we use interactomics combined with deep homology searches to identify 13 previously unknown components of kinetochores in Apicomplexa. Apicomplexan kinetochores are highly divergent in sequence and composition from animal and fungal models. The nanoscale organization includes at least four discrete compartments, each displaying different biochemical interactions, subkinetochore localizations and evolutionary rates across the phylum. We reveal alignment of kinetochores at the metaphase plate in both Plasmodium berghei and Toxoplasma gondii, suggestive of a conserved "hold signal" that prevents precocious entry into anaphase. Finally, we show unexpected plasticity in kinetochore composition and segregation between apicomplexan lifecycle stages, suggestive of diverse requirements to maintain fidelity of chromosome segregation across parasite modes of division.


Asunto(s)
Apicomplexa , Segregación Cromosómica , Cinetocoros , Anafase , Apicomplexa/genética , Metafase , Microtúbulos , Mitosis , Plasmodium berghei/genética , Huso Acromático/genética , Toxoplasma/genética
20.
Nat Microbiol ; 7(11): 1777-1790, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36109645

RESUMEN

Members of Apicomplexa are defined by apical cytoskeletal structures and secretory organelles, tailored for motility, invasion and egress. Gliding is powered by actomyosin-dependent rearward translocation of apically secreted transmembrane adhesins. In the human parasite Toxoplasma gondii, the conoid, composed of tubulin fibres and preconoidal rings (PCRs), is a dynamic organelle of undefined function. Here, using ultrastructure expansion microscopy, we established that PCRs serve as a hub for glideosome components including Formin1. We also identified components of the PCRs conserved in Apicomplexa, Pcr4 and Pcr5, that contain B-box zinc-finger domains, assemble in heterodimer and are essential for the formation of the structure. The fitness conferring Pcr6 tethers the PCRs to the cone of tubulin fibres. F-actin produced by Formin1 is used by Myosin H to generate the force for conoid extrusion which directs the flux of F-actin to the pellicular space, serving as gatekeeper to control parasite motility.


Asunto(s)
Actinas , Apicomplexa , Toxoplasma , Humanos , Citoesqueleto , Proteínas Protozoarias/genética , Toxoplasma/genética , Tubulina (Proteína)
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA